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Abstract
Pupil–corneal reflection (P–CR) eye tracking has gained a prominent role in studying dog visual cognition, despite
methodological challenges that often lead to lower-quality data than when recording from humans. In the current study,
we investigated if and how the morphology of dogs might interfere with tracking of P–CR systems, and to what extent
such interference, possibly in combination with dog-unique eye-movement characteristics, may undermine data quality and
affect eye-movement classification when processed through algorithms. For this aim, we have conducted an eye-tracking
experiment with dogs and humans, and investigated incidences of tracking interference, compared how they blinked, and
examined how differential quality of dog and human data affected the detection and classification of eye-movement events.
Our results show that the morphology of dogs’ face and eye can interfere with tracking methods of the systems, and dogs
blink less often but their blinks are longer. Importantly, the lower quality of dog data lead to larger differences in how
two different event detection algorithms classified fixations, indicating that the results of key dependent variables are more
susceptible to choice of algorithm in dog than human data. Further, two measures of the Nyström & Holmqvist (Behavior
Research Methods, 42(4), 188–204, 2020) algorithm showed that dog fixations are less stable and dog data have more trials
with extreme levels of noise. Our findings call for analyses better adjusted to the characteristics of dog eye-tracking data,
and our recommendations help future dog eye-tracking studies acquire quality data to enable robust comparisons of visual
cognition between dogs and humans.
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Introduction

In the last decade, pupil (P) and corneal reflection (CR)-based
eye-tracking systems (P–CR eye-tracking systems) that were
initially developed to track human eyes (Merchant, 1967)
have become a popular tool to study visual cognition in dogs
[Canis lupus familiaris] (Somppi et al., 2012, 2014, 2016,
2017; Törnqvist et al., 2015, 2020; Téglás et al., 2012; Kis
et al., 2017; Gergely et al., 2019; Barber et al. 2016; Correia-
Caeiro et al., 2020, 2021; Ogura et al., 2020; Völter et al.,
2020). The non-histological morphology of dog pupils and
corneas is similar to that of humans, i.e., dogs have a circular
dark pupil and a transparent reflective cornea (Malmström
& Kröger, 2006; Banks et al., 2015; Nautscher et al.,
2016). This similarity enables researchers to record the eye
movements of dogs non-invasively using a remotely placed
infrared camera. Using the same P–CR eye-tracking systems,
and similar experimental designs and stimuli to those of
human eye-tracking studies, the above studies have set the
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ground for cross-species comparisons of visual cognition
between humans and dogs. However, the studies have also
revealed important methodological challenges in dog eye
tracking, which make such cross-species comparisons less
straightforward. The most highlighted challenge across the
studies is collecting dog eye-tracking data (raw data, the
data before event classification through algorithms) of a
quality that is comparable to that of human adult data.

The quality of eye-tracking data is often assessed in terms
of the following three crucial properties of a segment of
eye-movement data: accuracy, precision, and the amount
of data loss (e.g., Holmqvist et al., 2012; Niehorster
et al., 2020a, b; Holmqvist, 2015; Holmqvist & Andersson
2017). First, data may be inaccurate, i.e., there is an
offset between the real gaze location and the gaze position
estimated by the eye-tracking system. Reported accuracy is
typically determined by means of calibration and validation
procedures performed on the experiment’s participants.
Second, data may exhibit poor spatial precision, i.e., there
is variation in the estimated gaze position despite the actual
gaze position of the recorded eye being kept constant.
Finally, data may exhibit a significant amount of invalid
or lost data, for instance when the eye tracker cannot
reliably detect and track the pupil or the corneal reflection
center. Among the three properties, issues of data loss and
inaccuracy stand out in dog eye tracking. Most previous dog
eye-tracking studies reported “unreadable” or “insufficient”
data for analysis or lack of data within trials (Somppi
et al., 2012, 2014, 2016, 2017; Barber et al., 2016; Correia-
Caeiro et al., 2020, 2021; Gergely et al., 2019; Kis et al.,
2017; Téglás et al., 2012). Previous dog eye-tracking studies
reported excluding on average about 15% (and some even
over 50%, see Table 1) of data due to issues with data
loss or other data-quality issues, which is higher than that
commonly seen in eye-tracking studies with human adults
(on average 9%, ranging from 3% to 15%, Holmqvist
& Andersson, 2017, p.167). Park et al. (2020) reported
that dog data has, despite calibration training, also poorer
accuracy than that of humans, e.g., the average offset in
the estimated gaze position measured during calibration and
validation procedures was larger in dogs (0.88◦) than in
humans (0.51◦).

Reasons for data loss and inaccuracy

Headmovements and calibration difficulty

As to why the unusable or missing data occurred, some
of the dog eye-tracking studies suggested “technical prob-
lems”, “software problems”, or “dog’s behavior (head
movement)” (Somppi et al., 2012, 2014, 2016, 2017;
Törnqvist et al., 2015, 2020). Other studies have described
it as the loss of dogs’ “attention” or “eye-tracker signal”

(Correia-Caeiro et al., 2020, 2021). We have also observed
that most dogs tend to make more small head move-
ments than human adults who have received clear verbal
instruction to minimize their head movement. Thus, dog
eye-tracking data overall suffer more from head movement-
induced tracking loss or noise. A further factor reducing
accuracy is that it is difficult to carry out the calibration
and validation procedures with dogs, since they are not
able to follow verbal instructions as human adults. Sev-
eral dog eye-tracking studies reported exclusion of subjects
due to calibration difficulty which increased their attrition
rate (Téglás et al., 2012; Kis et al., 2017; Ogura et al.,
2020; Somppi et al. 2014, 2016, 2017; Park et al., 2020)
(Table 1). Eye-tracking studies that recorded from human
infants (Hessels & Hooge, 2019) and non-human primates
(Hopper et al., 2020) share similar challenges with dog eye
tracking, as the subjects have behavioral tendencies and
communication limits analogous to those of dogs. Hessels
et al. (2015) and Niehorster et al. (2018), and Holmqvist
et al. (2021) experimentally tested the effects of large and
small head movements of either infants or adults on data
quality in a selection of eye-tracking systems, and found that
head movements caused systematic data loss due to track-
ing failure as well as increased inaccuracy and imprecision
of the recorded data.

