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The investigation of the emergent collective behaviour in flying birds is a
challenging task, yet it has always fascinated scientists from different disci-
plines. In the attempt of studying and modelling line formation, we collected
high-precision position data of 29 free-flying northern bald ibises (Geronticus
eremita) using Global Navigation Satellite System loggers, to investigate
whether the spatial relationships within a flock can be explained by birds
maintaining energetically advantageous positions. Specifically, we exploited
domain knowledge and available literature information to model by means
of fuzzy logic where the air vortices lie behind a flying bird. This allowed us
to determine when a leading bird provides the upwash to a following bird,
reducing its overall effort. Our results show that the fuzzy model allows to
easily distinguish which bird is flying in the wake of another individual, pro-
vides a clear indication about flying flock dynamics and also gives a hint
about birds’ social relationships.
1. Background
Some animal species form and move in groups and can achieve astonishing com-
plexity and coordination in space and time, a phenomenon that is defined as
collective motion. Well-known examples of collective motion in the animal king-
dom are fish schools, herds of herbivores, bird flocks and insect swarms [1]. In the
last decades, these behaviours have been studied and modelled extensively not
only by biologists but also by computer scientists, physicists, andmathematicians,
inspiring the development of a variety of computational intelligence meta-
heuristic algorithms such as particle swarm optimization [2], artificial bee
colony [3], ant colony optimization [4] or salp swarm optimization [5].

When focusing on flocking behaviour, in the literature we can find a distinc-
tion between ‘cluster formations’ and ‘line formations’ [6,7]. Cluster formations refer
to three-dimensional groups of birds—generally of small size—flying closely to
each other. This is the case of starlings [8], pigeons [9] or even mixed-species
flocks [10]. For a long time, scientists have been studying this type of flocking
behaviour, trying to figure out how birds manage this high level of coordination
and cohesion without colliding [11,12], especially during turning, landing,
taking off or under predation [13,14].

Instead, line formations refer to birds flying in an organized manner that
resembles a line or a V and are roughly two-dimensional. Also in this case,
scientists’ interest fell on how birds achieved this type of synchronization

http://crossmark.crossref.org/dialog/?doi=10.1098/rsif.2022.0798&domain=pdf&date_stamp=2023-02-15
mailto:elisa.perinot92@gmail.com
https://doi.org/10.6084/m9.figshare.c.6412332
https://doi.org/10.6084/m9.figshare.c.6412332
http://orcid.org/
http://orcid.org/0000-0003-0379-8508
https://orcid.org/0000-0003-4691-2892
http://orcid.org/0000-0001-8900-796X
http://orcid.org/0000-0001-5454-2508
https://orcid.org/0000-0002-7692-7203
http://creativecommons.org/licenses/by/4.0/


royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

20:20220798

2

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

16
 F

eb
ru

ar
y 

20
23

 

[15,16], although they mostly focused on why they behave in
this way. They hypothesized that it might be due to the aero-
dynamic advantage and the energy saving that results from
this type of flocking behaviour [6,16–18]. In fact, when a
bird is flying and flapping the wings, it generates two regions
of upwash in correspondence of the wingtips, that is, the
terminal part of the wings. Following individuals can exploit
these air vortices to reduce the amount of energy needed
when flying. However, in order to do so, a following bird
must be displaced laterally and posteriorly with respect to
the leading individual with one of its wingtips partly over-
lapping with the leader’s wingtip [19]. Whenever a bird
flies in this ‘right position’, where it gains an aerodynamic
advantage, it is said to be flying in-wake. In addition to the
upwash, the frontal bird also produces a downwash, a down-
ward movement of air, which extends directly behind the
birds’ body and the follower should avoid as it would
hinder its flying (see [6] for additional information).

Former studies on cluster formations suggested that birds
inside a flock behave similarly to a system of self-propelled
particles. In this artificial system, the single units tend to
the same average direction of movement of the other neigh-
bouring particles within a certain radius. In other words,
particles that are near each other move together, ultimately
leading to the emergence of collective behaviour [20]. Simi-
larly, flocking behaviour emerges from the ability of every
single bird to self-organize with the closest individuals
around it, with no centralized control [11,12,21,22].

To better study flocking behaviour, scientists consequently
focused on local or pairwise interactions among the birds,
an approach referred to as ‘nearest neighbour approach’
[8,11,20,21,23,24]. Specifically, previous evidence proposed
that individuals in a flock interactwith a fixed number of neigh-
bours (topological distance) rather thanwith all the individuals
present in a determined radius (metric distance) [8,11,12].

