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Methylation of cytosines is a prototypic epigenetic modification of the DNA. It
has been implicated in various regulatory mechanisms across the animal
kingdom and particularly in vertebrates. We mapped DNAmethylation in 580
animal species (535 vertebrates, 45 invertebrates), resulting in 2443 genome-
scale DNA methylation profiles of multiple organs. Bioinformatic analysis of
this large dataset quantified the association of DNA methylation with the
underlying genomic DNA sequence throughout vertebrate evolution. We
observed a broadly conserved link with twomajor transitions—once in the first
vertebrates and again with the emergence of reptiles. Cross-species compar-
isons focusing on individual organs supported a deeply conserved association
of DNA methylation with tissue type, and cross-mapping analysis of DNA
methylation at genepromoters revealed evolutionary changes for orthologous
genes. In summary, this study establishes a large resource of vertebrate and
invertebrate DNA methylomes, it showcases the power of reference-free epi-
genome analysis in species for which no reference genomes are available, and
it contributes an epigenetic perspective to the study of vertebrate evolution.

DNA methylation at the fifth carbon position of cytosines (5-methyl-
cytosine) provides an epigenetic layer of genome regulation that does
not involve changes in the DNA sequence. In vertebrates, DNA
methylation occurs preferentially at palindromic CpG dinucleotides,
where it marks both strands symmetrically. It is essential for genome
integrity and contributes to the silencing of transposable elements1.
Moreover, it is involved in the regulation of many biological processes
associated with multicellular life2, including development3,
cell differentiation4, and maintenance of cellular identity5,6. DNA
methylation has been studied extensively in the context of diseases

such as cancer7,8, metabolic diseases9, autoimmune disorders10,11, and
for its role in aging12. From an evolutionary perspective, DNA methy-
lation and its associated enzymes (most notably the DNA methyl-
transferases that “write”DNAmethylation) are present throughout the
animal kingdom, although they have been lost in certain species
including the model organism Caenorhabditis elegans13. DNA methy-
lation has also been implicated in speciation14 and in the response to
environmental influences15,16. The study of DNAmethylation in a broad
range of species is expected to contribute to our understanding of
evolution.
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Genome-wide DNA methylation patterns vary widely across spe-
cies. Pioneering research in the early 1980s compared global levels of
DNA methylation across several animal species17,18, which revealed
major differences between vertebrates and invertebrates19. Moreover,
considerable variability was observed among vertebrates20–23. While
these initial studies relied on methylation-specific restriction enzymes
or on chromatography-based methods, more recent investigations
used next-generation sequencing to determine DNA methylation pat-
terns in 17 eukaryotic species (which included two vertebrates)24, in 13
animal species (five invertebrate and seven vertebrate species)25, in
seven vertebrate species26, and in eight mammalian species27. High-
resolution DNA methylation maps enabled initial analyses of the evo-
lutionary relationship between DNA methylation and the underlying
DNA sequence28–30. These previous studies were however limited to a
small number of species, while an ideal study would cover many spe-
cies across all branches of vertebrate evolution—such that each species
becomes a complex data point in a truly integrative analysis of DNA
methylation in its evolutionary context.

In humans, where DNA methylation has been studied in most
detail, a strong correlation exists between the patterns of genomic
DNA sequence and local DNA methylation31,32. CpG-rich genomic
regions (including many promoters and enhancers) tend to be
unmethylated, except where they overlap with evolutionarily recent
transposable elements33 or are subject to mechanisms of regulatory
repression that involve DNA methylation34. In contrast, CpG-poor
genomic regions tend to be highly methylated, except where they
overlap with active transcription factor binding sites35 or in areas of
large-scale DNA methylation erosion as observed in cancer and
ageing36,37. The genome-wide correlation between DNA methylation
and DNA sequence has enabled the prediction of locus-specific DNA
methylation levels based on the underlying DNA sequence, focusing
on CpG islands and gene promoters38,39 and on individual CpG
dinucleotides40,41. Consistent with this genetic basis of DNA methyla-
tion, differences in the genomic DNA sequence between individuals
have been linked to differences in DNA methylation42,43. Nevertheless,
human primary samples tend to cluster according to tissue type rather
than according to the sampledonor44, indicating thatDNAmethylation
differences between human individuals are generally less pronounced
than tissue-specific differences.

To investigate DNA methylation beyond the human genome and
in the broad context of vertebrate evolution, we established genome-
scale DNA methylation profiles at single-base resolution across a wide
range of vertebrate and invertebrate species, covering all vertebrate
classes and several proximal invertebrate classes. Primary tissue or
DNA samples were obtained from biobanks and other sources com-
prising mainly wildlife and zoo animals. We included heart and liver
samples wherever possible, to allow for tissue-matched comparisons
across species. In addition, other tissues such as lung, gills, fin, spleen,
brain, lymphnode,muscle, kidney, and skinwere included in a species-
specificmanner. Sampleswere selected toprioritize healthy adults and
to balance the male-to-female ratio, aiming for two to four individuals
per species. This sampling strategy allowed us to cover a large number
of species, consistent with our study’s focus on analyzing trends that
hold acrossmultiple species, rather than on the in-depth investigation
of DNA methylation regulation in individual species.

DNA methylation profiling was performed using an optimized
version of the reduced representation bisulfite sequencing (RRBS)
assay45–47. Our assay enriches for CpG-rich regulatory regions but also
covers many other parts of the genome, including exons, introns,
intergenic regions, and repetitive elements; and it measures DNA
methylation both at CpG sites and non-CpG sites in the genome. We
analyzed our RRBS dataset using reference-genome independent
bioinformatic methods45, allowing us to include many species that do
not currently have a published reference genome and to avoid biases
due to the different quality of available reference genomes. We

previously validated this approach in a head-to-head comparison of
reference-free and reference-based analysis in three species45. More-
over, as partof this studywe confirmed thatRRBS is indeed suitable for
cross-species analysis, using in silico simulations of RRBS coverage
based on existing reference genomes, comparison to whole genome
bisulfite sequencing (WGBS) data, and reference-based analysis in a
subset of samples.

Our full dataset comprises 2443 DNA methylation profiles cover-
ing 580 animal species (535 vertebrates and 45 invertebrates). Based
on this dataset, we identified a quantitative, predictive association of
DNAmethylation and the underlying genomic DNA sequence that was
shared between vertebrate and invertebrate species. We observed two
major transitions along the evolutionary axis: one between vertebrates
and invertebrates and one between amphibians and reptiles. We also
investigated tissue-specific and inter-individual differences in DNA
methylation. For fish, birds, and mammals, tissue-specific differences
were more pronounced than inter-individual differences, but for
invertebrates, reptiles, and amphibians, both factors explained a
similar share of the observed variance in DNA methylation. By ana-
lyzing transcription factor binding sites in differentially methylated
regions between heart and liver tissue throughout vertebrate evolu-
tion, we identified a deeply conserved association of DNAmethylation
with tissue identity. Finally, cross-mapping to existing reference gen-
omes identified characteristic evolutionary trends in DNAmethylation
at gene promoters.

In summary, this study contributes an epigenetic perspective to
the investigation of vertebrate evolution, and establishes a major
resource for dissecting the role of DNAmethylation in vertebrates and
invertebrates. Moreover, our results emphasize the feasibility and
value of including epigenomeprofiling in ongoing initiatives tomapall
vertebrate genomes48, and provide a starting point for untangling how
the complex interplay of DNA sequence patterns andDNAmethylation
has contributed to the evolution of vertebrate genomes.

Results
An atlas of DNA methylation across 580 animal species
To investigate the evolutionary dynamics of DNA methylation in ver-
tebrates, we performed genome-scale DNA methylation profiling for
580 species and a total of 2443 primary samples (Fig. 1a–c, Supple-
mentary Fig. 1a–f). Our sample collection included all vertebrate clas-
ses, and several classes of marine invertebrates, many of them closely
related to vertebrates (used here as an outgroup). Specifically, we
analyzed samples of 156 invertebrates, one jawless vertebrate (Japa-
nese lamprey, Lethenteron camtschaticum), 32 cartilaginous fish
(chondrichthyes), 565 bony fish (actinopteri), 74 amphibians (amphi-
bia), 280 reptiles (reptilia), 607birds (aves), 70metatherianmammals /
marsupials (marsupialia), and 658 eutherian mammals (mammalia).
Wherever possible, we included multiple tissues (most notably heart
and liver for comparison across species) andmultiple individuals, with
a balanced sex ratio and a focus on young adult animals.

DNA methylation profiling was performed using reduced repre-
sentation bisulfite sequencing (RRBS). The RRBS assay provides single-
nucleotide, single-allele resolution for a defined set of genomic regions
determined by sequence-specific DNA fragmentation and size selec-
tion. This focus on DNA fragments with defined start and end
sequences facilitates DNA methylation analysis across species
and without reference genomes (which are unavailable or of incon-
sistent quality for most analyzed species). RRBS leverages the concept
of reduced representation sequencing (also knownasRADseq orGBS),
a widely used method for genotyping in species that lack high-quality
reference genomes49. In RRBS, restriction enzymes cut the DNA at
CCGG (MspI) and TCGA (TaqI) sites independent of CpG methylation,
followed by DNA methylation profiling of the size-selected fragments
using bisulfite sequencing. RRBS selects for DNA fragments that each
contain at least one CpG, making the assay cost-effective and
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quantitative even for large genomes with variable CpG density. RRBS
covers around four million out of 28 million CpGs in the human gen-
ome and two million out of 20 million CpGs in the mouse genome —

including CpG-rich promoter and enhancer regions as well as a broad
sampling of regions with modest CpG density50–52.

We do not expect that differences in genome sequence compo-
sition across species will unduly confound the RRBS profiling. MspI
and TaqI have short and highly common target sequences, and
reduced representation sequencing has been applied successfully in
various species49. To provide additional support for the validity of
using RRBS for cross-species analysis, we simulated RRBS coverage
across a wide range of species and analyzed the expected RRBS cov-
erage for genomic elements such as CpG islands, transcripts, pro-
moters, and repetitive elements. Across 76 species forwhich reference
genomeswereavailable (five invertebrates, one jawless vertebrate, one
cartilaginousfish, eight bony fish, three amphibian, four reptiles, seven
birds, three marsupial, and 44 eutherian mammals), we simulated the
restriction digest and size selection in RRBS53, and we determined the
expected coverage for the different types of genomic elements (Sup-
plementary Fig. 1b). This analysis confirmed that RRBS consistently
enriches for CpG islands across all species, and that the observed dif-
ferences in genomic coverage were small, especially among species of
the same taxonomic group.

Because RRBS fragments start and end at defined restriction sites,
we do not depend on a reference genome nor on de novo assembly of
sequencing reads. Instead, we can group and overlay sequencing reads
obtained from the same genomic positions to construct “consensus
reference fragments”. We have previously developed and extensively
validated the RefFreeDMAmethod for RRBS-based, reference-genome
independent analysis of DNA methylation45. Using RefFreeDMA, we
can combine the RRBS reads for each species into locus-specific con-
sensus sequences with reconstructed genomic cytosines as the sites of
potential DNA methylation. The resulting “consensus reference frag-
ments”were used as the genomic reference for subsequent RRBS read
alignment andDNAmethylation calling, whichwas done separately for
each sample. To be able to detect constitutively unmethylated cyto-
sines (which appear as thymines in the RRBS reads), we also sequenced
one RRBS library without bisulfite conversion for each species and
included these data in the identification of genomic cytosines. RRBS
quality metrics (such as the number of covered CpGs, mapping

efficiency, DNA pre-fragmentation, contamination rate, conversion
rate) indicated high data quality for most samples and allowed us to
flag potentially problematic samples (Supplementary Fig. 1g, h; Sup-
plementary Data 1).

For additional validation, we assessed potential effects of repeti-
tive elements, PCR amplification, and inter-individual genetic variation
on our reference-free analysis (Supplementary Fig. 2a). In each species,
we empirically flagged consensus reference fragments with con-
sistently high coverage (fourfold above average in >80%of samples) as
likely derived from repetitive regions (“repeat”); those with spor-
adically high coverage (fourfold above average in <20% of samples) as
likely subject to PCR amplification biases (“amplified”); and fragments
with adequate coverage (at least half of the average) in samples from
one individual but not the other individuals as likely results of genetic
variation affecting the RRBS coverage (“private”). We found that the
frequency of “repeat” and “amplified” fragments was generally low
(below 2%) and similar across taxonomic groups, with a trend toward a
lower fraction of “repeat” fragments in birds, marsupials, and mam-
mals (Supplementary Fig. 2b, c). We did not observe systematic effects
of different PCR cycles across samples, confirming that the range of
PCR cycles used (6–18) did not induce strong amplification biases
(Supplementary Fig. 2d). Inter-individual genetic variation affected
around 10% of the consensus reference fragments, which underlines
the importance of investigating several individuals per species.