While there have not been counterpart studies in dogs,
based on the shared challenges, comparable data quality can
be expected between dogs and infants. Infants do not have
the morphological characteristics of dogs that can interfere
with tracking of the systems, while many dogs can on the
other hand be trained to stay still on the chinrest to prevent
data loss and inaccurate tracking due to head movement.
Currently available data do not allow comparing data quality
between infants and dogs, and each participant group thus
comes with its unique challenges that careful experimental
design may or may not be able to mitigate.

There have also been various efforts in dog eye tracking
to prevent data loss and inaccurate tracking due to head
movement. For instance, many studies have trained dog
subjects for staying still on a chinrest (Somppi et al., 2012,
2014, 2016, 2017; Törnqvist et al., 2015; Barber et al.,
2016; Park et al., 2020; Ogura et al., 2020; Völter et al.,
2020; Törnqvist et al., 2020) (Table 1). Further, Barber
et al. (2016) and Park et al. (2020), and Völter et al. (2020)
pre-experimentally trained dogs also for the calibration and
validation procedures, while Somppi et al. (2012, 2014,
2016, 2017) and Törnqvist et al. (2015, 2020) ran the
calibration procedure and the experimental task on separate
days (using the SMI RED 250 eye-tracking system) to
reduce the risk that dogs lose interest and display a lack
of vigilance during the experimental task. While special
attention has been paid to the behavior and training of dogs,
it has not been explored whether and how factors other than
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unwanted movements and a lack of vigilance could further
lead to tracking loss and inaccuracy in dog data.

Dog unique morphology

In human eye-tracking practice, it is well known that
certain vision-related or ophthalmic morphology of subjects
affects the ability of P–CR eye-tracking systems to track
participants and the accuracy of the data, and therefore,
pre-selection of subjects based on such morphological
characteristics is advisable. For example, Hessels et al.
(2015) reported that accuracy and precision are worse,
and more data loss occurs for infants with bluish than
dark iris color. Likewise, Holmqvist (2015) suggests that,
statistically speaking, it is best to recruit tall, male
participants in the age around 17–25 years, who have big,
brown eyes with pupils that are not too large, forward-
or upward-pointing eye lashes, and dark hair (see also
Nyström et al., 2013), Despite the overall similarity in
the eye morphology between humans and dogs, some
morphological characteristics of dogs differ from those of
humans and non-human primates (summarized in Table 2),
and may thus pose unique challenges for P–CR systems.
The eye-feature detection and tracking mechanisms of
current eye-tracking systems are built predominantly for
the eyes of humans and non-human primates, and cannot
be assumed to work equally well when tracking dog
eyes. Indeed, indications of tracking interference due to
morphological characteristics can be found in some of
the previous dog eye-tracking studies. For example, (Kis
et al., 2017) excluded some dogs due to not only their
inattentiveness but also their head shape (too long nose,
lateral position of the eyes), which made it impossible
to carry out the calibration procedure for both eyes at
the same time. Park et al. (2020) pre-selected dogs based
on some of the morphological characteristics described in
Table 2 to reduce tracking loss. Yet, so far no studies
have systematically investigated if and how morphological
characteristics unique to dogs could interfere with the
tracking performance of the P–CR eye trackers. Should the
characteristics interfere with tracking of dog eyes, sharing
the experience and relevant information among dog eye-
tracking researchers would be helpful for future studies
(see also Hopper et al. (2020) for a similar endeavor with
non-human primates).

Factors affecting eye-movement event classification

In most eye-tracking studies, the analysis of the collected
eye-movement data starts with classifying the raw data
(composed of time stamp, screen x coordinate, screen
y coordinate, and often pupil size) into eye-movement
events such as fixations, saccades, and blinks. One
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approach is to manually classify eye-movement events, for
instance by labeling stable periods in time series plots
of the recorded horizontal and vertical gaze position data
as fixations. Instead, to efficiently obtain reproducible
classification results using a describable (Hooge et al.,
2018) process, many studies use an existing manufacturer-
provided or custom-made event detection algorithm to
do such classification. Algorithms often use thresholds
of certain eye-movement parameters (e.g., movement
dimension, velocity, or duration) to detect and classify the
events in the data. Algorithms differ in the details of their
classification strategy, such as which eye-movement event is
classified first or what threshold settings are used, yet many
commonly used algorithms use predefined thresholds that
are based on the eye-movement characteristics of human
adults.