A very similar approach has been used when inferring
about line formation and energy savings. In this case, the
front-facing closest individual—with respect to Euclidean dis-
tance—is assumed to be the one that provides the upwash (as
for example in [25,26]). However, we argue that this assump-
tion might be unrealistic and misleading. For a bird to exploit
the upwash, the spatial relationship with regard to the bird
in the front is more important than simple proximity. For
example, a bird might fly behind another individual, so that
their bodies are aligned. The two birds are near, but the fol-
lower is placed in the downwash, which should instead be
avoided for aerodynamic purposes.

An alternative procedure consists in modelling in-wake
regions, with fixed size and ‘crisp’ borders, which extend
behind the leading bird at the level of the wingtips. In this
case, the exact extension and placement of the in-wake
areas is required [17,27].

However, the upwash and downwash do not have sharp
boundaries, but these air vortices decrease in strength gradu-
ally, according to fluid dynamics, i.e. they are intrinsically
fuzzy. Thus, we are dealing with imprecise properties and
uncertain knowledge about the air vortices and in-wake
flying that can be effectively described by means of fuzzy
logic. Specifically, we propose a novel approach to develop
a knowledge-based model of in-wake flying using fuzzy
logic. Fuzzy logic is a special form of multi-valued logic, in
which elements can belong to multiple sets with varying
degrees of membership (for more information on fuzzy
logic, please refer to §2.3 in the methods). We exploited this
possibility to build a fuzzy inference system (FIS)—created
according to literature data—that is used to determine
which positions provide an upwash, with a smooth transition
to the regions that do not correspond to in-wake flying.

Fuzzy logic has been employed previously to study flock-
ing behaviour and self-organization in cluster flocks [7,28],
but was never applied to the investigation of line formations.
Our model, introduced in [29], differs from previous attempts
as it does not focus on explicitly modelling the birds’ behav-
iour, but it models the upwash (i.e. in-wake flying) and
downwash according to a bird’s position using fuzzy logic. It
comprises information from past literature on flocking behav-
iour, and it is then applied to empirical data collected from a
free-flying flock of northern bald ibises (Geronticus eremita).

We hypothesize that a FIS based on three linguistic vari-
ables, one for each spatial dimension, could help to model
the spatial distribution of the wingtip vortices produced by
the frontal bird and therefore allow to identify in-wake
flying. We compare our model with the conventional nearest
neighbour method, highlighting the differences between the
two approaches. We predict that the two models’ solutions
will differ, as the nearest neighbour approach is based only
on proximity and does not take into consideration vortex place-
ment. Besides identifying times when birds are flying in the
wake of another bird, the model will allow us to describe
flock structure or joint formations (i.e. any subgroup of birds,
which are connected by either flying in the wake area of
another group member or providing such a wake for another
group member). In addition, it will allow us to determine
how many of those subgroups exist at any time as well as
their size and composition. Finally, it will give the possibility
to look into flock spatial dynamics, i.e. how individuals
move inside the formation, and social dynamics, i.e. how indi-
viduals interact in the formation. We apply the model to an
empirical dataset to show how the model works and can be
used to draw conclusions on the dynamics of line formation.
2. Methods
2.1. Data collection
We collected the data in August 2019 during the human-led
migration of northern Bald Ibis (Geronticus eremita) led by Wal-
drappteam Conservation and Research (LIFE biodiversity
project - LIFE + 12-BIO_AT_000143).1 This project aims to reintro-
duce this species in the wild by imprinting a group of young
birds on human foster parents and teaching them to follow a
motorized microlight plane with the aim of guiding them
through the migration route (see [30] for more details).