Finally, for a subset of the analyzed species we can exploit existing
reference genomes of the same or related species by cross-mapping of
the consensus reference fragments (Supplementary Fig. 3a). We pur-
sued a data-driven approach by mapping the consensus reference
fragments of all species to all reference genomes of animals within the
same class, selecting the one with highest mapping rate for cross-
mapping analysis (Supplementary Fig. 3b, c). This analysis identified
the expected association of DNA methylation levels with gene anno-
tations across all taxonomic groups. For example, we detected the
characteristic “dip” of DNA methylation in promoter regions (Supple-
mentary Fig. 3d, e) even for unusual species such as theMexican axolotl
with its very large 32-gigabase genome (Supplementary Fig. 3f). We
further observed that the strength of the “dip” increased with higher
cross-mapping efficiencies up to a rate of 25%, after which this trend
leveled off (Supplementary Fig. 3g). In aggregate, these results support
that our experimental and bioinformatic methods for comparative

Fig. 1 | An atlas of DNA methylation comprising 580 animal species reveals
global links between genomes and epigenomes throughout vertebrate evo-
lution. a Visual summary of the study. The cross-species atlas comprises 2443
genome-scale DNA methylation profiles covering 580 animal species (535 verte-
brates and 45 invertebrates). The animal silhouettes show one species per taxo-
nomic group: Octopus (invertebrates), shark (cartilaginous fish), carp (bony fish),
frog (amphibians), tortoise (reptilians), pigeon (birds), wallaby (marsupials), ele-
phant (eutherian mammals). Organ silhouettes denote the main tissues included,
organized by germ layer. b Bubble plot showing the number of analyzed samples
for each tissue and taxonomic group. c Bar plot showing genome-wide DNA
methylation levels for each species (black bars outside of the circle), averaged
across all tissues and individuals, mapped onto an annotated taxonomic tree.
dBoxplot showing genome-wideDNAmethylation levels for all species, aggregated
by taxonomic group. e Boxplot showing the percentage of consensus reference
fragments for each species that fall into three bins based on their DNAmethylation
levels, aggregated by taxonomic group. Fragments covered by at least 10 reads
were included. f Left: Bar plot showing the percentage of variance among species-
specific mean DNA methylation levels explained by features of the genomic DNA
sequence. Colors indicate the mean Akaike information criterion (AIC), adjusting
for model complexity. Error bars represent standard deviations of the mean based
on bootstrapping (100 iterations). Right: Bar plot showing the stability with which
individual 3-mers were selected into the final model using stepwise selection. Stars
indicate that the respective 3-mers show a statistically significant association based
on the phylogenetic generalized linear model depicted in panel h. g Hierarchical
clustering of species based on the similarity of their 3-mer and 6-mer frequencies

among the consensus reference fragments. Clustering for k-mer lengths of four and
five yielded very similar results and is not shown here. The dendrograms are color-
coded with each species’ taxonomic group. h Scatterplot comparing the statistical
significance (p-values) of the associations between 3-mer frequencies and global
DNA methylation levels based on the standard error of the generalized linear
models (GLMs) with (x-axis) and without (y-axis) correction for phylogenetic rela-
tionships. The 3-mers from panel f are shown in bold. Dashed lines correspond to
an adjusted p-value of 0.05. i Scatterplot showing the relationship between
genome-wide DNA methylation levels and DNA methylation erosion as measured
by the “proportion of discordant reads” (PDR) for individual samples. The dashed
line represents their mathematically expected relationship. The solid line repre-
sents a generalized additive model fitted to the data using the R function geom_s-
mooth. j Scatterplot showing the relationship between genome-wide DNA
methylation levels and DNA methylation erosion across taxonomic groups, taking
the median of the corresponding samples. The dashed line represents their
mathematically expected relationship (as in panel i). The solid line represents a
linear regression model fitted to the data. The Pearson correlation and its sig-
nificance (two-sided) are indicated. k Boxplot showing log-ratios of non-CpG
methylation levels in brain compared to other tissues in the same species. Boxplots
are overlayed with individual data points using the species abbreviations (Supple-
mentary Data 2). Increased non-CpGmethylation levels in brain were assessed with
a one-sided paired Wilcoxon test. Boxplots are specified as follows: center line,
median; box limits, upper and lower quartiles; whiskers, 1.5x interquartile range;
points, outliers.
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analysis of DNA methylation are technically feasible and broadly
applicable across species and taxonomic groups.

Patterns of genome-wide DNA methylation in vertebrate
evolution
Having established the validity of our dataset and analysis method, we
proceeded with a systematic analysis of factors that predict genome-
wide DNAmethylation in the analyzed species. We calculated genome-
wide DNA methylation levels for each species by averaging across
consensus reference fragments, tissues, and individuals, and we
overlaid these species-specific aggregates with the taxonomic tree
(Fig. 1c). These values provide an assessment of DNA methylation in
those genomic regions that RRBS enriches for, such as CpG islands,
promoters, and other regulatory elements. They are different from the
global DNA methylation content of a sample (i.e., its total 5-methyl-
cytosine level), which can be determined biochemically using high
performance liquid chromatography (HPLC) and which is usually
dominated by repetitive genomic regions54.

We observed lower DNA methylation levels in invertebrates
compared to vertebrates, lower DNAmethylation levels in birds and
marsupials than in other vertebrates, and higher DNA methylation
levels in fish and amphibia than in other taxonomic groups (Fig. 1d).
These trends were driven by differences in the fraction of highly
(>80%) versus lowly (<20%) methylated fragments, while fragments
with intermediate DNA methylation were similarly common across
vertebrate classes (Fig. 1e). These observations were robust across
all investigated tissue types (Supplementary Fig. 4a) and across a
wide range of technical stringency thresholds (Supplementary
Fig. 4b). We also validated our analysis with an independent
WGBS dataset comprising 13 species that we curated from the
literature25,55–66, and we observed a correlation of 0.84 for genome-
wide DNA methylation levels based on RRBS versus WGBS (Sup-
plementary Fig. 4c).

Focusing on individual taxonomic groups, inmammalian species,
we observed strikingly lower DNA methylation for the two marsupial
orders (diprotodontia and dasyuromorpha) compared to other
eutherian mammals (Supplementary Fig. 4d). The different groups of
reptiles (lizards, snakes, turtles, crocodiles) showed similar levels of
DNA methylation—with the exception of henophidia (a suborder of
snakes includingpythons andboas),which hadconsistently lowerDNA
methylation levels (Supplementary Fig. 4e). Among the invertebrates—
by far the most heterogeneous group in our analysis—we observed a
wide range of DNA methylation levels from 2% in Penaeus (prawns) to
80% in the clam worm Alitta succinea. The majority of these inverte-
brates had DNA methylation levels in the range of 20–40%, similar to
the levels observed in birds and marsupials. Finally, the Japanese
lamprey, which is an early jawless vertebrate, showed high DNA
methylation levels close to 60%, which is similar to the levels observed
in reptiles and mammals (Supplementary Fig. 4f, g).

To quantify and compare the relationship between genome-wide
DNA methylation levels and the corresponding genomes, we con-
structed linear models based on features that describe each species’
DNA sequence composition (e.g., k-mer frequencies, CG composition,
CpG island frequency). Strikingly, 3-mer frequencies explained >80%
of the observed variance in genome-wide DNA methylation across
vertebrate evolution (Fig. 1f). Four of the five most consistent 3-mers
contained a CpG dinucleotide (ACG, CGT, CGA, TCG), while the fifth
(GAA) has been implicated inmammalian-specific repeat expansions67.
In contrast, CpG island frequency alone explained only around 23% of
the observed variance, and CG composition (with separate variables
for C, G, and CpG frequency, as well as the CpG observed versus
expected ratio) explained around 50%. These results show that CpG
density is a key contributor but clearly not the only factor explaining
the close association between genome-wide DNA methylation and
genome sequence composition across species.

Similarities in the frequency of short DNA motifs (illustrated here
by 3-mers and 6-mers) in the consensus reference fragments of two
species closely reflected their phylogenetic distance (Fig. 1g). This
observation prompted the question whether 3-mer frequencies pre-
dict genome-wide DNA methylation levels directly or through their
association with phylogenetic distance. We thus compared the pre-
dictive power of 3-mer frequencies with that of phylogenetic distance,
which wemodeled either by a representation of the taxonomic tree or
by assigning each species to its corresponding taxonomic group
(Supplementary Fig. 4h). In this analysis, predictions based on 3-mer
frequencies (accuracy: 86.4%, Akaike information criterion (AIC): 3819)
outperformed those based on either the taxonomic tree (81.0%, 3622)
or on taxonomic groups (74.1%, 4154). Nevertheless, combining 3-mer
frequencies with phylogenetic information led to a modest increase in
overall prediction performance for both taxonomic tree (87.8%, 3371)
and taxonomic groups (92.0%, 3514). We further validated our results
with generalized linear models that explicitly control for phylogenetic
relatedness, andwe found that aroundone third of all 3-mers (22 out of
64) showed a significant association with DNA methylation that was
not explained by phylogeny alone (Fig. 1h). These results support that
3-mer frequencies are directly predictive of genome-wide DNA
methylation levels, beyond the strong link between phylogeny and
3-mer frequencies.

We also used our dataset to investigate DNAmethylation stability
and erosion in awide range of species,motivatedby studies that linked
DNA methylation erosion to human cancers and ageing68,69. We can
quantify DNA methylation erosion based on our RRBS data using the
“proportion of discordant reads” (PDR) metric68. This metric exploits
the observation that most genomic loci exhibit a bimodal distribution
of DNA methylation (i.e., a locus is either fully methylated or fully
unmethylated), and it interprets deviations from this pattern as evi-
dence of DNA methylation erosion. The PDR metric was first estab-
lished for cancer, where it was associated with clinical features
including tumor aggressiveness68,70–72. We calculated species-specific
PDR values in analogywith the species-specific DNAmethylation levels
by averaging across consensus reference fragments, tissues, and
individuals (Supplementary Fig. 5a). To assess their relationship across
species, we plotted genome-wide PDRs over the corresponding spe-
cies’ genome-wide DNA methylation levels (Fig. 1i, j). Mathematically,
we would expect highest PDR values for genome-wide DNA methyla-
tion levels around 50% and lower PDR values for higher and lower
levels of genome-wide DNA methylation, given the properties of the
PDRmetric. However, we found thatDNAmethylation levels of around
75% corresponded to the highest PDR values (Fig. 1i) and that this shift
was mainly driven by the taxonomic groups with high DNA methyla-
tion levels (amphibians, bony fish) and by reptiles (Fig. 1j). We thus
found that these taxonomicgroups exhibit unexpectedly high levels of
DNA methylation erosion, possibly as a consequence of high genome-
wide DNA methylation levels being harder to maintain. In contrast,
mammals, birds, marsupials, and cartilaginous fish on average showed
slightly lower-than-expected levels of DNA methylation erosion
(Fig. 1j), possibly due to molecular mechanisms that foster DNA
methylation maintenance in these groups.

We also investigated non-CpG methylation, which is accurately
measured by RRBS as shown previously73. We found that non-CpG
methylation was expectedly low (<2%) but detectable inmost samples.
We did not observe strong differences in non-CpGmethylation across
taxonomic groups—with one exception: Brain samples of birds and
mammals had elevated levels of non-CpGmethylation (Supplementary
Fig. 5b), which were on average 59% higher in birds and 72% higher in
mammals compared to other organs (Fig. 1k); in contrast, the differ-
ence was much weaker for the other taxonomic groups (3% higher in
brain than in other organs). Widespread non-CpGmethylation in brain
samples has been reported previously for both human and mouse74

and has been explained by incomplete CpG specificity of mammalian
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DNA methyltransferases73. Our results suggest that this phenomenon
generalizes to other mammals and birds, but is not shared by all ver-
tebrates, which may point to differences in the DNA methylation
machinery across taxonomic groups25.