Effects of data loss and lower quality data
on eye-movement event classification

A few dog eye-tracking studies have demonstrated that
a large amount of data loss can make eye-movement
event classification by means of algorithms impossible.
For example, Kis et al. (2017) and Gergely et al. (2019)
reported that the amount of recorded data per trial in dogs
was too little to apply an eye-movement event classification
algorithm, and for this reason, they only counted the number
of data samples (referred to as gaze or look in the studies)
inside their AOIs instead of number or (total) duration of
fixations or saccades that are more typical variables in
eye-tracking studies (Table 1). While this is an extreme
example demonstrating the impact of data loss, even if
classification using an algorithm is possible, high noise
levels and frequent gaps in data may significantly affect
the detection of eye-movement events. When algorithms
that are not robust to these two issues are used to process
such lower quality data, the algorithm outputs contain more
artefacts, i.e., physiologically impossible eye movements,
such as too short fixations and saccades (Holmqvist et al.,
2012). Moreover, the lower the quality of the data, the
more differences there are between different algorithms and
thresholds settings in their outputs. For example, Wass et al.
(2013) demonstrated that when they used a system built-
in (dispersion-based) algorithm with default thresholds to
classify data of infants, the eye-movement event results
were heavily influenced by inter-individual variations in
data quality. Using their custom-made algorithm that could
further identify and eliminate artefactual fixations, fixations
could be identified more reliably (Wass et al., 2013).
Such differences in outputs between the event-detection
algorithms were however not observed when classifying
high-quality adult data, suggesting that the classification

of lower quality data is more sensitive to the choice
of algorithm. Due to this reason, in human eye-tracking
practice, a greater caution has long been advised for
classifying eye-movement events if the quality of data is
lower (Hessels et al., 2017).

Effects of species-typical eye-movement characteristics
on eye-movement event classification

Only a few studies have compared eye movements of
humans and non-human animals (e.g., Blount, 1927;
Martinez-Conde & Macknik 2008), making it all the
more important to ask whether and how eye-movement
characteristics of animals may differ from those of human
adults, and how this may further complicate the choice of
threshold settings in event classification algorithms. In dogs,
using a custom-made velocity-based algorithm (Nyström
& Holmqvist, 2010) that can tailor the velocity thresholds
based on the noise level of the data, Park et al. (2020) found
that saccades of dogs are slower and fixations of dogs were
on average around four times longer than those of humans.
Based on these findings, they suggested that when fixation
classification is performed on dog eye-movement data using
system built-in dispersion-based algorithms, the default
minimum fixation duration threshold of these algorithms
should be adjusted to a higher value, since the default
settings are likely based on the fixation behavior of human
participants. Besides, whether the amount of missing data
and inaccuracy in dogs is further exacerbated by possibly
different blink characteristics from those of humans has not
been explored. Blinks create not only gaps in the recorded
gaze data but also artefacts around their start and end. If, for
example, a dog blink is much longer or more frequent than
human blink, their contribution to the data quality probably
should not be overlooked.

Goal of the study

The above overview reveals that dog eye-tracking data
are often of lower quality, for instance possibly due to
their unique morphology that is not fully compatible with
current P–CR systems. Furthermore, the eye-movement
characteristics of dogs that are crucial to event classification
differ from those of humans. Methodological studies of
human eye-tracking data lead us to expect that this
complicates the analysis of dog data and needs to be taken
into account. The current investigation had three objectives,
1) to know how morphological characteristics unique to
dogs could interfere with the tracking performance of P–
CR eye trackers, and 2) to compare another eye-movement
event, blinks, of dogs and humans to examine its potential
consequences on data quality, and 3) to examine how the
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lower quality of dog data may differentially affect eye-
movement event classification by comparing how sensitive
the event classification outputs and central measures derived
from the outputs are to the choice of algorithm. For this
aim, we have tested dogs and humans in an eye-tracking
experiment where they viewed a set of pictures of human
faces, dog faces, and control objects, similar to previous dog
eye-tracking studies.

First, to examine how the vision-related morphological
characteristics of the eyes and facial regions of dogs may
lead to tracking loss in a P–CR eye-tracking system and
to lower data quality, we have used a P–CR system that
can show a live view of a tracked eye. Second, in order to
investigate whether dogs and humans show differences in
their blinks, we have compared the frequency and duration
of blinks between dogs and humans. Finally, we have
compared the fixation classification output (proportion of
artefactual fixations and fixation duration) as well as three
commonly used fixation-related outcome variables (time
to first fixation, total fixation count, and total fixation
duration) between our dog and human data using fixations
identified by two algorithms (the built-in algorithm of the
EyeLink eye-tracking system and a custom implementation
of the Nyström and Holmqvist (2010) algorithm). As further
measures of noise level in the data, we have also compared
the stability of human and dog fixations classified by
Nyström and Holmqvist (2010) algorithm as well as the
velocity thresholds that this algorithm ended up using for
each trial (as this algorithm adopts higher thresholds for
noisier data, in contrast to the EyeLink algorithmwhich uses
a single fixed threshold).

While the overall quality of dog data is likely poorer
than that of human adults, the worst quality can be
avoided through careful selection and training of subjects,
and well-performing dog subjects can yield data of the
quality comparable to that of humans. On the other hand,
for experimental paradigms that use tasks not crucially
dependent on the quality of data (e.g., preferential looking
task), many dogs would likely deliver good enough data.
Importantly, based on our findings we suggest practical
solutions and recommendations that future dog eye-tracking
studies could adopt to improve the quality of their
recordings and data analysis.

Method

The eye-movement data analyzed in the current paper
are part of a larger dataset comprising an experimental
study comparing human and dog face viewing behavior
(in preparation). This data was also part of the dataset
previously used for Park et al. (2020).

Subjects

We recruited dog subjects by contacting dog owners from
the Vienna area who had previously agreed on participating
in behavioral and cognitive studies in the Clever Dog Lab.
Initially, 33 dogs were recruited for pre-experiment training.
Of these, eight dogs had vision-related morphological
characteristics that interfered with the ability of the eye-
tracking system to track them. We collected eye-video
images from these dogs to examine the implications of the
morphology, yet the dogs were excluded from further data
collection. A further ten dogs could not complete the pre-
experiment training, thus the sample with which we started
data collection consisted of 15 dogs. 14 dogs could complete
all trials, and the data of these 14 dogs were analyzed
(age M = 5.57 years, SD = 2.88 years; sex: six males and
eight females). The dog subjects were one Akita Inu, four
Border Collies, one Boxer, one Petit Brabancon, one Golden
Retriever, two Siberian Huskies, one Jack Russell Terrier,
one Parson Russell Terrier, one Rhodesian Ridgeback, and
one mixed breed. In addition, 15 human participants (age
M = 29.2 years, SD = 10.5 years; gender: six males and
nine females), volunteering graduate students, dog owners
or university staff with normal or near normal vision without
glasses (glasses were off during the experiment), completed
all trials. The human subjects did not present with droopy
eyelids or other morphological characteristics that might
have interfered with the eye-tracker’s performance.