Across several flights, each bird was equipped with high-
precision custom-made Global Navigation Satellite System
(GNSS) loggers (main module NEO-M8T, U-blox AG, Switzer-
land, ca 6L × 2.5W× 4H cm), which fetched the signal from GPS,
GLONASS and Galileo satellites, and store all data in a raw
format in a SDmemory card. The sampling frequency for position-
ing data was set to 5 Hz. The loggers were secured to the birds
using a leg-loop harness with a plate and a custom three-dimen-
sional-printed case, which was designed with an aerodynamic
shape and profile to reduce air drag [31,32]. Loggers were
mounted on the birds at the beginning of the flight and retrieved
at the end, to download the data. During data collection, birds
weighed on average 1291 g (range 1138–1456 g), loggers weighed
19.16 ± 0.16 g, and the housing 7–8 g. Therefore, the heaviest
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Figure 1. Schematization of the calculation of flying directions. (a) How the flight direction of bird j is calculated using the positions at timestamps t− 1, t and t + 1. The
αj (in red) and βj (in blue) angles are calculated and averaged to obtain the angle γj (in purple) and the new direction, depicted by the grey arrow. In (b), bird j is put at
the centre of the reference system (translation—from the dark grey to the light grey dot). Also the position of bird k is translated relative to bird j (from the red to orange
dot). The rotation takes place in (c), where the flight direction of bird j is set to be always towards north, shown with the dashed grey arrow. Together, also rotates bird k, as
shown with the orange to yellow dot. Finally, in (d ), we can calculate the relative position of k with respect to j on the e|w and n|s baselines.
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logger with the housing weighed 27.32 g, which represents less
than 3% of the smallest bird body weight [33]. In addition to the
birds, also themicrolightwas equippedwith a logger for reference.
An important aspect to highlight is that, although the birds and the
microlight flew together, the birds were seldom close to the aircraft
and therefore they were not subjected to its aerodynamic influence
(mean distance bird–microlight: 30 ± 3.6 m over the 10 min flight)
[16,17].

To assess the performance of the modelling approach, we
will present a proof-of-principle of our model on a 10 min
flight of a flock with 29 birds, collected on 9 August 2019. We
selected the central part of the flight because it is more likely
that birds fly cohesively as a flock and show flight formation
without any interruptions nor landings (please refer to electronic
supplementary material for further information).

2.2. Data processing
After data collection, we post-processed the data using RTKlib
(version demo5 b33b) [34,35] and Python (version 3.7.9). The
software RTKlib supports post-processing kinematics (PPK)
that calculates the position in the space with very high accuracy.
Specifically, normal GNSS (mostly GPS) receivers calculate the
position using instantaneous trilateration and can achieve
metre-level accuracy (approx. 1–5 m), while PPK achieves
cm-level accuracy (i.e. 0.1–10 cm) [36] (please refer to electronic
supplementary material for more information). In order to do
so, the support of a stationary base station is necessary, which
should be as close as possible to the place of data collection.
On the day of the data collection, the birds flew in the region
around the city of Heiligenberg (Germany). Because of that, we
selected the base station PFA300AUT in Bregenz (Austria). This
station is part of the EUREF Permanent Network [37] and the
high-quality GNSS data continuously collected by those stations
is openly accessible.2

Using RTKpost (part of RTKlib), we exploited the base station
to calculate first the position of the microlight, which then was
used as a reference to extract the position of the birds in the
flock. We chose this approach to reduce the error of the position-
ing calculation for the birds, given the medium-distance baseline
present between the data collection place and the base location.
The output of this procedure was a file containing a series of time-
stamps and the associated three-dimensional positions of all birds
in the flock. After that, we calculated relative positions of the
birds with respect to their flight direction as follows.

We define as xi(t) [ R3 the absolute coordinates of i-th bird at
timestamp t, with i = 1,…,N where N denotes the number of
birds in the flock. Given a pair of birds ( j, k) (with j≠ k), we
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can calculate the relative flying direction of k with respect to j
during every snapshot t > 2 using the procedure schematized in
figure 1:

— we use j’s positions at time t− 1, t and t + 1 to calculate a
mean flight direction. Specifically, we calculated the arctan-
gent of the vectors defined by xj(t)− xj(t− 1) and xj(t + 1)−
xj(t). The result is two angles, α and β, which are then aver-
aged to obtain γ (figure 1a). We exploited three consecutive
positions to filter noise in the data and obtain a smoothed
flying path;

— we translated the coordinates of bird k, so that bird j is
centred in the origin of axes (figure 1b). We denote by x0

the new position of a bird after such translation;
— we applied a rotation to the coordinates of bird k, so that bird

j’s flying direction becomes aligned to the y-axis (figure 1c).
We denoted by x00 the new position of a bird after such
rotation;

— we used the new system of coordinates to compute the rela-
tive positioning of bird k with respect to j (as shown in
figure 1d ). We denoted the relative positioning using a set
of two values indicating the east|west and north|south
(hereafter shortened as e|w, n|s, respectively);

— finally, we included the third dimension, defined up|down
(u|d hereafter), and calculated the relative distance of bird
k with respect to j by subtracting the u|d position of bird k
from the u|d position of bird j.

Using this relative spatial information, it is possible to calcu-
late what we define as the frontal nearest neighbour (FNN) as
follows. Given a bird k in the flock, in each timestamp, the
FNN of k is defined as the nearest individual j (with respect to
the Euclidean distance) satisfying the following conditions:

— (i) j is leading (i.e. n|s > 0),
— (ii) it is co-planar (i.e. − 0.75〈u|d < 0.75, where 0.75 m

corresponds to half a wingspan), and
— (iii) not further away than 6 m from the bird of interest (i.e.ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(njs)2 þ (ejw)2
q

,¼ 6:0).