For vertebrates, it is well-established that DNA methylation levels
are high throughout the genome, except for CpG islands, promoters,
and other regulatory regions; in contrast, invertebrates are thought to
carry a mosaic of high methylation (often at genes) and low methyla-
tion (for the bulk of the genome)75, although some highly methylated
invertebrate genomes have been described76,77. In our dataset, we
observed pronounced differences when comparing vertebrates and
invertebrates as groups—for genome-wide DNA methylation levels at
CpGs, forDNAmethylation erosion, and to a lesser degree also for non-
CpG methylation (Supplementary Figs. 4a, 5a, b). However, these dif-
ferences were gradual, with overlapping distributions between verte-
brate and invertebrate species. In these comparisons, the Japanese
lamprey as a jawless vertebrate clearly sided with the vertebrates
(Supplementary Fig. 5c).

Finally, we investigated potential associations between DNA
methylation and cancer risk, as it had been suggested previously that
DNA methylation could be one of many factors that contribute to
cancer prevention in large, long-lived species78—for example by sup-
pressing repetitive DNA elements that threaten genome integrity or by
constraining developmental plasticity in differentiated cells. We
observed a positive correlation between genome-wide DNA methyla-
tion levels and the theoretical, unmitigated cancer risk of the investi-
gated species (whichwe estimated based on each species’ bodyweight
and longevity79). This positive association was most pronounced in
birds (r =0.53) and remained statistically significant after correcting
for phylogeny (p = 0.01) (Supplementary Fig. 5d). We also observed
similar but weaker associations for DNA methylation erosion (likely
due to positive correlation between DNA methylation and PDR) but
not for non-CpGmethylation. While these observations do not imply a
specific causal role of DNAmethylation on cancer risk, they contribute
to accumulating evidence of associations between DNA methylation
and cancer risk across species.

A genomic code for DNA methylation in vertebrates and
invertebrates
While the previous section focused on genome-wide measures of DNA
methylation across species, our dataset also allows us to investigate
locus-specific DNA methylation levels within each analyzed species,
pursuing the hypothesis that there is a predictive relationship (or
“genomic code”) between the DNA sequence of a given genomic
region and its DNA methylation level. Previous studies in human and
mouse have uncovered associations between DNA methylation and
the underlying DNA sequence for genomic regions such as CpG islands
and gene promoters38,39 and for single CpG dinucleotides throughout
the genome40,41; and it is possible that the genomic DNA sequence
encodes a default epigenetic “ground state” for each genomic region,
to which its DNA methylation is reset in early embryonic
development80. Nevertheless, here we use the term “genomic code”
solely as a shorthand for a predictive relationship between DNA
sequence and DNA methylation, without implying causality or pro-
posing any specific molecular mechanism that would read this code.

To decipher the relationship between DNA methylation and the
underlying DNA sequence throughout vertebrate evolution, we
trained machine learning classifiers that predict locus-specific DNA
methylation levels based on the DNA sequence of the corresponding
genomic regions (Fig. 2a). Specifically, we used support vector
machines with a spectrum kernel to predict the discretized DNA
methylation status (highly versus lowly methylated) of consensus
reference fragments based on their genomic DNA sequence (repre-
sented by k-mer frequencies), separately for each species. The pre-
diction performance was quantified using receiver operating

characteristic (ROC) curves and area under curve (AUC) values calcu-
lated on independent test sets. The robustness of these predictions
was confirmed using two alternative definitions of methylated and
unmethylated regions with different stringency, which resulted in
highly similar ROC-AUC values (Supplementary Fig. 6a).

We consistently observed greater-than-random prediction per-
formance across all taxonomic groups (Fig. 2b, c), with higher
mean ROC-AUC values in reptiles, birds, and mammals (0.78, 0.80,
0.78) than in cartilaginous fish, bony fish, and amphibians (0.68,
0.67, 0.70). The prediction performance was markedly higher in
marsupials (0.86) compared to eutherian mammals (0.78), indicating
that DNA methylation may have a particularly pronounced genetic
basis in marsupials. For invertebrates (0.65), the prediction perfor-
mance was slightly lower than that of fish. The lamprey (0.67), an early
jawless vertebrate, fell in between vertebrates and invertebrates
(Fig. 2d), which adds to the evidence that differences in DNA methy-
lation between vertebrates and invertebrates are more gradual and
less pronounced than DNA methylation differences between animals
and plants81. Overall, our results support the existence of a “genomic
code” that links locus-specific DNA methylation levels to the under-
lying DNA sequence in vertebrate and invertebrate species.

To dissect this predictive relationship, we compared the cross-
validated prediction performance of classifiers trained on 1-mer fre-
quencies (A, C, T, G), 2-mer frequencies, etc. up to 10-mer frequencies.
In this analysis, 3-mer frequencieswere generally themost informative,
followedby 2-mer and4-mer frequencies (Supplementary Fig. 6b, c). In
contrast, the inclusion of longer DNA sequence patterns did not result
in greater predictive power, suggesting that complexmotifs (including
those that correspond to transcription factor binding sites) are less
relevant for the association between DNA methylation and DNA
sequence than short sequence patterns. We independently validated
our trained models by testing them on DNA methylation profiles
obtained by reference-based analysis of publicly available WGBS data
for eight species, and we also performed the inverse analysis—training
on WGBS data and testing on our RRBS data (Supplementary Fig. 6d).
Moreover, we obtained highly consistent results including similar
ROC-AUC values and preferred k-mer lengths between purely RRBS-
based and purely WGBS-based predictions (Supplementary Fig. 6e).

Finally, we inferred the predictive power of individual 3-mer fre-
quencies for each species, and we compared the corresponding
weights across all taxonomic groups (Fig. 2e, f; Supplementary Fig. 6f).
3-mers associated with low DNA methylation levels preferentially
ended with CpG dinucleotides and started with either a C or G
nucleotide. This pattern was conserved across all taxonomic groups,
including invertebrates; but it wasmore pronounced in reptiles, birds,
marsupials, and eutherian mammals compared to invertebrates, fish,
and amphibians. In contrast, 3-mers associated with high DNA
methylation levels followed a more diverse DNA sequence composi-
tion, and the enrichment for specific DNA sequence patterns differed
between taxonomic groups. Most notably, invertebrates showed an
enrichment of CpG dinucleotides also among highly methylated
regions, which distinguished them from vertebrates; and mammals
showed an enrichment of CpA dinucleotides, which tend to arise from
preferential CG to TG/CA mutations for methylated CpG
dinucleotides82.

Conservation and divergence of the genomic code for DNA
methylation
Our results support the existence of a “genomic code”—a predictive
relationship between DNA sequence and DNA methylation with dif-
ferential 3-mer frequencies of methylated and unmethylated loci.
While this association between the genome and epigenome was gen-
erally consistent across all investigated taxonomic groups, we also
observed characteristic differences, both between taxonomic groups
and between individual species within a group. To investigate these
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evolutionary differences more systematically, we trained machine
learning models in one species and applied them (without retraining)
to predict DNA methylation levels in another species. For each pair of
species, we then determined ROC-AUC values as measures of cross-
species predictability, with high values indicating good transferability
of the trained model from one species to the other (Fig. 3a, b).

The prediction performance was generally high between related
species and even across taxonomy groups (Fig. 3c), often reaching
similarly high values as for the prediction within a species or within a
taxonomy group. However, we also observed pronounced differences
in cross-species predictability, notably between invertebrates,fish, and

amphibians on the one hand (where the predictability was lower) and
the evolutionarily younger groups of reptiles, birds, and mammals on
the other hand (where the predictability was higher).

We found that models trained in species with lower prediction
performance generally performed well in species with higher predic-
tion performance, but not vice versa (Fig. 3a–c). Even prediction
models trained in invertebrates retained some predictive power in
vertebrates, despite previously described differences in the genomic
distribution of DNA methylation between vertebrate and invertebrate
genomes75. Theseobservations suggest that thepredictive relationship
between locus-specific 3-mer frequencies and their associated DNA
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Fig. 2 | Machine learning identifies a predictive relationship (“genomic code”)
between the DNA sequence and locus-specific DNA methylation. a Schematic
illustration of the machine learning based approach for predicting locus-specific
DNAmethylation from the underlying genomic DNA sequence. b Boxplot showing
the test set performance (receiver operating characteristic area under curve, ROC-
AUC) of support vector machines (SVMs) predicting the DNA methylation status
(high versus low) of individual genomic regions based on the k-mer frequencies of
the corresponding genomic DNA sequence. c Representative ROC curves for each
taxonomic group, selected such that the displayed species’ROC-AUCvalues closely
reflect the mean ROC-AUC values of the corresponding taxonomic group. As
negative controls, ROC curves trained and evaluated on data with randomly

shuffled labels fall close to the diagonal (in gray). dHistograms of ROC-AUC values
for vertebrate and invertebrate species, with the lamprey (an early jawless verte-
brate) shown as a green dot between the two distributions. e Heatmap displaying
the feature weights of 3-mers based on SVMs trained to predict locus-specific DNA
methylation from the underlying DNA sequence, separately for each species
(ordered by the taxonomic tree). f Sequence logos visualizing averaged feature
weights of 3-mers across species for each taxonomic group. Sequence logos are
displayed separately for 3-mers associated with low and high DNA methylation
levels. Boxplots are specified as follows: center line, median; box limits, upper and
lower quartiles; whiskers, 1.5x interquartile range; points, outliers.
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Fig. 3 | The “genomic code” of locus-specific DNA methylation is broadly con-
served across vertebrate and invertebrate species. a Heatmap showing ROC-
AUC values for the prediction of locus-specific DNA methylation from the under-
lying DNA sequence between all pairs of species. The comparisons of panel b are
highlighted in the heatmap. b ROC curves illustrating characteristic outcomes of
cross-species predictions, for classifiers trained in one species (fat dormouse,
abbreviated as FD) and tested in other species (left to right: Parma wallaby, PK;
macaque, MAC; little skate, LSK; white hake, WHH). “Inverted species” are char-
acterized by worse-than-random prediction performance when training is per-
formed in a non-inverted species. c Boxplots summarizing the cross-species
prediction performance (i.e., ROC-AUC values from panel a) aggregated by taxo-
nomic group of the training species (individual plots) and test species (x-axis).
d Histograms of cross-species prediction performance (i.e., ROC-AUC values from
panel a) for all inverted fish species (top) in comparison to phylogenetically related
non-inverted species (bottom). Inverted species: Atlantic cod, ACO; walleye pol-
lock, WEP; Atlantic salmon, ATS; Atlantic herring, ATH; white hake, WHH. Non-
inverted species: Pollock, POL; silver arowana, SAA; Pacific grenadier, PAG; onefin

flashlightfish, FLF; trout, TRO. e Left: Heatmap showing classifier feature weights
for themost differential 3-mers between an inverted species (white hake,WHH) and
all other bony fish (actinopteri) species, ordered by the taxonomic tree. Right: Bar
plots for the weights of the same 3-mers in white hake compared to their average
across all other bony fish (actinopteri) species. Error bars indicate standard devia-
tions of the mean. f Scatterplots for the association between the cross-species
prediction performance (y-axis) of classifiers trained in an inverted species (white
hake, WHH) and the difference in frequency of three 9-mer repeats (x-axis) con-
structed by the repetition of the differentially weighted 3-mers from panel d.
Values above0 indicate higher frequency in highly methylated sequences and vice
versa. The following inverted species are shown: Atlantic cod (ACO), walleye pol-
lock (WEP), white hake (WHH), Atlantic salmon (ATS), Atlantic herring (ATH).
Dashed lines indicate a frequency difference of 0 (vertical line) and a ROC-AUC
value of 0.5 (horizontal line). The Pearson correlation and its significance (two-
sided) are indicated. Boxplots are specified as follows: center line, median;
box limits, upper and lower quartiles; whiskers, 1.5x interquartile range; points,
outliers.
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methylation levels (i.e., the “genomic code” of DNA methylation) is
deeply conserved across taxonomic groups. However, the fact that
predictability of DNAmethylation differedwidely across target species
suggests that some species deviate much more strongly from the
genetically encoded “default” DNA methylation profile than other
species, perhaps due to tissue-specific regulation, environmental
influences, and stochastic effects.