Ethical statement

All experimental protocols were approved by the institu-
tional ethics and animal welfare committees of the Univer-
sity of Veterinary Medicine, Vienna and Medical University
of Vienna in accordance with the GSP guidelines and
national legislation (02/03/97/2013 and 1336/2013, respec-
tively). All methods were carried out in accordance with the
relevant regulations and guidelines. Informed consent was
obtained from all human participants and dog owners before
the study was conducted.

Stimuli

Each subject was shown 24 images from three different
categories (human face, dog face, and control object) in
either an upright or an inverted orientation, for a total of
24 trials. The stimuli were originally designed for another
study (Park et al. in prep.). The images were generated
using the freely available image processing tool GIMP or
collected from the Radboud FACE Database (Langner et al.,
2010) and Internet websites with their permission. The sizes
of the images ranged from 246 to 411 pixels in width
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and 257 to 341 pixels in height which corresponded to
angular widths and heights of approximately 8-12◦ and 7-
10◦, respectively. For each trial, one image was presented
on the left or right side of the screen, where the closer edge
of an image was 100 pixels (3◦) horizontally away from the
center of the screen. Stimuli were presented in random order
with presentation side balanced. The stimulus presentation
was controlled by an executable file generated by the
Experiment Builder (version 1.10.165) of SR Research.

Apparatus: EyeLink 1000 and its eye video

Both dogs and humans were tested at the Clever Dog Lab,
using the same setup and an EyeLink 1000 eye tracker
(SR Research) with 35-mm camera lens in desktop. The
gaze position of the right eye was recorded at 1000 Hz
from a distance of 50–55 cm to the eye. The pupil was
detected using centroid mode. The eye video, provided by
the system by default, is a live view of the eye-tracking
camera with its lens facing the eye of the subjects. In the
live view, the recorded eye is overlaid with markings of
the detected pupil and corneal reflection and their centers,
as shown in Fig. 1. While tracking each subject’s eye,
the experimenter used the eye-video view to observe the
participant’s eye and surrounding ophthalmic structures in
detail, to examine if they interfere with tracking of the pupil
and corneal reflection centers. When interference occurred,

we made screenshots of the eye-video images for later
examination. Some of these screenshots are presented in the
results section.

Experimental procedure

Before the recording, each dog was trained for staying
still and looking straight at the screen, and also to look
at calibration points (for the details of the training, see
Park et al. 2020). Human participants were not trained, but
simply instructed to refrain from head movements. At the
start of each experiment, we calibrated the right eye of each
participant until a subsequent validation yielded an average
error less than 1.5◦. Most human subjects did not require
repetition of the calibration and validation procedures, yet
for most dog subjects we needed to repeat the procedures
at least one more time. Each trial started with a display
containing a fixation point at the center of the screen.
After the experimenter confirmed the participant looked
at the fixation point, a trial stimulus was presented for
seven seconds, after which the next trial started. After each
block of two trials, the dog or human participants could
move or eat a food reward. The calibration procedure was
performed before every block, and also before the next
trial if there was obvious movement (head rotated or out
of the chinrest). The average accuracy obtained during the
training and the experiment was 0.88◦ for dogs and 0.51◦

(a) Correctly detected pupil and corneal reflection and their cen-

ters of a right eye. The global view on top shows the entire head

of the participant, the tracked right eye is supposed to be close to

the center of the global view window. Below is a magnified view

of the tracked right eye

(b) The left nostril and reflection on the wet rhinarium of the

dog were falsely detected as pupil and corneal reflection and their

centers. The system indicates the uncertainty of the automatically

chosen threshold for corneal reflection with question marks. Nev-

ertheless, the system indicates that the two features were detected

successfully

Fig. 1 Examples of correct (a) versus false (b) detection of pupil and corneal reflection
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for humans. Eye-movement recordings were stored to file
for offline analysis.

Eye-movement event classification

We used two different eye-movement event classification
algorithms to process the raw eye-movement data: the
built-in algorithm of the EyeLink 1000 from SR Research
and the custom Nyström and Holmqvist (2010) algorithm
as implemented by Niehorster et al. (2015) (available
at https://github.com/dcnieho/NystromHolmqvist2010). To
extract the fixations and blinks classified by the EyeLink
algorithm, we used Data Viewer (version 1.11.1) of SR
research. Classification of fixations and blinks through
the Nyström and Holmqvist (2010) algorithm was done
in MATLAB (MathWorks, Natick, MA, USA). Both
algorithms compute instantaneous velocity for each data
sample and then compare a velocity threshold to the
resulting gaze velocity signal to determine where saccades
occurred. Somewhat simplified, both algorithms classify
samples above their velocity threshold as saccades, whilst
the rest of the data below the threshold is further processed
to yield classification as fixations, blinks, and possibly
other events. The important difference between the two
algorithms lies in how they determine the velocity threshold.
In our study, a fixed saccade velocity threshold of 22◦/s
was used for the EyeLink algorithm, which corresponds
to the system’s “psychophysical experiment” configuration.
In contrast, the Nyström and Holmqvist (2010) algorithm
does not use a single pre-determined velocity threshold for
saccade classification. Instead, the algorithm requires users
to set only a high initial velocity threshold, which is then
refined by the algorithm for each trial based on the level of
noise within that trial. The final velocity threshold for a trial
is thus adapted to the data quality of the trial, and will vary
between trials. The initial velocity threshold we used for the
Nyström and Holmqvist (2010) algorithm in this study was
40◦/s. How blinks are classified also differs between the two
algorithms. For more details of each algorithm, the reader
is referred to the EyeLink 1000 user manual (version 1.5.2)
and Nyström and Holmqvist (2010).