2.3. Fuzzy modelling and inference
Fuzzy set theory was introduced by Zadeh [38] as an extension of
classic set theory, where an element can belong to one or more
disjoint sets with gradual levels of membership. This notion is
radically different with respect to classical set theory, in which
an element can either belong or not belong to a given set. By
means of fuzzy sets, it is possible to formally model vague and
uncertain concepts.

Formally, a fuzzy set is defined by a pair (U, m) where U is a
set (named universe of discourse) and m is membership function
m:U→ [0, 1] that associates each element u∈U to a real value
ranging from 0 (the element u does not belong to set U ) to 1
(the element u fully belongs to set U ). Such function can have
any form and shape, but it must return a value for any possible
element in U; traditionally, fuzzy sets are implemented using tri-
angular or trapezoidal membership functions. Fuzzy sets can be
used to model and characterize linguistic variables, that is,
objects or quantities of the real world that can be described
using a fuzzy term. One example is the linguistic variable ‘temp-
erature’, that could be described using the intrinsically fuzzy
terms ‘cold’, ‘mild’ or ‘hot’.

Linguistic variables and fuzzy terms can be combined by
means of traditional logic connectors (e.g. AND, OR, NOT) to for-
mulate predicates about the world expressed in the form IF
<antecedents> THEN <consequent>, where the overall degree of
truth of the antecedent is calculated according to the membership
degrees of the linguistic variables involved (the interested reader
can find additional information in [7,38]). Such predicates take
the name of fuzzy rules and can be used to model concepts of the
world characterized by uncertainty. In fuzzy rules, the consequent
is typically an output variable of the model to be predicted using
one of the existing FISs. In this paper, we consider 0-order
Takagi–Sugeno inference, in which the consequent takes the
form <output_variable> IS <value>.

Fuzzy logic is a wonderful tool to help modelling phenom-
ena that are characterized by intrinsic uncertainty and cannot
be described in certain terms. The fuzzy rules, the linguistic
values, the fuzzy sets and the shape of the membership functions
are usually defined by the modeller, according to the available
knowledge about the system to be described, unless a data-
driven approach is exploited [39]. Fuzzy set theory and fuzzy
logic found applications across several scientific and engineering
disciplines, and FIS allowed fuzzy logic to be effectively adopted
in several contexts, both in knowledge-based or data-driven
applications, to support decision-making [40,41], meta-heuristics
[42], modelling and control [43,44], clustering [45], classification
tasks [46] and regression problems [47].

Thanks to the possibility ofmodelling different degrees ofmem-
bership, this formalism provides a sound mathematical foundation
to perform reasoning in conditions of uncertainty, handling vague
concepts and connecting human language to numerical data.

As fuzzy logic allows tomodel vague concepts, it represents an
excellent conceptual framework to model in-wake flying. In fact,
air vortices have an intrinsic fuzzy nature as they do not have
sharp boundaries, but they get gradually weaker in all the direc-
tions in which they develop. For this reason, it is also hard to
clearly separate between areas being in-wake or not, even more
when considering three different dimensions simultaneously.

2.4. A fuzzy model for in-wake flight characterization
To establish when a bird in the group is exploiting the upwash
produced by another individual, five conditions must be satis-
fied. Both the conditions and then the parameters chosen for
the model are knowledge-based; therefore, we reviewed the lit-
erature and extracted information about upwash and
downwash development and in-wake flying.

Given a dyad of birds—one defined as the ‘leader’ and the
other one as the ‘follower’—such conditions are:

(i) a follower can only fly in-wake when flying behind the
leader, that is, the n|s axis component must have a
negative value;

(ii) we assume that the follower can exploit the upwash, with
respect to the n|s component, if its distance is neither too
far to the leader nor too close [16,19,48,49];

(iii) considering the e|w axis, the follower must never fly
directly behind the leader to avoid the downwash area.
In fact, we suppose that in-wake flying is more efficient
when one of the follower’s wingtips is aligned with one
of the leader’s and less efficient otherwise. In particular,
there is an optimal ‘wingtip overlap’, which is pro-
portional to the birds’ wingspan (average wingspan of
northern bald ibis: ca 1.5 m) [15–17,19,26,27,49];

(iv) we also assume that the follower must be co-planar with
the leader to exploit the upwash, i.e. the u|d values must
be similar [17,25–27];

(v) finally, we suppose that the follower is able to exploit only
a single upwash at the time.