Curiously, a few species of invertebrates, fish, amphibians, and
reptiles showed an apparent inversion of the genomic code for DNA
methylation, such that DNA sequence patterns normally associated
with low DNA methylation levels were instead linked to high DNA
methylation levels, and vice versa. The presence of such inverted
species in our dataset was evident from ROC-AUC values for cross-
species prediction that were substantially worse than expected by
random chance (blue horizontal/vertical stripes in Fig. 3a; example
shown in 3b). In other words, prediction models trained in non-
inverted species and applied to the inverted species misclassified
methylated regions as unmethylated, and unmethylated regions as
methylated, at a frequency that could not be explained by random
chance. We observed the same pattern of significantly lower-than-
random prediction performance when models were trained in the
inverted species and applied in non-inverted species. In contrast,
cross-species prediction between two inverted species gave more
consistent results than prediction between one inverted and one non-
inverted species (Supplementary Fig. 7a), suggesting shared patterns
among the inverted species.

To investigate the biological basis of this apparent inversion of the
genomic code for DNA methylation, we focused on the white hake
(Urophycis tenuis), a bony fish (actinopteri) species with pronounced
inversion (Fig. 3d) that was consistently detected across tissues and
individuals (Supplementary Fig. 7b–f). When we compared the feature
weights of the trained classifiers for predicting DNA methylation, we
identified three 3-mers (ACG, CGC, GCG) that were strongly predictive
of highDNAmethylation levels inwhite hakebut predictive of lowDNA
methylation levels in other bony fish (Fig. 3e). These 3-mers were
associated with highly methylated repetitive elements in the white
hake and to a lesser degree also in other inverted fish species, but not
in most of the non-inverted fish species (Fig. 3f). We tentatively con-
clude that the observed inversionmaybeexplainedby introgressionof
evolutionarily recent, CpG-rich, repetitive elements, which often
acquire high DNA methylation levels due to the cells’ machinery for
suppressing their genomic instability and expansion1.

Evolutionary conservation of tissue-specific DNA methylation
patterns
The hypermethylation of repetitive elements in the inverted species
(as described in the previous section) appears to occur on top of a
broadly conserved “genomic code” of DNA methylation. We would
expect that the same applies to tissue-specific as well as inter-
individual differences in DNA methylation. To investigate the relative
contributions of the tissue and the individual to the observed DNA
methylation variation in our dataset, we focused on those species for
which we have multiple tissues and individuals (n = 360). For each of
these species we inferred the percentage of variance explained by the
tissue and by the individual (Fig. 4a).

In human and mouse, it is well established that DNA methylation
patterns are more similar among samples of one tissue from different
individuals than among samples of different tissues from one
individual44,83,84. We observed this phenomenon for a subset of species
from all taxonomic groups except cartilaginous fish, which are not
sufficiently covered for a confident assessment (Supplementary
Fig. 8a). However, when quantifying the influence of these factors
across species, we found that tissue-specific differences clearly
exceeded inter-individual differences only in mammals, birds, and
bony fish, whereas we observed equal or higher variability explained

by the individual than by the tissue for many invertebrates, amphi-
bians, and reptiles (Fig. 4a).

These different contributions of tissue-specific and individual-
specific factors were not an artifact of differences in technical data
quality, as measured by PCR enrichment cycles in the RRBS protocol
(Supplementary Fig. 8b) and by DNA pre-fragmentation as a proxy for
low DNA quality (Supplementary Fig. 8c). Nor was it explained by dif-
ferences in genetic variation, which we estimated based on the mean
overlap in covered CpGs between samples from the same species
(Supplementary Fig. 8d). In contrast, we found a negative correlation
between DNA methylation erosion on the one hand and the variance
explained by the tissue or individual on the other hand (Supplemen-
tary Fig. 8e). This inverse association was observed and statistically
significant for reptiles, birds, and mammals. It is indicative of species-
specific differences in the share of DNA methylation variation that
should be attributed to random fluctuations and unexplained
biological noise.

Next, we investigated DNA methylation in its relation to tissue
identity, seeking to identify patterns of tissue-specific DNA methyla-
tion that are conserved throughout vertebrate evolution. We focused
on heart and liver, the two tissues that are best represented in our
dataset. We were able to include 207 species in this analysis, for which
heart and liver samples were available from at least two individuals
each. For each species, we identified differentially methylated con-
sensus reference fragments between heart and liver (Fig. 4b) and
compared the enrichment for transcription factor binding motifs
between fragments with lower DNA methylation levels in heart versus
lower levels liver (Fig. 4c, Supplementary Fig. 9a). This analysis exploits
the observation that many transcription factors and their binding
motifs are conserved across vast evolutionary distances85. We indeed
detected many transcription factor binding motifs at similar fre-
quencies in fragments from all taxonomic groups, with no obvious
preference for mammals (Supplementary Fig. 9b).

For further biological interpretation, we determined the tran-
scription factors that are expressed in human heart or liver tissues and
whose binding sites were enriched in differentially methylated frag-
ments.We further annotated these fragmentswithGO terms related to
heart and liver biology, physiology, and gene regulation (Fig. 4d). We
found that transcription factors associated with fragments character-
ized by lower DNA methylation levels in heart were preferentially
annotated with heart-specific biological functions (e.g., ZBTB14 has a
role in cardiac septum development; KLF4, KLF2, and ETS1 are
involved in the response to laminar fluid shear stress). Conversely,
fragments with lower DNA methylation levels in liver were annotated
with liver-specific functions (e.g., ONECUT1 and HNF1A contribute to
liver development; FOXP1, FOXA1, FOXK2, FOXA3, and FOXO4 are
involved in glucose homeostasis). Moreover, the binding sites of sev-
eral transcription factors with a role in the response to hypoxia and to
toxic substances had lower DNA methylation levels in heart than in
liver, which may be linked to the liver’s greater tolerance for such
exposures.While these results are consistentwith the concept that low
DNA methylation levels are associated with high regulatory activity35,
we also found one striking example in which higher DNA methylation
levels appear to coincide with higher regulatory activity: Fragments
enriched for the binding sites of FOXC2, FOXC1, and FOXL1—three FOX
family transcription factors with an established role in heart develop-
ment—showed lower DNA methylation levels in liver than in heart,
indicative of diverse relationships between DNA methylation and
regulatory activity35.

Finally, we inferred the evolutionarily conserved “tissue of activ-
ity” for individual transcription factors based on transcription factor
binding site enrichment, while taking into account preferential binding
to unmethylated or methylated DNA86 (Fig. 4c). From the identified
transcription factors we derived a gene-regulatory network using
regulator interactions obtained from the TRRUST v2 database87
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(Fig. 4e). This network constitutes a first exploratory attempt to
reconstruct an epigenetic contribution to tissue identity of heart and
liver that is deeply conserved across vertebrates.Our analysis indicates
that FOXA1 (also known as hepatocyte nuclear factor 3-alpha) is active
in liver and may induce APOB, a crucial component of low density
lipoprotein (LDL) produced in the liver and small intestine88. E2F6, a
transcriptional repressor involved in cell cycle regulation89, showed
higher inferred activity in heart than in liver, potentially reflecting the
different regenerative potential of these two organs. HIF1A (hypoxia-
inducible factor 1-alpha)may be repressedbyhigh activity of FOXO4 in
liver, while being activated by KLF5 and EGR1 in heart, which may
contribute to the higher tolerance toward hypoxic conditions in the
liver90. Theseobservations are in linewith our GO analysis (Fig. 4d) and
suggest that DNA methylation may help stabilize the fundamental
regulatoryprocesses underlying vertebrate tissue identity, inways that
are conserved across large evolutionary distances.

Gene-centric patterns of DNA methylation in vertebrate
evolution
Reference-free analysis of DNA methylation, which has been the basis
of all results described in the previous sections, allowed us to include
all 580 species, unconstrained by the availability of reference gen-
omes. However, this approach makes it difficult to link DNA methyla-
tion patterns to the genes and promoters that they may regulate. We
therefore complemented our reference-free analyses with a reference-
based analysis of DNA methylation in which we cross-mapped the
samples to annotated reference genomes of the same or related spe-
cies, with data-driven selection of the most fitting reference gen-
ome for each species (Supplementary Figs. 3a–c, 10a). We calculated
mean DNA methylation levels of individual gene promoters for each
sample, basedon the gene annotations of the corresponding reference
genome.We then linked these annotations to their humanortholog, to
analyze gene promoter methylation from all species in one shared
gene space (Supplementary Fig. 10a). We thus derived a gene-centric
DNA methylation landscape comprising 382 species, 1524 cross-
mapped samples, and 14,339 genes, which we projected on two
dimensions to visualize relationships in the shared space of DNA
methylation at gene promoters (Fig. 5a).

This cross-species landscape of DNA methylation reflects phylo-
genetic relationships as well as similarities and differences in DNA
methylation that are associated with species, tissues, and individuals
(Fig. 5a, Supplementary Fig. 10b). The most informative results were
obtained for mammals, given the large number of available reference
genomes and the conservation of human genes, which ensures an
accurate mapping. For example, samples mapped to the reference
genomes of old-worldmonkeys (rhesus, baboon, snub-nosedmonkey,
green monkey) and apes (orangutang) formed a clear cluster, while
samples mapped to the reference genomes of new-world monkeys
(marmoset, squirrel monkey) constituted a separate group. Among

birds, the golden eagle genome (genome assembly: aquChr2) and the
chicken genome (genome assembly: galGal6) enabled gene-centric
analyses for multiple other species including owls and ducks, respec-
tively. Fish, amphibians, and reptiles were not as well represented as
mammals and birds, but still detectable in this gene-centric analysis,
due to high conservation of certain genes over long evolutionary
timescales. The observed patterns were clearly non-random and not
seen in scrambled data (Fig. 5a, inset).

We exploited this cross-species landscape to define groups of
genes that exhibit similar patterns of DNA methylation at their pro-
moters throughout vertebrate evolution. To this end, we projected all
adequately covered genes on two dimensions using the UMAP
method, and we identified five distinct gene sets using the Leiden
clustering method (Supplementary Fig. 10c). Cluster 1 was character-
ized by high promoter methylation in mammals, and specifically in
samples from the lymph node (a tissue that is largely restricted to
mammals); Cluster 2 showed consistently low promoter methylation
across taxonomic groups and tissues, and was enriched for GO terms
related to organ morphogenesis; Cluster 3 exhibited high levels of
promoter methylation in birds, and in brain and several internal
organs, and it was enriched for GO terms relating to organism devel-
opment; Cluster 4 was associated with high promoter methylation in
reptiles and bony fish but low promoter methylation in cartilaginous
fish; Cluster 5 was characterized by low promoter methylation in var-
ious internal organs but high promotermethylation in blood, skin,fins,
and gonads (Supplementary Fig. 10d, e).

To assess conservation and divergence of tissue-specific DNA
methylation for individual gene promoters, we used random forest
classifiers to identify genes with tissue-predictive or taxonomy-
predictive promoter DNA methylation (Fig. 5b–e). We focused on the
two best represented tissues (heart, liver) and taxonomic groups
(mammals, birds) and devised four classification tasks: Heart versus
liver in each of the two taxonomic groups, and mammals versus birds
for each of the two tissues. In these analyses, we ensured that all
models were tested only on species that had not been used during
training, in order to focus on patterns that are conserved across spe-
cies.Weobtained goodprediction performance for all four tasks: ROC-
AUC in the heart versus liver classificationwere0.751 formammals and
0.716 for birds, while the corresponding values for the classification of
mammals versus birds were 0.851 for heart and 0.845 for liver
(Fig. 5b, c).