Statistical analysis

For all statistical tests, we used (generalized or general
linear) mixed-effects models, in order to take into account
the baseline differences between different individuals
(Bolker et al., 2009). The specifications of the statistical
models are described in Table 3. An α-level of 0.05 was
used to judge the significance of the model parameters
(type III ANOVA using Wald Chi-square tests), of the
difference in the estimated means (two-tailed Z or t tests),
of pairwise comparisons (Lenth et al., 2016) or of the

difference between the distribution functions of the data
(two-sample Kolmogorov–Smirnov and Wilcoxon tests).
Each P value is presented with a corresponding surprisal
(Shannon information) value (S = − log P ) that signifies
the amount of evidence supporting the result of the P value
in terms of how often one gets all heads for the same
amount of coin flip (e.g., For P = 0.05, S = 4.32
which corresponds to having four heads on four times of
coin tosses. For more information, see Rafi & Greenland,
2020). In case of multiple pairwise comparisons results,
P values were adjusted using multivariate t-adjustment.
All tests were conducted in R (R Core Team, 2019)
version 4.0.0 using the lme4, car, effect, emmeans, MuMIn,
glmmTMB, and stats packages. The data and R scripts used
for statistical analysis are available at https://zenodo.org/
deposit/4783359. Plots visualizing the results are presented
with goodness of fit statistics of the tested models (R2

m =
marginal R2, R2

c= conditional R2. S = standard deviation of
the residuals) and significance code: 0 < ‘***’ <0.001 <

‘**’ < 0.01< ‘*’< 0.05.

Analysis of blinks

To compare the blinks of dogs and humans, we used the
blinks output by both algorithms, and statistically tested the
difference between algorithms and species. Blinks shorter
than 80 ms were considered artefacts (e.g., data loss due to
other reasons) and excluded from the statistical analysis.

Analyses to examine the implications of different data
characteristics between species

Artefactual fixations, fixation duration and stability, and
trial velocity thresholds First, we have examined the
frequency of artefactual fixations identified by both
algorithms when run on both dog and human data. For this
analysis, we defined (non-artefactual) fixations as episodes
of gaze data where the participant looked at the same
location on the screen for at least 50 ms (Hessels et al.,
2018). Accordingly, the frequency of artefactual fixations
was operationalized as the percentage of classified fixations
shorter than 50 ms. By default, the Nyström and Holmqvist
(2010) algorithm removes fixations with a duration below
50 ms. This functionality was switched off to enable us to
observe the artefactual fixations produced by the algorithm.
We statistically tested whether both algorithms produced
larger proportion of artefactual fixations when classifying
dog than human data, and whether the difference in the
proportions between algorithms is greater for dog than
human data. Fixations, either artefactual or non-artefactual,
that were not on the stimuli were excluded from the analysis.
We further examined whether the difference between the
algorithms in reported duration of non-artefactual fixations
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was larger for the dog than the human data. To do so,
the artefactual fixations were excluded. We statistically
tested the difference between species in the estimated mean
and distribution of duration of fixations classified by each
algorithm.

Furthermore, we ran two analyses on two additional
measures derived only by the Nyström and Holmqvist
(2010) algorithm in order to make further comparisons on
how similarly or differently the Nyström and Holmqvist
(2010) algorithm classified dog and human data. The first
measure was the bivariate contour ellipse area (BCEA)
measure of the fixations classified by the Nyström and
Holmqvist (2010) algorithm. BCEA of a fixation is the
size of an elliptical area ((◦)2) that encompasses 68% of
the data samples belonging to a fixation (for further details
of its calculation and usage, see Crossland et al. (2002),
Holmqvist et al. (2011, chap 11.26), and Niehorster et al.,
(2020b)). The smaller the BCEA of a fixation is, the more
stable or less dispersed the fixation is. We statistically tested
whether the estimated mean BCEA value of dog fixations
is larger than that of human fixations. The second measure
was the velocity thresholds the Nyström and Holmqvist
(2010) algorithm used for each trial to classify the data.
We statistically tested the difference between species in
the estimated mean velocity threshold across trials and the
distribution of the velocity thresholds. The amount of data
included in the data analysis is shown in Table 4.

Three common fixation-related dependent variables
Besides fixation duration, many eye-tracking studies also
report one or multiple of the following three fixation-
related dependent variables: time to first fixation, total
fixation count, and total fixation duration. They are directly
influenced by the result of fixation classification that, as
addressed by the previous analyses, is dependent on how
well the applied algorithms cope with lower data quality
and eye-movement characteristics different to those of
human adults. Therefore, we have examined the effects of
species, choice of algorithm and their interaction for these
fixation variables. For this analysis, trials that had no fix-
ation on the stimulus were excluded, and also artefactual
fixations were excluded in the calculations of total fixation
count or total fixation duration. Time to first fixation is
the measure of duration subjects took to make their first
fixation on the stimulus in each trial. Eight trials of dogs
were further excluded from the analysis of this variable,
because the dogs in these trials had been fixating on the
stimulus area before the stimulus appeared. Total fixation
count and total fixation duration are the count and duration
measures of all fixations made on the stimulus in each trial,
respectively. The amount of data included in the analysis is
shown in Table 4.
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Table 4 The amount of data used in the analysis of lower data quality implications and the analysis of common fixation-related dependent variables