All these conditions are intrinsically vague and gradual, and
there is not a crisp boundary that can be used to determine when
a condition is verified or not. A bird might satisfy each condition
only partially.

To still characterize these conditions in uncertain terms, we
leverage a FIS to model in-wake flying. By using the relative
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Figure 2. A representation of the three linguistic variables and the corresponding linguistic values and fuzzy sets, which define (a) lateral displacement (bird_ew),
(b) anteroposterior distance (bird_ns) and (c) co-planarity (bird_plane) of the following bird with respect to the leader. Distance on the x-axis is measured in metres.

Table 1. Fuzzy rules used by the in-wake flying model.

Rule 1: IF bird_ew IS wing_tip_aligned AND bird_ns IS close

AND bird_plane IS same_plane THEN flying IS

in_wake

Rule 2: IF bird_ew IS wing_tip_misaligned THEN flying IS

not_in_wake

Rule 3: IF bird_ns IS too_close THEN flying IS not_in_wake

Rule 4: IF bird_ns IS distant THEN flying IS not_in_wake

Rule 5: IF bird_plane IS different_plane THEN flying IS

not_in_wake
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positioning information among all the bird dyads as input, we
implemented a 0-order Takagi–Sugeno FIS to calculate the extent
to which the following bird is exploiting the upwash. To describe
the aforementioned conditions, we defined three linguistic vari-
ables in the FIS, one for each dimension: (i) ‘bird_ew’, which
models the follower’s lateral displacement with respect to the
leader (figure 2a); (ii) ‘bird_ns’, which corresponds to the distance
of the follower on the anteroposterior axis (figure 2b) and (iii)
‘bird_plane’, which defines if the birds are co-planar (figure 2c).

The first linguistic term, ‘bird_ew’ (figure 2a), determines towhat
extent the follower’s wingtip is aligned, or overlaps, with thewing-
tip of the leader. We modelled this variable with two fuzzy
sets, which complement each other and are both symmetrical.
The fuzzy sets are describing the alignment or overlapping
(wingtip_aligned) or the misalignment (wingtip_misaligned). The
membership function of ‘wingtip_aligned’ is maximum at ±1.3 m,
when the two birds’wingtips are overlapping 20 cm. Themember-
ship value decreases to zero at ±1.8 m, when the birds’ wingtips
are completely misaligned. The membership is also equal to zero
when the follower is flying behind the leading bird, because of
the downwash area [16,50]. Accordingly, the membership function
of ‘wingtip_misaligned’ is equal to 1 when e|w∈ [− 0.8, 0.8] and for
e|w > 1.8 and e|w <−1.8.

For the second linguistic variable, ‘bird_ns’ (figure 2b), we
defined three fuzzy sets: ‘too_close’, ‘close’ and ‘distant’. Condition
(i) states that the n|s baseline must be negative. Hence, the mem-
bership to all fuzzy sets drops to zero in the case of positive
values. The membership function to the ‘close’ set increases
between 0 and −0.1 m, where it reaches its maximum, then, it
slowly decreases, reaching a value 0 when the follower is too dis-
tant from the leader (i.e. n|s <−5 m). The membership to the
‘too_close’ fuzzy set increases and decreases very fast between 0
and −0.1 m, modelling the circumstance in which the bird
might crash into the leader if flying too close to the wing.

Finally, the last linguistic variable is ‘bird_plane’, which is
defined by two complementary fuzzy sets ‘same_plane’ and ‘differ-
ent_plane’ (figure 2c). In condition (iv), we assume that only a bird
flying co-planar to the leader can exploit the upwash, so that the
maximum value of the ‘same_plane’ membership is 1 at u|d =
0 m, and it declines for greater and smaller values. The member-
ship drops to 0 at ± 0.75 m, which is when the follower flies half
a wingspan higher or lower with respect to the leading bird.

For all fuzzy sets, the membership value remains constant
outside the explicitly modelled universe of discourse (e.g. the
membership to ‘different_plane’ is equal to 0 for any value u|
d∈ [−∞,− 0.75]). Once these linguistic variables had been
defined, we drafted five fuzzy rules using the linguistic variables
defined above as antecedents (table 1).