We investigated which gene promoters support these predictions
and found that the most discriminatory genes between heart and liver
(Fig. 5c)were transcription factors. This includedGATA4 andGATA5 in
birds, which have well-known roles in heart differentiation. In mam-
mals, we identified three transcription factors (MAB21L1, HAND1,
EMX2) but also the EMILIN1 gene, which codes for a protein that
anchors smoothmuscle cells to elastic fibers andmaybe important for
heart function. This gene showed increasing promoter methylation

Fig. 4 | Tissue-specific DNA methylation indicates deeply conserved associa-
tions of DNA methylation with transcription regulation and tissue identity.
a Scatterplots showing for each species the percentage of locus-specific DNA
methylation variance that is explainedby the tissue (x-axis) and by the individual (y-
axis), separately for each taxonomic group. Arrows and p-values indicate the
direction and statistical significance of the difference in the variance explained by
tissue and individual, calculated using a two-sided pairwise Wilcoxon test. Dashed
arrows indicate non-significant differences. Word clouds summarize the frequency
of tissue types that contributed to the analysis in each taxonomic group.
b Schematic illustration of the enrichment analysis for transcription factor binding
site (TFBS) motifs among the differentially methylated regions identified between
heart and liver (within a given species). c Clustered heatmap showing TFBS motif
enrichments for differentially methylated fragments between heart and liver. For
each transcription factor (columns), colors indicate whether it was enriched in
fragments that were hypomethylated in heart (blue) or liver (yellow) in the

corresponding species (rows). This heatmap includes only those transcription
factors and species that had aminimum of ten significant enrichments per species,
and normalized RNA expression values greater than one in either heart or liver
tissues according to the Human Protein Atlas. d Visualization of the Gene Ontology
annotations of the transcription factors identified in panel c. e Gene-regulatory
network constructed based on the transcription factors identified in panel c with
known binding preference (methylated/unmethylated) and their direct target
genes with known regulatory effect (activation: green; repression: red). Tran-
scription factors that were preferentially hypomethylated in one tissue type were
colored in yellow (heart) or blue (liver), while those that did not show such an
enrichment, as well as the transcription factor target genes, were colored in gray.
The inset shows specific enrichments for FOXO4 and EGR1 in heart and liver, which
have opposing effects onHIF1A (FOXO4: activation; EGR1: repression). The pictures
at the bottom show one species for each taxonomic group that contributed to this
cross-species analysis of DNA methylation differences in heart and liver.
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from mammals over birds to reptiles, possibly linked to the marked
anatomical and functional changes during evolution of the circulatory
system. Moreover, MAB21L1, a cell fate regulator with similarity to the
cGAS innate immune sensor91 displayed higher promoter methylation
in heart tissues of both mammals and birds. The most discriminatory
genes betweenbirds andmammals (Fig. 5e)were similarbetweenheart
and liver tissue; this included the homeobox genes ALX1 and LHX2 as
well as the cell cycle promoting cyclin CCND1, all of which had sig-
nificantly higher promoter methylation levels in birds compared to
reptiles and mammals.

Finally, we performed gene-centric analysis of promoter methy-
lation across all eight taxonomic groups (Supplementary Fig. 10f), and
we identified 48 genes that had a conserved promoter methylation
signal across most of the assessed taxonomic groups. Only one gene
retained an unmethylated promoter throughout vertebrate evolution:
CHCHD7, a putative housekeeping gene that is ubiquitously expressed
in human tissues. In contrast, the promoter of SPON2, which codes for
a cell adhesion protein involved in innate immunity, was highly
methylated in all classes exceptmarsupials. Genes with high promoter
methylation across taxonomic groups (such as SPON2, LMF1, NRDE2,
SLC38A10, VASN, NUDT7, GNL2, NETO1, APRT, FAM163B, ALOX5) had
a tendency toward highermethylation levels inmammals compared to
other taxonomic groups, while most other genes had lower DNA
methylation levels inmammals. A similar patternwasobserved also for
reptiles, while birds and marsupials often showed low promoter
methylation levels even for genes with highlymethylated promoters in
other taxonomic groups. Fish and amphibia had high promoter
methylation in most of the 48 broadly conserved genes, consistent
with their generally highDNAmethylation levels. Lamprey, as a jawless
vertebrate, displayed promoter methylation patterns similar to those
of cartilaginous fish. In contrast, invertebrates generally had low pro-
moter methylation levels even for genes with high promoter methy-
lation across all other taxonomic groups, supporting diverging gene-
regulatory roles of DNA methylation between vertebrates and
invertebrates.

Given the breadth of the presented dataset and analysis, detailed
follow-up studies in selected specieswill be needed to corroborate and
extend these observations; and we provide our dataset as a compre-
hensive resource and starting point for such investigations (http://
cross-species-methylation.bocklab.org).

Discussion
We performed a comparative analysis of DNA methylation over the
course of vertebrate evolution, based on genome-scale DNA methy-
lation profiles for 2443 tissue samples from 580 animal species. This
dataset allowed us to address fundamental biological questions with
adequate resolution and statistical power. Most notably, we investi-
gated the relationship of DNA methylation and DNA sequence, the
prevalence of DNA methylation erosion, the role of tissue versus
individual as sources of DNA methylation variation, and the

conservation of gene-regulatory DNA methylation signatures
throughout vertebrate evolution.

Our study was enabled by a highly scalable method for DNA
methylation profiling and data analysis that is applicable to essentially
any species and tissue sample, allowing us to capitalize on large
zoological biobanks and sample collections of wild, pet, and zoo ani-
mals. The optimized RRBS assay proved robust for samples of variable
quantity and quality, consistent with our previous experience working
with challenging formalin-fixed paraffin-embedded patient samples70.
We were thus able to include many samples obtained during routine
dissection of deceased animal. Using our RefFreeDMA software, we
analyzed and compared DNA methylation independent of whether a
reference genome has been established for these species. We exten-
sively validated our DNA methylation profiling and analysis method
using coverage simulations across 76 reference genomes and valida-
tion of key results with a meta-analysis of WGBS data for 13 species. In
addition, we cross-mapped the results of our reference-free analysis to
gene-annotated reference genomes, which provided additional vali-
dation and gene-centric insights,while also illustrating the future value
of our dataset for reference-based analysis, as manymore high-quality
reference genomes will become available over the next decade.

At the coreof our study, we usedmachine learning to predict DNA
methylation levels based on theDNA sequence, with the goal of linking
genomes and epigenomes throughout vertebrate evolution. We refer
to the predictive relationship between DNA methylation and the
underlying DNA sequence as a “genomic code” that connects DNA
methylation states topreferredDNAsequencemotifs.Whilewe arenot
implying any specific mechanism or direct causation, we found that
this “genomic code” was highly conserved across all analyzed taxo-
nomic groups. Both for genome-wide and locus-specific DNA methy-
lation levels, this relationshipwasbest describedby 3-mer frequencies.
As expected, high frequency of CpG dinucleotides was associated with
low DNA methylation levels, but CpGs were by no means the only
contributing factor. Machine learningmodels trained to predict locus-
specific DNAmethylation levels from the underlying DNA sequence in
one species generally performedwell also in other species, even across
taxonomic groups, and the prediction performance appeared to be
more a feature of the target species than of the species in which the
model was trained.

This broadly conserved “genomic code” was detectable even
among invertebrate species, to the point that models trained on DNA
methylation data for invertebrate species retained some predictive
power for vertebrate species. More generally, our dataset uncovered
an unexpected degree of conservation in the characteristics of DNA
methylation between vertebrates and invertebrates. First, while
invertebrates on average showed lower genome-wide DNA methyla-
tion levels than vertebrates, many invertebrate species had genome-
wideDNAmethylation levelswell within the distribution of vertebrates
(Supplementary Figs. 4f, 5c). Second, certain invertebrate species such
as sea urchins (Strongylocentrotus) showed DNA methylation profiles

Fig. 5 | Cross-species analysis of DNAmethylation in the human ortholog gene
space identifies both conservation and divergence of promoter methylation.
a UMAP representation of DNA methylation at gene promoters based on cross-
mapping of reference-free consensus reference fragments to annotated reference
genomes. Samples are colored by taxonomic group, and the matched reference
genomes are overlayed in black. Each sample is labeled by its sample identifier
(Supplementary Data 1), which is searchable and readable when zooming into the
PDF of the figure. Reference genomes are annotated by their UCSC Genome
Browser identifiers (e.g., aquChr2 for the golden eagle genome, as described in the
Methods section). Inset: UMAP representation of scrambled data, showing the lack
of clustering in a control analysis. b ROC curves for random forest classifiers using
the cross-mapped dataset to distinguish between heart and liver based on pro-
moter methylation data for birds and mammals. The solid lines are based on the
actual data, while the dashed lines are based on scrambled data (as in the inset in

panel a). ROC-AUC values are given for the actual data (first) and scrambled data
(second). c Boxplots showing DNA methylation levels at gene promoters for the
four most predictive genes in the classification of heart versus liver, aggregated by
taxonomic groups and overlayed with individual data points using the species
abbreviations (SupplementaryData 2). Gene names and the predictiveness (feature
importance) of their promoter methylation are indicated in the header bars. P-
values were calculated using a two-sided Wilcoxon test. d ROC curves for random
forest classifiers using the cross-mapped dataset to distinguish between birds and
mammals based on promoter methylation data for heart and liver samples. The
format is identical to panel b. e Boxplots showing DNA methylation levels at gene
promoters for the four most predictive genes in the classification of mammals
versus birds. The format is identical to panel c. Boxplots are specified as follows:
center line, median; box limits, upper and lower quartiles; whiskers, 1.5× inter-
quartile range; points, outliers.
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that are similar to those of vertebrates, with a prominent dip at gene
promoters and high gene-body methylation (Supplementary Fig. 3d,
e). Third, the lamprey fell between vertebrates and invertebrates in
termsof thepredictivenessof the “genomic code”ofDNAmethylation,
consistent with its intermediate position as an early jawless vertebrate.

Considering the full dataset of 580 species, we conclude that the
changing characteristics of DNA methylation throughout vertebrate
evolution are more gradual and diverse than previously repor-
ted based on smaller datasets and widely studied model organisms.
Nevertheless, two major transitions in the “genomic code” of DNA
methylation are supported by our study. These two transitions
are associated with the emergence of vertebrates and with the emer-
gence of reptiles, respectively. They manifested themselves by more
accurate predictions of DNA methylation from DNA sequence for
reptiles, birds, marsupials, andmammals than for fish and amphibians,
and by characteristic similarities and differences in themost predictive
DNA sequence motifs (Fig. 2).

While we cannot claim any firm causal or mechanistic insights
based on our observational data, we speculate that the predictive
“genomic code” of DNA methylation may play a role in the faithful
restoration of default DNA methylation patterns—not only in embry-
ogenesis and germ cell development80, but also following artificial
DNA methylation depletion92,93. A default epigenetic state that
is encoded in the DNA sequence may provide the baseline that is
modulated over a lifetime by other effects such as cell differentiation,
environmental exposures, organismal ageing, and random chance. To
understand how such a default epigenetic state is established and why
it differs across taxonomic groups, itwill be interesting to combine our
cross-species data with an investigation of the biochemical machinery
that controls DNA methylation—including DNA methyltransferases13

and demethylases94, but also histone-modifying enzymes95 and tran-
scription factors that affect DNA methylation.

A side note of our study is the cross-species analysis of DNA
methylation erosion, which uncovered pronounced erosion in the
taxonomic groups with high levels of DNA methylation (amphibians
and fish), rather than in taxonomic groups with intermediate levels
(mammals and reptiles) as it would be expectedmathematically68. This
observation may be due to higher DNA methylation levels being
intrinsically harder to maintain, given the limited fidelity of main-
tenance DNA methylation96. The affected species would therefore
need to tolerate lower stability of DNAmethylation, with the potential
upside of creating more room for accommodating environmental and
stochastic influences on DNA methylation.

ErosionofDNAmethylation patterns has been observed in human
cancers68,70–72, and loss of epigenetic control appears to causally con-
tribute to cancer development8,34,97. In this context, the observed
variability of DNAmethylation erosion across species raises interesting
questions regarding a potential role of DNA methylation as a cancer-
protective mechanism, especially in large and long-lived vertebrates.
While our dataset cannot functionally address these questions,
we found that birds, which have a low incidence of tumors98, were
characterized by particularly low levels of DNA methylation erosion
and showed a positive correlation between theoretical cancer risk and
DNA methylation levels. We envision that our optimized RRBS assay
and reference-free analysis will facilitate DNA methylation profiling of
tumors from wild and zoo animals for the wide range of vertebrate
species encountered in veterinary pathology. This will in time con-
tribute to a better understanding of the potential roles of DNA
methylation in solving the lack of correlation between body size and
cancer risk (Peto’s paradox)99,100, which stands out as a remarkable feat
of vertebrate evolution.