Analysis Model Algorithm Dog Human Data unit

Blinks Duration of a blink EyeLink 180 433 Number of

Nyström and Holmqvist (2010) 220 502 blinks

Duration of a fixation EyeLink 1268 5212 Number of fixations

Implications of Nyström and Holmqvist (2010) 940 4772

data characteristics BCEA Nyström and Holmqvist (2010) 940 4772 Number of fixations

Velocity Threshold Nyström and Holmqvist (2010) 335, 93% 360, 100% Number of trials, percentage
(out of 360 trials)

Time to first fixation EyeLink 303, 84% 360, 100%

Nyström and Holmqvist (2010) 287, 80% 360, 100%

Three fixation-related Total fixation count EyeLink 303, 84% 360, 100% Number of trials,

variables Nyström and Holmqvist (2010) 295, 82% 360, 100% percentage (out of 360 trials)

Total fixation duration EyeLink 303, 84% 360, 100%

Nyström and Holmqvist (2010) 295, 82% 360, 100%

Results

Dog-uniquemorphology interferes with pupil
and corneal reflection detection performance
of a P–CR system

We have observed that certain morphological characteristics
of dogs interfere with the performance of a P–CR system,
mostly by blocking the view of the pupil and corneal
reflection or interfering with reliable determination of their
centers. In this section, we describe in detail how various
morphological characteristics interfere with eye tracking,
and present example eye-video images collected from some
of the eight dogs that were excluded from data collection.
For comparison, Fig. 1a shows the example of properly
detected pupil and corneal reflection and their centers in
a dog without problematic morphological characteristics.
Note that for all example eye-video images, the eye on the
right side of the images is the right eye of a dog.

Snout

Unlike humans, dogs possess a snout or muzzle, which
typically includes their nose, mouth, and parts of the upper
and lower jaws. The tip of the muzzle is the rhinarium, a
non-hairy nose surface around the nostrils which is kept wet
in most healthy dogs (Kröger & Goiricelaya, 2017). The
width and length of the snout and the eye laterality (position
of the eyes in the skull) vary extensively across breeds.
In brachycephalic (short-nosed) dogs, such as the pug, the
snout is almost absent, but in dolichocephalic (long-nosed)
dogs, such as the grey hound, it is long and thin (McGreevy
et al., 2004; Roberts et al., 2010). We have observed that

long snouts may block the view of the eye-tracking camera,
especially when the dog moves its head slightly backwards
or upwards in the chinrest. Such blocking of the camera
view made the system lose track of the pupil or corneal
reflection. In rare occasions, a nostril and the wet surface
of the rhinarium could be falsely detected as the pupil and
corneal reflection, if the dog in the chinrest moves even
further backwards. Surprisingly, the system still indicated
successful detection of their centers (Fig. 1b).

Eye laterality

While the eyes of most humans and non-human primates are
forward-facing, the eyes of dogs are located in their skull
with different laterality (Here, we use the term laterality to
refer to the location of the eyes in the skull i.e., how laterally
the eyes are positioned relative to the sagittal plane of the
skull). The eyes of mesocephalic dogs have an average
laterality of 20◦ (Miller & Murphy, 1995), and those
of brachycephalic dogs are more laterally directed. Even
within mesocephalic dogs, each dog breed or individual has
slightly different laterality of the eyes. To adjust to this, we
needed to set the camera angle (the angular orientation of
the eye-tracker camera relative to the horizontal and vertical
plane on which it sits) for each dog at the beginning of and
also during sessions, so that the camera lens faces the right
eye of a dog optimally. This was checked by monitoring
the eye-video output. If such adjustments happened during a
session, e.g., due to slight head movement, we ran additional
calibrations. These adjustments had to be made much more
frequently than for human participants, for whom a given
setup could be easily used for another individual without
further adjustment.
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Circular and small eye cleft

The extent to which the pupil can be tracked by a P–CR
system highly depends on the shape of participants’ eye
cleft (palpebral fissure). In both dogs and humans, there
are individuals with droopy upper eyelids, characterized by
relatively low height of the opening between the eyelids. In
those individuals, as shown in the middle and right images
in Fig. 2, their upper eyelid can cover part of the pupil,
leading to misdetection of the pupil center by the system.
Even though the system might indicate successful detection
of the partly blocked pupil and its center as shown in the
right image of Fig. 2, the calculated pupil center is incorrect,
because its calculation is based not on the entire, but on
a part of the pupil. This consequently introduces an offset
in the estimated gaze location (Holmqvist et al., 2011).
Importantly, we have observed that the dog eye cleft is more
likely to produce such pupil coverage than that of humans.
The eye cleft of dogs is circular as in most non-human
animal species. Humans, on the other hand, have a unique
eye cleft that is elongated in the horizontal direction. This
provides relatively more freedom for the human eye balls
to move sideways without having part of the pupil covered
by the eyelids (Kobayashi & Kohshima 1997, 2001). The
circular eye cleft of dogs lacks such spatial freedom as
shown in the right image of Fig. 2 where the nasal part
of the upper eyelid is blocking part of the pupil. Also, the
pupil of dogs seems to cover a relatively large area of the
eye, likely because the size of their eye cleft is smaller than
that of humans (we were unable to find a comparison of
pupil size between humans and dogs). In individuals having
particularly small eye cleft, the pupil could be covered even
by their lower eyelid (Fig. 3). However, we cannot exclude

the possibility that the detected pupil area of the individual
dog in Fig. 3 is actually bigger than that of other dogs, either
because the pupil is actually bigger, or because part of the
iris is erroneously included in the pupil area.