We defined two crisp output values for the consequents:
in_wake = 1 and not_in_wake = 0. In figure 3, we used three heat-
maps (one for each linguistic variable) to represent the behaviour
of the FIS. The figures describe the three-dimensional space
behind the leader and represent the level of upwash for the
model: a brighter colour corresponds to a higher value of the
in_wake output calculated by the FIS. The maximum region
lies approximately 0.1 m behind the leading bird.
3. Results
3.1. Capturing the flock’s dynamics
We tested our knowledge-based FIS on data collected from
free-flying northern bald ibis. We implemented the FIS
using the Python library Simpful, version 2.5.0 [51]. We ran
the FIS on 10 min of relative position data for 29 birds, an
average of 3004 datapoints for each individual (range 2997–
3005). The model outputs a file for each bird considered as
a follower. For each timestamp, it reports the identity of the
leading bird and the relative coordinates of the follower
with regard to the leader if the bird is in-wake. If the bird
is not in-wake, it reports the relative coordinates of the near-
est bird in the front, or zero if there is no bird in the front.
Additionally, it yields a file reporting the strength of the
fuzzy outputs.

Thanks to these data, we can plot flock dynamics, and an
example of a snapshot from different perspectives can be seen
in figure 4. Birds are plotted with filled grey dots. When the
FIS determines that a bird is in a good position to exploit the
upwash, the circumstance is represented by an arrow and the
colour of the arrow determines the strength of the fuzzy
output, ranging from blue (low) to red (very high). For
example, in figure 4, bird 291 is in a good position to exploit
the upwash with respect to bird 298. The model can also cal-
culate which birds are not flying in-wake: these are the grey
dots without any outgoing arrow and, in figure 4d, they are
highlighted by red circles (see, e.g. birds number 303 and
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289 always in figure 4). In general, the different projections in
figure 4 show that in this snapshot the flock was compact
(figure 4b), all the birds were flying roughly co-planar
(figure 4a) and disposed in a rough V-formation (figure 4c).

By analysing all snapshots corresponding to the 10 min
flight, we can gain more insights into the flock’s dynamics.
First of all, we looked into bouts’ duration both when
birds were in-wake or not. Bouts were on average 1.10 ±
1.46 s long (median 0.6 s, range 0.2–23.4 s). In-wake bouts
were on average 1.04 ± 1.39 s long (median 0.6, range 0.2–
23.4 s), whereas not in-wake bouts were 1.23 ± 1.61 s long
(median 0.8 s, range 0.2–18 s). Then, we calculated the
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proportion of the flight that each individual was flying
alone, i.e. not in-wake. Alone flight can be due to two
circumstances: either the bird was flying with no other indi-
viduals in the front, or it was not flying in the wake of any
individuals (i.e. the output of the FIS is 0). According to
our results, the birds flew 29.2 ± 7.5% of the time alone, ran-
ging from 18.8% for bird 302 to almost 43% for bird 303
(figure 5).

From the snapshots where the birds were in-wake, we
could calculate the distribution of the preferred leaders for
each individual. Figure 6 presents this analysis for five
birds, where each panel corresponds to a specific following
individual (the histograms of the whole flock are reported
in electronic supplementary material, figure S1). According
to our results, each bird seems to fly preferably in the wake
of one or few specific individuals. As an example, in
figure 6, we notice that individual 280 flies mainly in the
wake of 288, the most preferred and flagged by the black
star, whereas 301 in the wake of 298 and 309. One of the
birds, 282, flies more than 15% of the time behind bird 302
whereas in other two cases, the followers fly more than
10% of the time behind a specific individual (individual
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301 behind 298 and 280 behind 288). Taking into consider-
ation all the birds of the flock, the mean proportion of time
that each bird spends behind every other is rather low,
i.e. 0.037 ± 0.032. This result suggests also in this case that
the birds had a preferred leader to follow (see electronic
supplementary material, figure S1).
3.2. Identification of subgroups in the flock
As shown in figure 4, we can determine whether a bird is
exploiting the upwash provided by another individual for
each snapshot of the flight. These relationships induce a
directed acyclic graph, where the nodes represent the birds
in the flock and two nodes ( j, k) are connected by a directed
edge (arc) if j is exploiting the upwash created by bird k. By
performing a structural analysis on the resulting graph [52],
we could calculate the weakly connected components to
determine whether there were subgroups of ibises flying
together, and the cardinality of such subgroups. For example,
in figure 4d, we can affirm that individuals 291 and 298 are
part of subgroups including 13 all-interconnected birds. As
such, we could also quantify the size of all the subgroups
to estimate birds’ preference. Figure 7 shows the distribution
of subgroup sizes. In accordance with a previous work from
our group [27], birds preferred to fly in dyads (greater than
10% of flying time) or in triads whereas bigger groups are
progressively less common. Despite the presence of these
subgroups, in which the individuals can gain aerodynamic
advantage, the entire flock remained cohesive (figure 4 and
electronic supplementary material, video).
3.3. Comparison with frontal nearest neighbour
We compared the results of the FIS and the FNN, specifically
we investigated the leader identity determined by the two
competing models (figure 8).
According to our results, the two models agreed on aver-
age in 47.6% of the cases (values ranging from 28.1 to 67% for
different individuals). The top row of figure 8 reports a visual
representation of the two models’ outputs (FNN in orange
and FIS in blue) for all birds in the flock taking into account
each axis separately. On the e|w baseline graph (top left),
both models have a bimodal distribution with distinguish-
able peaks. The FNN model has its peaks at −1.3 and
0.8 m, whereas the FIS histogram peaks at −1.3 and 1.3 m.
On the n|s baseline (top centre), both models have a right-
skewed distribution, whereas on the u|d baseline (top
right) they have a heavy-tailed normal distribution.