Potential limitations of this study arise from the experimental
choices that allowed us to process 2443 primary tissue samples from
580 species. First, RRBS uses restriction enzymes to pre-enrich a
“reduced representation” of the genome prior to bisulfite conversion

and sequencing. Compared toWGBS, RRBS covers fewer CpGs (mean:
2.5 million CpGs per sample), is cheaper, and more scalable. It also
provides consistent start and end points for the DNA fragments
definedby the restriction sites, which facilitates the comparison across
tissues and across individuals (mean: 1.7 million shared CpGs between
two samples of the same species). Second, analyzing any subset of
CpGs in the genome bears the risk of introducing species-specific
biases. While we performed extensive validations and designed our
analyses to ameliorate this risk, it is a relevant consideration for all
analyses of the presented dataset. Third, we focused our initial analysis
of this large dataset primarily on DNA methylation at CpG dinucleo-
tides, given its well-established biological roles. Nevertheless, the
RRBS assay also covers DNA methylation at non-CpG sites (i.e., CpA,
CpC, CpT), and we observed expectedly low levels of non-CpG
methylation in our dataset (species medians ranging from 0.99% to
2.43% across all analyzed vertebrate species). We also detected sig-
nificantly higher non-CpG methylation levels in brain compared to
other tissues in mammals and birds, consistent with a recent report
focusing on much fewer species25. Fourth, this study relies on our
reference-free analysis method (RefFreeDMA)45, which enables us to
work without reference genomes but lacks the regional context that is
provided by a high-quality reference genome. We addressed this lim-
itation by focusing on transcription factor binding sites, whose DNA
methylation levels tend to reflect the activity of the corresponding
transcription factors. Moreover, we devised a cross-mapping strategy
that leverages gene annotations from existing reference genomes and
integrates data fromdifferent species in a human ortholog gene space.
Fifth, despite the large number of samples and species covered by this
study, several interesting clades especially among amphibians and
reptiles are not well represented in our dataset. Finally, the different
species do not provide fully independent data points but are con-
nected through evolution. We thus used statistical methods that cor-
rect for phylogenetic relationships, and we evaluated our classifiers
both within and across species.

In conclusion, this study provides an initial account of the DNA
methylation landscape associated with vertebrate evolution, both by
establishing a dataset of unprecedented scale and by deriving insights
into conserved and divergent aspects of DNA methylation across a
wide range of animal species. Most notably, we found that DNA
sequence and DNA methylation exhibit widespread associations in
both vertebrate and invertebrate species that gradually changed over
the course of vertebrate evolution. The presented data and analyses
also provide an evolutionary context for investigating the epigenetic
heterogeneity that is observed in human and animal populations and
in a broad range of diseases.

Methods
Sample collection
The selected samples represent all vertebrate classes andmanymarine
invertebrate species. To obtain this breadth of coverage, samples were
obtained from several sources (Supplementary Data 1–4):
1. Research Institute of Wildlife Ecology of the University of Veterinary

Medicine Vienna (1611 samples): Tissue samples were collected
during routine pathological examination of deceased wild, pet,
and zoo animals. They were fresh-frozen and stored at −80 °C.
Pathological conditions and sample preservation (well preserved,
intermediate, rotten) were recorded (Supplementary Data 3).
Well-preserved samples were preferentially selected. Species
names were obtained from the notes of the pathological
examination. Peripheral blood samples of Bactrian camel (Came-
lus bactrianus) and llama (Lama glama) were collected as part of
routine veterinary examinations. Blood cell types were isolated
using forward/side scatter FACS45.

2. Ocean Genome Legacy Center (OGL) at the Northeastern University
Marine Science Center (600 samples): Specimens were collected
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and deposited to the OGL collections by numerous collaborating
researchers and were stored at −80 °C prior to dissection. DNA
was isolated using the Qiagen DNeasy Blood & Tissue kit
according to the manufacturer’s protocol and stored at −80 °C
prior to shipment on dry ice.

3. Commercial fish farm (Biofisch Wien) (73 samples): Innards of fish
killed for food were immediately dissected, transported on dry
ice, and stored at −80 °C until DNA extraction using the Qia-
gen DNeasy Blood & Tissue kit.

4. Commercial fish retailer (Naschmarkt Wien) (67 samples): Whole
specimens of sea food were purchased, transported on ice, dis-
sected, and stored at −80 °C until DNA extraction using the Qia-
gen DNeasy Blood & Tissue kit.

5. Department of Medical Biochemistry of the Medical University of
Vienna (21 samples): Tissue samples of chicken (Gallus gallus)
were collected and stored at −80 °C until DNA extraction using
the Qiagen DNeasy Blood & Tissue kit.

6. Max Planck Institute for Evolutionary Biology (16 samples): Tissue
samples of Eurasian blackcaps (Sylvia atricapilla) were obtained
from birds caught at the Pape Ornithological Station in Latvia
(56°9′48′′N, 21°1′35′′E) between end of August and beginning of
September 2011, then transported to the University of Ferrara in
Italy, where they were held in aviaries until sample collection.
Experimental procedures unrelated to this work were carried
out during the autumn migratory season 2011, and birds were
stored at −80 °C until organs were dissected in 2016 at the MPI
for Evolutionary Biology. DNA was isolated using a standard
phenol-chloroform extraction protocol and stored in ddH2O
at −80 °C.

7. Department of Biology of the University of Kentucky (16 samples):
Tissue samples of Mexican axolotls (Ambystoma mexicanum)
were collected and stored at −80 °C until DNA extraction using a
standard phenol-chloroform extraction protocol.

8. Department for Pathobiology of the University of Veterinary Medi-
cine Vienna (15 samples): Tissue samples of flying snakes (Chry-
sopelea) were collected during routine pathological examination
of deceased animals and stored at −20 °C until DNA extraction
using the Qiagen DNeasy Blood & Tissue kit.

9. CeMM Research Center for Molecular Medicine of the Austrian
Academy of Sciences (12 tissue samples): Healthy tissue samples of
Tasmanian devils (Sarcophilus harrisii) were collected and pro-
cessed as part of a previously published study that investigated
Tasmanian devil transmissible tumors101.

10. St. Anna Children’s Cancer Research Institute (12 samples): Leuko-
cytes and erythrocytes of zebrafish (Danio rerio) were collected
from kidneys and blood of adult animals. Cells were dispersed in
PBS supplemented with 3% FCS and 2mM EDTA and sorted by
FACS following an established protocol for blood cell populations
in zebrafish102. Sorted cellswere lysed, andDNAwas isolated using
the Qiagen DNeasy Blood & Tissue kit.

Taxonomic annotation
All samples were annotated with a scientific (Latin) name and a
common (English) name based on the information provided by the
sample source. Occasionally, the available information did not sup-
port the assignment of the exact species; these samples were
assigned genus names rather than individual species names. More-
over, the sequencing data for each species were compared with
public reference databases (as described in more detail below), and
potential errors or ambiguities were flagged or corrected based on
manual inspection. Detailed taxonomic annotations for all included
species were obtained from the NCBI database using the classifica-
tion function in the R package taxize and manually reviewed for
accuracy. In all analyses, marsupials were placed in their own group
rather than with the other mammals, given their unique evolutionary

history. We used the NCBI Taxonomy Browser (https://www.ncbi.
nlm.nih.gov/Taxonomy/CommonTree/wwwcmt.cgi) to create a
taxonomic tree for the analyzed species, and we visualized the
resulting phylogenetic relationships and associated information
using the iTOL software103. The resulting annotated species tree is
provided for interactive viewing and browsing under the following
URL: https://itol.embl.de/tree/841339292169571630660457.

DNA extraction from tissue samples
DNA from tissue samples was extracted using the Qiagen DNeasy
Blood & Tissue kit according to the manufacturer’s protocol. Briefly,
small pieces of tissue (around 2 mm3) were placed in collection tubes,
covered with proteinase-K containing digestion buffer, and shaken
overnight at 56 °C. When the tissue samples were completely dis-
solved, the DNA was bound to spin columns and washed, followed by
elution in 50–200 µl nuclease free water, depending on the expected
amount of DNA. The DNA concentration was then quantified using a
Qubit fluorometer. DNA from blood cells was isolated as previously
described45, using the Allprep DNA/RNA Mini kit (Qiagen). Between
50,000 and two million cells were lysed in 600μl Buffer RLT Plus
supplemented with 1% β-mercaptoethanol and vortexed thoroughly
for at least 5min. The isolation of DNA and RNA was performed
according to the manufacturer’s protocol. DNA was stored at −20 °C.

DNA methylation profiling by RRBS
Reduced representation bisulfite sequencing (RRBS) was performed as
described previously45,70, using 100ng of genomic DNA for most
samples, while occasionally going down to 1 ng for samples with low
DNA amounts (Supplementary Data 1). To assess bisulfite conversion
efficiency,methylated and unmethylated spike-in controlswere added
at a concentration of 0.1%. For most samples, DNA was digested using
the restriction enzymes MspI and TaqI in combination (as opposed to
only MspI in the original protocol) in order to increase genome-wide
coverage. For certain older samples, only MspI was used (Supple-
mentary Data 1). Restriction enzyme digestion was followed by frag-
ment end repair, A-tailing, and adapter ligation. Finally, the libraries
were size selected by performing a 0.75× cleanup with AMPure XP
beads (Beckman Coulter, A63881), retaining fragments with lengths of
approximately 100bp to 1000bp. The amount of effective library was
determinedbyqPCR, and samplesweremultiplexed in pools of 10with
similar qPCR Ct values. The pools were then subjected to bisulfite
conversion, followed by library enrichment with PCR. Enrichment
cycles were determined by qPCR and ranged from 6 to 18 (median: 11).
After confirming adequate fragment size distributions with Bioanaly-
zer High Sensitivity DNA chips (Agilent), libraries were sequenced on
Illumina HiSeq 3000/4000 machines using the 50 or 60 bp single-
read setup.

Sequencing of unconverted RRBS libraries
To distinguish with confidence between genomic thymines und con-
stitutively unmethylated cytosines (which are read as thymines in
bisulfite sequencing), we sequenced one RRBS library for each species
without the bisulfite conversion step. Libraries were multiplexed in
pools of up to 20 samples, and the pools were subjected to size
selection with a 0.6× reverse bead clean up and eluted in 20 µl EB. The
amount of effective library in the size-selected pools was determined
by qPCR using 1 µl size selected library as input. Based on qPCR Ct

values for each pool, the number of PCR enrichment cycles was
determined as the Ctminus two, which ranged from 5 to 11 cycles. PCR
and qPCR cycler programs were the same as in the RRBS protocol. The
enriched libraries were subjected to a 1.0× bead clean up. Library size
distributions were assessed on Bioanalyzer High Sensitivity DNA chips
(Agilent) and ranged from 260 to 300bp (mostly 280bp). Libraries
were sequenced on Illumina HiSeq 3000/4000machines using the 50
or 60bp single-read setup.
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RRBS data processing
The RRBS data were processed using an updated version of the
RefFreeDMA software45, which is available on Github (https://github.
com/jklughammer/RefFreeDMA). For each species, RefFreeDMA clus-
tered the sequencing data into read stacks corresponding to specific
positions in the genome, inferred the genomic DNA sequence as a
weighted consensus for each read stack (including both converted and
unconverted RRBS libraries), and performed DNA methylation calling
for each sample against these consensus reference fragments. Two
improvements were introduced in the process of generating the con-
sensus references: (i) Detection and removal of contaminating
microbial sequences by mapping all reads to a “decoy” genome con-
sisting of the NCBI BLAST dataset of representative bacterial/archeal
genomes and keeping only unmapped reads; (ii) incorporation of
unconverted RRBS libraries to enhance detection of consistently
unmethylated genomic cytosines. For analyses that focused on the
genomic sequence (e.g., k-mer frequencies, sequence-based predic-
tion of DNA methylation), only those consensus reference fragments
that were covered by the corresponding uncovered RRBS library were
considered, in order to minimize bias. Finally, summary statistics and
quality metrics (including mapping rate, number of covered CpGs,
conversion efficiency, DNA methylation level, contamination level,
pre-fragmentation) were calculated for each sample (Supplementary
Data 1 and 4).

RRBS coverage simulation
To assess the genomic coverage of RRBS across a wide range of spe-
cies, we simulated the restriction digest and size selection in RRBS for
all annotated vertebrate genomes that were available from the UCSC
Genome Browser, andwe determined the expected RRBS coverage for
CpG islands, transcripts, promoters, and repeats in each species. To
create in silico RRBS libraries, we first mapped all MspI and TaqI
restriction sites in these genomes using the matchPattern function in
the R package Biostrings104. The resulting restriction fragments were
then filtered to mirror the RRBS size selection step, retaining frag-
ments with a length between 50 bp and 1000bp. Of these fragments,
the first and last 50 bp were registered as simulated RRBS reads. We
next identified all CpGs within the genomes using the matchPattern
function and intersected these coordinates with the regions covered
by the in silico RRBS libraries, and with the different types of genomic
elements (CpG islands, transcripts, promoters, repeats) using the fin-
dOverlaps function in the R package GenomicRanges105. Finally, we
calculated the fraction of CpGs within each of the assessed genomic
elements that are covered by the in silico RRBS libraries. For each
genome, the coordinates of the genomic elements were downloaded
from the UCSC Genome Browser website (goldenpath/<genome>/
bigZips) using the R package rtracklayer106. Promoters were defined as
the regions 1000 bp upstream to 500bp downstream of the tran-
scription start sites. The genome sequences were obtained from the
corresponding genome assemblies provided by the UCSC
Genome Browser.