Third eyelid and eye mucus on the cornea

Another characteristic unique to dogs that can cause
blockage of the pupil is the third eyelid (i.e., nictitating
membrane) (Fig. 4). The third eyelid is dark-brown and
located in the inferior conjunctival sac, between the cornea
and the lower eyelid. As shown in the first image of Fig. 4,
in most dogs, it briefly appears when they blink and much
of it disappears when the blink ends leaving only a very
small part (outer edge) of it visible near the nasal corner of
the eyelids. When the third eyelid is inflamed, the condition
called ‘cherry eye’, it is highly visible without blinking as
it gets swollen, red, and protrudes out. However, in a few
dogs we have observed that the third eyelid is highly visible
without blinking or obvious inflammatory conditions. Such
highly visible third eyelid could cover part of the pupil as
shown in the second image of Fig. 4. Similarly to what
happens with the droopy upper eyelid or small eye cleft, the
covered pupil can either lead to track loss or to misdetected
pupil center location as in Fig. 5.

Moreover, the third eyelid could interfere with the
detection of corneal reflection. As a gland, the surface of
the third eyelid is normally wet and covered with mucus
(Maggs et al., 2013; Petersen-Jones & Crispin, 2002). As
the wet surface on the third eyelid is typically reflective,
one or several thresholded reflections may appear on the
third eyelid. The first three images in Fig. 5 demonstrate the
extra reflections on the third eyelid. Such extra reflections

Fig. 2 The left eye-video image shows correctly detected pupil and
corneal reflection centers. In the image in the middle, the upper part
of the pupil is slightly covered by the nasal part of the upper eyelid.
Despite that the pupil center and corneal reflection are indicated, the
system indicates a failure of pupil and corneal reflection detection.

In the right image, the left part of the pupil is covered by the nasal
part of the upper eyelid. The auto-threshold algorithm indicates the
uncertainty of the chosen threshold values by means of the question
marks
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Fig. 3 The pupil of a dog with relatively small eye cleft is covered by
the lower eyelid

may be potentially misidentified by the system as the real
cornea reflection and become the source of artefactual eye
movements (Holmqvist et al., 2011). On the fourth image of
Fig. 5, where the viewing angle of the eye is extreme, the

pupil is uncovered, yet the reflection on the third eyelid, on
the left side of the image, is falsely detected as the corneal
reflection.

Dark eyelid margins and hair

In many dog breeds, such as the Border Collie and the
Beagle, the eyelid margins are dark-colored and have much
heavier pigmentation than that of other parts of their faces
(Fig. 4). In contrast, the color of human eyelid is similar to
that of other facial parts (Petersen-Jones & Crispin, 2002).
As shown in Fig. 6a, we have observed that because of the
dark color, the eyelid margins, especially the upper eyelid
margin, of dogs could fall below the pupil threshold of the
system, similarly to the pupil. Although the thresholded
eyelid margin itself could be tolerated, when the distance
between the pupil and the eyelid margin is small enough,
more likely due to dog’s small eye cleft, they can become
merged as shown in Fig. 5 (first and third images) and
Fig. 6a. Such merging of the pupil and part of the eyelid
margin often caused pupil detection failure. In some cases,
the system indicated that the pupil was successfully detected
despite the merging (Fig. 6a). However, similarly to the
blocked pupil, the pupil center data based on the pupil
merged with the eyelid margin is incorrect and causes an
offset in the estimated gaze location. Similar problems have
been reported in human studies, for instance when subjects
wear dark eye makeup products, such as eyeliner or mascara
(Nyström et al., 2013).

Dogs usually have eyelashes pointing upward or down-
ward in upper or lower eyelid margins, respectively. Due
to their outward directions, the eyelashes usually do not
interfere with detection of the pupil or cornea reflection in

Fig. 4 Each image shows a left eye of a dog with a third eyelid and
dark eyelid margins. The left image shows a typical example of a third
eyelid that can be seen in most dogs where only the dark brown outer
edge of the third eyelid is visible in the nasal corner. However, in some
dogs, as in the dog of the right image, not only the dark brown outer
edge but also the inner part of the third eyelid in light salmon color

is visible which can also cover part of the pupil. Note that the eyelid
margins of both dogs are dark brown. Photo/Image courtesy: the first
image is acquired royalty free from www.shutterstock.com. The sec-
ond image is reproduced with permission from Dr. Noelle McNabb at
www.animalvisioncare.com
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Fig. 5 In the first three images, the lower nasal part of the pupil is covered by the third eyelid. There are three extra infrared light reflections in
diverse sizes. In the fourth image, when the gaze of the dog is more temporally displaced, the reflection on the third eyelid is detected as a corneal
reflection, while an elongated reflection appears on the other side of the cornea

dogs. However, dogs have hair of similar thickness also on
their nose, and other areas near their eyes. In some dogs,
thick and rigid hair on their nose or the downward point-
ing hair on their forehead interrupted the view of the camera
as shown in Fig. 6b. These pieces of hair lead to incom-
plete thresholding of the pupil which causes an offset in the
estimated gaze location.

Other conditions

There are also certain ophthalmic conditions which can
cause pupil blockage similarly to droopy upper eyelids.
Lagophthalmos is a condition, in which the eye cannot
be fully closed (Carrington et al., 1987; Nakajima et al.,
2011). It is more prevalent in some brachycephalic dog

(a) The dark eyelid margin of

the upper eyelid falls below the

pupil threshold and is merged

with the thresholded pupil. The

system indicates successful de-

tection of the pupil regardless.

(b) The facial hairs of the dog

cover part of the pupil and inter-

fere with thresholding of the en-

tire pupil. Nevertheless, the sys-

tem indicates that detection of

the pupil is successful.