We further investigated the discrepancy between the two
models by extracting only the snapshots in which the two
models did not agree on the leaders’ identity and by consider-
ing the position of the follower with regard to the leader. The
bottom row of figure 8 shows graphically this dissimilarity.
The distributions present a stronger disagreement, in particular
in the case of the e|w component (bottom left panel). Both
models follow a multimodal distribution; however, while in
the FNN the modes are at approximately −0.8 and 0.8 m, in
the FIS, the modes are at ca +1.5 and −1.5 m. This means
that, when in disagreement, the FNN tends to yield solutions
where the follower is flying progressively more behind the
leader, a zone that should instead be avoided due to the
expected downwash. On the n|s axis, we can observe a differ-
ence in the two models, in particular the FNN has a higher
peak between 0 and 1 m, whereas the FIS output is character-
ized by a higher variance. Considering the u|d component,
the two models’ output do not extremely differ, although the
FIS tends to favour co-planarity.

As such, these visual results highlight that the difference
between the two models is mainly a consequence of the
output distributions on the e|w component. On a large data-
set, this leads to complete different results. These analyses
confirm that the FNN model, by definition, privileges the
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nearest frontal leader, so that the output tends to be biased
towards the closest individual regardless the regions of
downwash and upwash.
4. Conclusion and future developments
We successfully modelled in-wake flying of northern bald
ibises by using fuzzy logic. Specifically, we defined a FIS
with three linguistic variables, one for each spatial dimension,
and devised five fuzzy rules. We showed that, thanks to this
FIS, we can reconstruct flock dynamics, identify subgroups
inside the flock, recollect some insight on social relationships
in the flock and, most importantly, determine the in-wake
state of each bird. With the model, we analysed a 10 min
flight of a flock of 29 birds.

During the flight, the flock was quite dynamic as birds
changed their positions quite often, as suggested by the
short duration of the bouts. Moreover, the birds did not
form a big unique formation, but arranged in small sub-
groups of individuals, mainly dyads and triads. This
evidence is in line with former results of our group, where
Voelkl et al. [27] reported that bouts of continuous in-wake
flying were rather short [27]. Furthermore, they stated that
the birds preferred to fly in small groups, which is common
also when they are migrating in the wild ([53], personal com-
munication). Extracting subgroups within a flock might be
important, for example, to study phenotypic variation, indi-
vidual heterogeneity and group dynamics within the flock.
In fact, several studies in different taxa reported that individ-
uals inside a group vary in their physical and physiological
characteristics, and therefore they have to find a consensus
to remain together [54,55]. For example, flocks of homing
pigeons (Columba livia) are formed by individuals with
different mass, which is correlated with their travel speed.
When flocking, larger individuals needed to fly slower, to
allow smaller individual to keep up [56]. In moving groups
of wild olive baboons (Papio anubis), individuals compro-
mised on gait and pauses to favour group cohesion [57].
This heterogeneity among group members might lead to
the formation of subgroups. Subgroups might also be impor-
tant when exploring social relationships. In our data,
although birds changed their position often, they seemed to
prefer flying in the wake of specific individuals. The reasons
of this behaviour might be a cooperation mechanism based
on kin selection or reciprocation. In our flock of northern
bald ibises, some birds were related and raised in the same
nest, some related individuals were divided in different
nests and some were not related but raised together. How-
ever, when considering relatedness, raising time and
preference of flying together, we saw no particular pattern.
The favourite bird of each individual was rarely a brother
or a nest-mate, which instead they seemed to avoid. For
example, bird 308 had a brother, bird 309, and was in the
nest with it and other two birds, 303 and 306. The ‘favourite
mates’ of 308 are instead individuals 279 and 292 (figure 6),
which suggests that the mechanisms involved might be reci-
procity, as already proposed by Voelkl et al. [27].