The following species and genome assemblies were included in
the analysis: Vase tunicate (ci3), African clawed frog (xenLae2), arma-
dillo (dasNov3), elephant shark (calMil1), Tibetan frog (nanPar1), green
anole (anoCar2), medaka (oryLat2), fugu (fr3), tetraodon (tetNig2),
Nile tilapia (oreNil2), kangaroo rat (dipOrd1), stickleback (gasAcu1),
Atlantic cod (gadMor1), sloth (choHof1), zebrafish (danRer11),manatee
(triMan1), microbat (myoLuc2),mouse (mm39), Garter snake (thaSir1),
naked mole-rat (hetGla2), squirrel (speTri2), zebra finch (taeGut2),
golden eagle (aquChr2), Chinese hamster (criGri1), Guinea pig (cav-
Por3), purple sea urchin (strPur2), brown kiwi (aptMan1), mouse lemur
(micMur2), Hawaiian monk seal (neoSch1), chicken (galGal6), bud-
gerigar (melUnd1), American alligator (allMis1), African elephant (lox-
Afr3), Japanese lamprey (petMar3), turkey (melGal5), painted turtle
(chrPic1), cow (bosTau9), ferret (musFur1), rabbit (oryCun2), tree

shrew (tupBel1), hedgehog (eriEur2), white rhinoceros (cerSim1), wal-
laby (macEug2), marmoset (calJac4), sheep (oviAri4), megabat (pte-
Vam1), squirrel monkey (saiBol1), cat (felCat9), Tasmanian devil
(sarHar1), golden snub-nosedmonkey (rhiRox1), pig (susScr11), rhesus
macaque (rheMac10), baboon (papAnu4), orangutan (ponAbe3),
alpaca (vicPac2), horse (equCab3), green monkey (chlSab2), dog
(canFam5), rat (rn7).

Because many reference genomes had an incomplete assembly
status and consisted of many scaffold sequences (often exceeding
10,000 scaffolds instead of a few dozen chromosomes), we con-
catenated individual scaffolds into 20 arbitrary chromosomes, separ-
ating the sequences by stretches of 100 Ns. This improved software
runtimes and avoided out-of-memory issues. After processing, geno-
mic coordinates based on these artificial chromosomes were ported
back to the original coordinate space to match the genome
annotations.

Read coverage analysis
To assess biological and technical effects on our RRBS libraries and on
the derived consensus references, each consensus reference fragment
was evaluated based on its read coverage across all samples for a given
species (Supplementary Fig. 2a). The following classification was
applied for each sample: If a fragment had a read coverage of more
than half the average coverage in that sample itwas considered reliably
covered. If a fragment had a coverage of more than four times the
average coverage across that sample it was considered highly covered.
Next, fragments that were highly covered in >80% of the samples were
labeled as “repeat” to indicate that they were likely derived from
repetitive genomic regions; fragments that were highly covered in
<20%of the sampleswere labeled as “amplified”, given that thispattern
is characteristic of PCRamplification artifacts; and fragments thatwere
reliably covered in >80% of the samples of one individual but in <20%
of the samples of other individuals were labeled “private”, as such
patterns can arise from inter-individual genetic variability. For each
sample, the relative proportion of these three categories (“repeat”,
“amplified”, “private”) was calculated and averaged across all samples
for a given species. For statistical assessment, only species with at least
four samples and at least two individuals were considered.

Cross-mapping analysis
To validate our consensus references and to enable gene-centric ana-
lyses for a subset of species,wedevised a cross-mappingworkflowthat
connects the RefFreeDMA-derived consensus reference fragments to
putative orthologous regions in available reference genomes. We
identified an empirical “best fit” by aligning all consensus reference
fragments of a given species to all reference genomes of species in the
same class in the UCSC Genome Browser (as determined by the low-
est_common function in the R package taxize). For each species, the
reference genome with the highest mapping rate was determined and
used for further analysis. Mapping was performed using the cross-
mapping function of RefFreeDMAwith an allowedmismatch rate of up
to 0.2 (this value was empirically determined). The genomes used for
cross-mapping and their preparation are described in the RRBS cov-
erage simulation section. DNA methylation profiles across annotated
genes were created by averaging DNA methylation calls within
5000bp upstream or downstream of the gene body in bins of 100 bp,
and in bins of 200 bp within the gene body itself. For sample-wise
analyses the samples were kept separate, whereas all samples of a
given species were combined for species-wise analyses.

Integration of publicly available WGBS data
To validate our RRBS-based, reference-free DNA methylation analysis
against WGBS data, we identified the species in our dataset for which
WGBS data were publicly available from GEO. This included: Bos
taurus57 (GSE147087), Mus musculus56 (GSE42836), Phascolarctos
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cinereus58 (GSE149600), Gallus gallus66 (GSE146620), Parus major65

(SRR2070790), Xenopus laevis62,63 (GSE76247, GSE90898), Danio
rerio60,61 (GSE149416, GSE134055), Callorhinchus milii25 (GSE141609),
Branchiostoma lanceolatum25,59 (GSE102144, GSE141609), Crassostrea
gigas55 (GSE40302), and Octopus bimaculoides25 (GSE141609). In addi-
tion, we obtainedWGBS data for Chelydra serpentina from the authors
of the corresponding paper64. Supplementary files containing CpG-
wise coverage andmethylation information were obtained using the R
package GEOquery107 and converted into a common format containing
CpG-wise read coverage and DNA methylation ratio. For Danio rerio
(GSE149416, GSE134055) and Parus major (SRR2070790) no suitable
files were available; hence we reprocessed the WGBS data for these
species starting from the raw sequencing data using the gemBS
pipeline108 with the danRer11 and the Parus_major1.1 genome assembly,
respectively.

Validation of species annotations
We used our RRBS data to verify species annotations for each sample.
First, we created a bisulfite converted version of the NCBI BLAST
nucleotide database (Nucleotide collection nr/nt) and mapped 1000
random reads per sample using the NCBI BLAST command line tool
with the following parameters: -max_target_seqs 100 -num_threads 4
-word_size 15 -evalue 0.00000001 -outfmt “6 qseqid sseqid sscinames
scomnames qlen slen sstart send pident length evalue bitscore qseq”
(https://github.com/jklughammer/bisulfiteBlast). Where both of the
two best matching species differed by more than the level of “class”
from the annotated species (this was assessed using the low-
est_common function in the R package taxize), samples were manually
inspected and flagged as unreliable if the discrepancies could not be
explained (e.g., by the absence of related species in the NCBI data-
base). In total, 30 samples were flagged as unreliable (Supplemen-
tary Data 1).

Analysis of genome-wide DNA methylation levels
To investigate the association between genome-wide DNA methyla-
tion levels and the genomic DNA sequence composition, we calcu-
lated mean DNA methylation levels across all CpGs and across
all samples for each species, and we correlated these values with
three sets of features derived from the corresponding consensus
reference: (i) k-mer frequencies; (ii) CG composition; (iii) CpG island
frequencies. K-mer frequencies for k ranging from 1 to 3 were cal-
culated using the MEME suite’s fasta-get-markov software tool109. CG
composition included the frequency of C and G nucleotides, the
frequency of CpG dinucleotides, the ratio between observed and
expected CpG frequencies (where the expected frequency is defined
as the calculated combinatory frequency based on independent C
and G frequencies), and the absolute number of covered CpG sites.
CpG island frequencies were calculated by determining the percen-
tage of consensus reference fragments that fulfilled the Gardiner-
Garden or Takai-Jones criteria for CpG islands110,111, requiring a GC
content (combined C and G frequencies) of at least 50% (Gardiner-
Garden) or 55% (Takai-Jones) and a CpG observed versus expected
ratio of at least 0.6 (Gardiner-Garden) or 0.65 (Takai-Jones), over
stretches of 50 bp.

We evaluated the explanatory power of these feature groups for
the observed variation in genome-wide DNAmethylation levels across
species, using a standard linear model as well as linear models that
included the phylogenetic group annotation or the taxonomy tree as
additional information. Linear models were implemented in R, using
the package phylolm112 for the integration of taxonomy tree structure.
The variance explained (R2) by each of themodels was calculated using
the R2.pred function in the R package rr2113. The R2 values were further
adjusted using the Wherry formula to account for the number of
variables in each of the models114. All models were additionally eval-
uatedby the Akaike information criterion (AIC), using theAIC function.

To evaluate the predictive power of the 3-mers, we used stepwise
feature selection115, iteratively adding and removing the features (i.e.,
individual 3-mers) in the linear model. Models were compared based
on the AIC using the stepAIC function in the R package MASS. Each
3-mer was assigned a stability score calculated as the percentage of
bootstrap experiments in which the feature was selected for the
final model.

We also assessed how well 3-mer frequencies recapitulate phylo-
genetic distance between the analyzed species. To that end, we
derived a pairwise distance matrix across species based on the global
3-mer frequencies in the consensus reference of each species, using
the dist function in R package stats116. We then performed hierarchical
clustering of this distance matrix using the hclust function from the
same package with default parameters, and we visualized the result as
a dendrogram using the R package dendextend117.

Finally, in the analysis of publicly available WGBS data, genome-
wide DNA methylation values were calculated for each sample by
averaging across the DNAmethylation levels of all CpGs with coverage
exceeding five reads.

Generalized linear models controlling for phylogenetic
relationships
To test for statistically significant associations between genome-wide
DNA methylation levels and 3-mer frequencies (and separately for
theoretical cancer risk), we used generalized linear models that
explicitly account and control for phylogenetic relationships. Models
were built individually for each factor, either with and without taking
phylogeny into account, and the corresponding coefficients and
associated p-values were used for interpretation. The phylogenetic
models were built with the compare.gee function in the R package
ape118 assumingGaussiandistributions and using the taxonomic tree as
depicted in Fig. 1c. The standard models (without controlling for
phylogeny) were built using the glm function in R. For the 3-mer ana-
lysis, the p-values obtained from both models were adjusted for mul-
tiple testing using the Bonferroni method.

Analysis of DNA methylation erosion
As a measure of DNA methylation erosion, the proportion of dis-
cordant reads (PDR) was calculated as described in the original
publication68. A custom Python script (which is now part of
RefFreeDMA) was used to determine the number of concordantly or
discordantly methylated reads with at least four valid CpG measure-
ments for each CpG within each sample. For each CpG, the PDR was
then calculated as the ratio of discordant reads compared to all valid
reads covering thatCpG. CpGs at the end of a readweredisregarded as
potentially unreliable. Finally, sample-wise PDR values were calculated
by averaging across their CpG-wise values.

Prediction of locus-specific DNA methylation levels
To investigate the association between locus-specificDNAmethylation
and the underlying DNA sequence, we trained machine learning clas-
sifiers to predict the discretized mean DNA methylation levels of
individual genomic regions (averaged across samples and/or tissues in
a given species) based on their genomic DNA sequence. Specifically,
we trained support vector machines (SVMs) with a spectrum kernel
from the R package kebabs119 to predict the discretized DNA methy-
lation states of consensus reference fragments (low: DNA methylation
<20% in all samples, high: DNAmethylation >80% in all samples; mean
coverage >10 reads) based on the DNA sequence composition of the
consensus reference fragment. From the set of sequences assigned to
high and low DNA methylation state, we randomly selected class-
balanced training and test sets comprising 2000 sequences each. In
those species where one class contained fewer than 2000 sequences,
the number of sequences for the other class was reduced accordingly,
in order to avoid class imbalance.
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For each species, training and test set sequences were trans-
formed into feature matrices comprising all k-mer frequencies with a
fixed length k. Based on the training set, the optimal regularization
value (C) as well as the optimal k-mer length (k) were selected by grid
search across C values of 0.01, 0.1, 1, and 10, and across k values from 1
to 10, using 10-fold cross-validation (Supplementary Fig. 6b). Finally,
SVMs were retrained on the complete training set (without cross-
validation) using the optimal parameters and evaluated on the test set.
Generation of feature matrices, grid search, and model fitting was
done using the R package kebabs119.

A second set of models was trained and evaluated in each species
using only 3-mers. To quantify the predictive power of individual
3-mers in each taxonomic group, we calculated mean feature weights
for each 3-mer across all species in that group. These mean feature
weights were used to generate sequence logos with the R package
ggseqlogo120, separately for positive and negative feature weights. The
significance of differences in the mean feature weights was assessed
using the Wilcoxon rank-sum test (wilcox.test function in R). For each
taxonomic group, the top-10 k-mers with the most significant differ-
ential feature weights were reported (Supplementary Fig. 6f). Finally,
to test the robustness of these results, all predictions were repeated
with less stringent thresholds that included sequences with low DNA
methylation levels in any sample as opposed to all samples (low: DNA
methylation <20% in any sample, high: DNA methylation >80% in all
samples), and the ROC-AUC values were compared (Supplemen-
tary Fig. 6a).

For validation by reference-based analysis of WGBS data, we
selected those species for which a suitable reference genome and
WGBS data with at least two biological replicates were publicly avail-
able. The following species and datasets were included: Bos taurus57

(GSE147087; bosTau9), Mus musculus56 (GSE42836; mm9), Gallus
gallus66 (GSE146620; galGal5), Xenopus laevis62,63 (GSE76247,
GSE90898; Xla.v91), Phascolarctos cinereus58 (GSE149600; phaCi-
n_unsw_v4.1), Danio rerio60 (GSE134055; danRer11), Branchiostoma
lanceolatum25,59 (GSE102144, GSE141609; Bl71nemr), and Chelydra
serpentina64 (data provided by the authors, ASM1885937v1). All gen-
ome assemblies were processed using the R package Biostrings104 and
split in 50 bp tiles,mimicking the consensus reference fragments. Each
tile was annotated with its mean DNA methylation level calculated as
the coverage-weighted mean of DNAmethylation values for each CpG
in the tile. As in the RRBS-based analysis, only sequences with a mean
coverage of at least 10 reads across all samples were retained.
Sequences with DNA methylation levels >80% in all samples were
labeled “highly methylated”, whereas those with DNA methylation
levels <20% in all samples were labeled “lowly methylated”. The sup-
port vector machine was trained and tested with cross-validation on a
balanced subset of 2000 randomly chosen sequences, while ensuring
that test and training sequences did not belong to the same chromo-
some. This procedure was repeated three times in each species, in
order to assess the stability of the results.

Cross-species predictions and inverted species
To assess the generalizability of locus-specific prediction across spe-
cies, models were trained in one species and tested (without re-train-
ing) in a different species. Model performance in each scenario was
quantified by receiver operating characteristic area under curve (ROC-
AUC) values in unseen test sets of the target species.

These cross-species predictions unexpectedly resulted in a few
cases (13 out of 580 species) in which the observed cross-species
prediction performance was systematically lower than expected by
chance. We refer to those outliers as inverted species, given that the
relationship between locus-specific DNA methylation and the under-
lying DNA sequence appears to be inverted compared to most other
vertebrate and invertebrate species. We denoted species as inverted if
they had average ROC-AUC values below 0.45 compared to all other

species. The taxonomic groupwithmost inverted species (actinopteri)
was investigated further. To that end, we identified those 3-mers
whose feature weights deviated most strongly in the inverted species,
as compared to all other species in this taxonomic group. To test the
hypothesis that the observed inversion in the relationship between
DNA methylation and DNA sequence may be due to recent expansion
of heavily methylated repeats in the inverted species, we used the
identified 3-mers for repeat identification, calculating the frequencies
of 3-mer derived 9-mer repeats (e.g., ACGACGACG) across all con-
sensus reference fragments with high (>80%) and low (<20%) average
DNA methylation levels.

Analysis of tissue-specific DNA methylation
To assess the prevalence of tissue-specific versus inter-individual dif-
ferences in DNA methylation, we focused on species with samples for
at least two individuals, at least two tissues, and one common tissue
that was shared between individuals. We further excluded species that
had <50% averageCpGoverlapbetween samples orwereflagged in the
validation of species annotations. For each of the selected species, we
calculated the variance explained by the tissue type and by the indi-
vidual as the average squared Pearson correlation (R2) for the mean
DNA methylation levels of the consensus reference fragments across
samples. The Pearson correlationwas calculated using the cor function
in R. The significance of the difference between the variance explained
by tissue and by individual between taxonomic groups was calculated
using a two-sidedpairedWilcoxon test (wilcox.test function inR).Word
clouds representing the relative frequency of tissues contributing to
the analysis were produced using the wordcloud function in the R
package wordcloud.

Differentiallymethylated consensus reference fragments between
tissues (specifically between heart and liver) were determined by
RefFreeDMA as described previously45. First, differentially methylated
CpGs were identified using the R package limma121 with multiple-
testing correction using the Benjamini–Hochberg method. Second,
the p-values for individual CpGs within the same consensus reference
fragment were combined using a modified version of Fisher’s com-
bined probability test122. Third, to identify the top-500 most hyper-
methylated consensus reference fragments in one tissue compared to
the other tissue, we used a combined rank approach based on p-value,
relative difference, and absolute difference in DNA methylation.
Fragments were further required to have a p-value below0.05 and an
average coverage of at least two reads in both tissues.

Transcription factor binding site analysis
To identify enriched transcription factor binding motifs among the
differentially methylated consensus reference fragments, we tested
thebindingposition-weightmatrixes (PWMs) from the 2020 version of
the JASPAR database123 using the AME tool from the MEME package
with default parameters124. We scored each motif for enrichment
among the top-500 hypermethylated fragments relative to the top-
500 hypomethylated fragments, and vice versa. Motifs with multiple-
testing adjusted p-values below0.05 were considered significantly
enriched. Transcription factors were additionally annotated based on
their gene expression levels in human tissues, using the consensus
transcript expression levels from the Human Protein Atlas (https://
www.proteinatlas.org/about/download). Only transcription factors
that have normalized RNA expression values greater than one in heart
or liver sampleswere included in the analysis.Moreover, to explore the
tissue specificity of transcription factor binding, we clustered the
corresponding transcription factors based on their motif enrichment
in heart and liver using the default hierarchical clustering of the
pheatmap function in the R package pheatmap. GO term annotations
of the selected transcription factors were obtained using the GOnet125

web tool (https://tools.dice-database.org/GOnet) with a custom
set of relevant GO terms (search terms “heart”, “liver”, “hypoxia”,
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“detoxification”, “fluid shear stress”, “glucagon”, “secretion”, “differ-
entiation”, “regeneration”, “cell cycle”, “glucose homeostasis”, “thyroid
hormone”, “nitrogen compound metabolic process”). The resulting
network was downloaded as a JSON file and visualized using
Cytoscape126. For better visualization, connections between GO terms
were cut and redundant annotations were removed. Five transcription
factors were removed from the network because they were not
annotated with any “Biological Processes” GO term (ZNF740, KLF9,
ZNF263, ZNF384) or only with the broad term “signal
transduction” (KLF16).

Transcription factors were further annotated with their binding
preferences (methylated or unmethylated binding site) based on HT-
SELEX experiments for their human homologs86. Transcription factors
annotated as preferring binding to unmethylated sites whose binding
sites were hypomethylated in liver (when compared to heart) were
classified as “active in liver”. Similarly, transcription factors annotated
as preferring binding to methylated sites whose binding sites were
hypermethylated in liver (when compared to heart)were also classified
as “active in liver”. Transcription factors showing the opposite char-
acteristics were labeled “active in heart”. Using a manually curated
database of human gene-regulatory networks87, we identified the
potential targets of these transcription factors and visualized the
resulting network with Cytoscape126.

Reference-based DNA methylation analysis
Using the cross-mapping of RRBS consensus reference fragments to
putative orthologous regions in existing reference genomes (as
described above) as well as the gene annotations of these reference
genomes, we calculated promoter methylation for each covered gene
as the mean DNA methylation levels across 50 bins spanning 2500 bp
upstream of the transcription start site. Gene identifiers across all
genomes were then linked to their human homologs. First, the original
RefSeq IDs were converted to NCBI IDs using the NCBI gene2refseq
dictionary. Second, NCBI IDs were matched to their human orthologs
using the NCBI gene_orthologs dictionary. Both dictionaries were
obtained from https://ftp.ncbi.nlm.nih.gov/gene/DATA.

For an integrated visualization of our dataset, we produced a
common dimensionality-reduced representation of genes and sam-
ples, combining data across species into a shared human homolog
gene space based on mean promoter methylation levels. For the
sample-wise analysis, genes were included if they were covered in
>100 samples, and samples were included if they had coverage for
>400 genes. For the gene-wise analysis, genes were included if they
were covered in >400 samples, and samples were included if they had
coverage for >50 genes. This filtering strategy was optimized to pro-
duce missing-value-free sample-by-sample and gene-by-gene correla-
tion matrices using Person’s correlation with pairwise complete
observations as calculated using the cor function in R. Uniform Mani-
fold Approximation and Projection (UMAP) was then applied to these
correlation matrixes using the umap function in the R package uwot
with the following parameters: n_neighbors = 20, min_dist = 2,
spread= 1 (for the sample-wise analysis) or n_neighbors = 15, min_d-
ist = 0.05, spread= 1.5 (for the gene-wise analysis). Leiden clustering
for the gene-wise UMAP representation was performed using the
cluster_leiden function in the R package igraph with a resolution of
0.06. Gene enrichment analysis on the genes in each Leiden cluster
was performed with the gost function in the R package gprofiler2 using
GO Biological Processes, GO Molecular Function, and GO Cellular
Compartment as gene set databases and an FDR-corrected p-value of
0.05 as the significance threshold.

In the shared human homolog gene space, we assessed the ability
to predict sample properties (i.e., tissue type and evolutionary class)
based on promoter methylation levels. We used a random forest
classifier that can handle missing values, as implemented by the rpart
function in the R package rpart. Genes were included if they were

covered in at least 60% of the samples, and samples were included if
they had coverage for at least 12%of the genes in the assessed subset of
the data. We focused our analysis on mammals and birds as the most
highly represented taxonomic groups, and on liver and heart as the
most highly represented tissue types. We predicted tissue type (heart
versus liver) and evolutionary class (mammal versus bird) separately
for mammal and bird species and for heart and liver tissues, respec-
tively. 80 (tissue prediction) and 100 (evolutionary class prediction)
species were randomly selected for model training, and the remaining
species were used for model testing. We split by species to make sure
that training and test data did not contain samples of the same species,
thereby focusing the analyses on cross-species prediction. The pro-
cedurewas repeated 100 times, and for each iterationwe recorded the
prediction performance (ROC-AUC values) and feature weights. The
prediction performance was assessed for each classification task, and
average feature weights were calculated across all 100 iterations. As a
control analysis, the same procedure was applied to scrambled data
derived from the actual data by randomly distributing the non-missing
values across the non-missing value positions. This analysismaintained
themissing-value structure to ensure that thisdid not contribute to the
observed predictions.

Data availability
All data are available via the Supplementary Website (http://cross-
species-methylation.bocklab.org). In addition, the raw and processed
data (converted and unconverted RRBS libraries) are available from
the NCBI Gene Expression Omnibus (GEO) repository under accession
number GSE195869. Previously published datasets used in this study
are available fromGEOor SRA under the following accession numbers:
Bos taurus (GSE147087), Mus musculus (GSE42836), Phascolarctos
cinereus (GSE149600), Gallus gallus (GSE146620), Parus major
(SRR2070790), Xenopus laevis (GSE76247, GSE90898), Danio rerio
(GSE149416, GSE134055), Callorhinchus milii (GSE141609), Bran-
chiostoma lanceolatum (GSE102144, GSE141609), Crassostrea gigas
(GSE40302), Octopus bimaculoides (GSE141609), Danio rerio
(GSE149416, GSE134055), Parus major (SRR2070790).

Code availability
The source code is available as a ZIP archive on the Supplementary
Website (http://cross-species-methylation.bocklab.org), on GitHub
(https://github.com/epigen/DNAmeth500species), and as a long-term
archive in Zenodo (https://doi.org/10.5281/zenodo.7186970).
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