The most important output of our model is defining the
state of the bird, hence, to classify if it is in-wake or not.
Some past attempts used the FNN to do this classification,
but we have shown that the outputs of the FIS and the
FNN strongly disagree. The FNN is based on Euclidean dis-
tance and does not take into consideration the position of the
air vortices. Thus, the FNN might often return solutions that
are aerodynamically disadvantageous based only on vicinity.
The FIS, instead, tries to model closely where these vortices
lie. Studies on cluster formations do not need to consider
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these air vortices as birds change their flight direction and
their position in the flock very rapidly. However, it is a fun-
damental aspect when investigating line formation and
energy savings. In fact, we have to cautiously distinguish
when the bird is flying in-wake to then correlate this state
with measurements of energy expenditure. To the best of
our knowledge, we are aware of a single empirical study
with pelicans that tried to relate heart rate with in-wake
flying [18]. The lack of studies in this area does not reflect
the scarce interest of scientists in the topic but highlights
the challenge in collecting empirical data and in modelling
in-wake flying. With our study, we want to start reducing
this lack of knowledge in the field, by creating a model that
aims to decrease the error in categorizing in-wake flying. In
literature, there are already some attempts to use fuzzy
logic to model bird flocks. For example, in [7], the authors
modelled animats and their drives using fuzzy logic and
observed the development of flocking behaviour. As a further
step, in [28], the authors tried to unveil the evolution of col-
lective behaviour introducing predation pressure. However,
these models differ greatly from our conception for three
main reasons: (i) due mainly to technical challenges to collect
data, all these investigations were never calibrated against
empirical data, (ii) their perspective was always on single
individuals, trying to model their behaviour to study the
emergence of flight formations, and (iii) the fuzzy-based
simulations focused almost exclusively on the investigation
of cluster formations and seldom considered line formations.

We are aware that the output presents high-frequency
changes, for example, a following bird might fly in-wake of
an individual to then switch very shortly to another (200/
400 ms) and then back to the first one or switch again to
another. These frequent changes have been described in pre-
vious work [27] and result from the fact that birds flew not
only in a line formation but also in a cluster. Therefore, indi-
viduals were rather close to each other and their relative
position to any other bird in the flock could change fast
and frequently. However, the frequency of such changes
might have been overestimated by the parameters that we
used to specify the membership functions. To reduce this
problem in future studies, one could limit extraction to
bouts of in-wake flying that have a minimum time duration.

Finally, ourmodel does not account for flapping synchroni-
zation between the leading and the following bird. Previous
studies suggested that, in order to save energy, a bird flying
in-wake should synchronize the flapping cycle with the bird
providing the upwash, considering also the phase shift due
to the distance between the two birds [58]. However, about
this phenomenon there is scarce and contrasting evidence. Por-
tugal et al. [16] reported that northern bald ibises synchronize
their flapping; however, no effect was found when investi-
gating shorebirds mixed-species flocks [26]. In addition, to
the best of our knowledge, there is no study proving that flap-
ping synchronization plays a role in saving energy. Given this
contradictory evidence, we did not include this aspect in the
model, but we assume that, if the following bird is in
the right position to exploit the upwash, it is also able to
feel the air vortex and to synchronize with the leading bird.

Future studies should use this model to start studying
more in depth in-wake flying and energy savings. The first
step would be to collect and correlate any type of energy
expenditure measurement (dynamic body acceleration,
heart rate, double labelled water, etc.) with birds’ state
inside the formation (in-wake or not) to try to quantify how
much energy birds save. Then, it would be interesting to
study the different types of formation, as for example line
and V-formation, and investigate whether they are used inter-
changeably by the birds or if a type of formation is preferred
when flying over a specific environment or when there are
specific weather conditions. Flock dynamics and individual
heterogeneity could also be of particular interest, to unveil
if all the birds participate to line formation and if all of
them occupy all the positions inside the formation. Specifi-
cally, flying in the front of the formation is not
advantageous, so individuals should not be inclined to be
in this position much longer than other individuals. Finally,
future studies could look into social relationships among
birds and how those influence line formation, such as the pat-
tern of exchange of positions in the formation. Birds flying
closely together or in the same formation could be socially
associated [59], which would allow to build social networks,
and possibly comparing those with measures of relatedness
and social networks built on associations happening when
observed at the ground.

To conclude, we have implemented a novel model based
on fuzzy logic for line formation and performed a first test on
empirical data. Future application on larger datasets will help
to unravel even more aspects of line formation, so far poorly
understood due to the lack of empirical data.
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