Fig. 6 Eyelid identified as pupil (a) and hair covering the pupil (b)
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breeds which have a shallow eye orbit (Gelatt, 2018).
While complete closing of the eyes, blinking, is effectively
detected by most current eye-tracking system algorithms,
partial blinking is not. Partial blinks appear as sudden
downward eye movement in the eye-tracking data and can
be falsely detected as saccades. Additionally, as shown in
Fig. 7, we have observed that decrease in the level of
attention or alertness in dogs also causes partial eyelid
closure as similarly observed in humans (Dasgupta et al.,
2013). Such condition in dogs must be prevented if eye
tracking is to be successful, yet recognizing it might
be difficult if the eye tracker does not provide the eye
video.

Dogs blinked less often than humans, but their blink
was longer

To quantify whether and how dogs and humans blink
differently, potentially thereby affecting data quality, we

Fig. 7 The dog eye is partially closed due to decreased arousal induced
by exhaustion and hot weather. The system indicates that the pupil and
corneal reflection are not detected

have compared the rate (per minute) and duration of human
and dog blinks classified by the two algorithms. As can be
seen in Fig. 8, we found that independent of the algorithm
used, dogs on average blinked significantly less frequently
than humans per trial (EyeLink: Z = 3.01, p = .009, S =
6.8; Nyström and Holmqvist (2010): Z = 2.86, p = .015,
S= 6.06). The estimated mean number of blinks per minute
classified by the EyeLink algorithm was 3.43 (SE = 0.09)
for dogs and 8.31 (SE = 0.20) for humans per minute, while
for the Nyström and Holmqvist (2010) algorithm those were
4.11 (SE = 0.10) for dogs and 9.69 (SE = 0.23) for humans.
However, the number of blinks between algorithms did not
differ in either species.

On the other hand, the average duration of dog blinks
classified by both algorithms was significantly longer than
that of humans (EyeLink: Z = 5.89, p <.0001, S = 26.35;
Nyström and Holmqvist (2010): Z = 2.68, p = .03, S= 5.06)
(Fig. 9). The estimated mean duration of blinks classified
by the EyeLink algorithm was 305 ms (SE = 29.8 ms)
for dog and 143 ms (SE = 12.1 ms) for human blinks,
while those of the Nyström and Holmqvist (2010) algorithm
were 378 ms (SE = 33.9 ms) for dog and 274 ms (SE
= 22.4 ms) for human blinks. Conversely, the estimated
mean duration of both dog and human blinks differed
significantly between the two algorithms, blinks classified
by the EyeLink algorithm were significantly shorter than
blinks classified by Nyström and Holmqvist (2010) (dog
blinks: Z = 3.46, p = .002, S = 8.97; human blinks: Z =
16.38, p < .0001, S > 46.51). The algorithm effect size for
human blinks was medium to large, while that of dog blinks

Fig. 8 Each bar in the histograms represents the count of trials that had
the given number of blinks denoted on the x-axis. Solid square symbols
and error bars depict marginal means and 95% confidence intervals
(±1.96 ∗ SE), respectively. Dogs on average blinked significantly less
often than humans per trial
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Fig. 9 Each violin plot, demonstrating kernel probability density,
depicts the distribution pattern of human or dog blink duration data
classified by either algorithm. Note that blinks shorter than 80 ms are
not included in the analysis. Nine data points with duration over 2000
ms are removed for better visualization of the remaining data. Solid
symbols (a triangle or a circle) and error bars overlaid on the violin
plots depict marginal means and 95% confidence intervals (±1.96 ∗
SE), respectively. Background symbols in softened color indicate data
used in the model

was small (dog blinks: d = 0.24, 95% CI [0.10,0.37]; human
blinks: d = 0.72, 95% CI [0.63,0.81]).

Fixation classification and fixation-relatedmeasures
are more susceptible to the choice of algorithm in
dogs than in humans

Artefactual fixations

Figure 10 shows the proportions of artefactual (< 50
ms) fixations in dog and human data classified by the
two algorithms. Statistical tests showed that species,
algorithm and also their interaction significantly affected
the proportion of artefactual fixations in the algorithm
output (interaction: X2(1) = 14.66, p < .0001, S = 12.92).
The EyeLink algorithm produced a larger increase in
artefactual fixations when classifying dog data than human
data compared to the Nyström and Holmqvist (2010)
algorithm. That is, although the proportion of artefactual
fixations was higher for both algorithms when classifying
dog data (X2(1) = 14.82, p < .0001, S = 13.04), pairwise
comparison results showed that this difference between the
species was significant only for the EyeLink algorithm (Z
= 3.85, p = .0004, S = 11.29). On the other hand, across
species the EyeLink algorithm produced a higher proportion
of artefactual fixations than the Nyström and Holmqvist
(2010) algorithm (X2(1) = 21.86, p < .0001, S = 18.38).
However, pairwise comparisons showed that this difference
between algorithms was only significant for dog data with
effect size larger than one standard deviation (Z = 4.68, p <

.0001, S = 16.55, d = 1.2, 95% CI [0.66, 1.78]).

Fig. 10 The lower and upper hinges of the notched box plots depict
25% and 75% inter-quantile ranges (IQRs) of dog and human data,
respectively. The ranges of their upper and lower whiskers represent
observations that belong within ± 1.5 * IQR from the hinges,
respectively. Each notch of a box plot displays a confidence interval
around the median (solid line in color matching each algorithm which
is based on the median ± 1.58 * IQR/

√
n. Solid shapes (a triangle or a

circle) and error bars overlaid on the box plots depict marginal means
and 95% confidence intervals (±1.96 ∗ SE), respectively. Individual
data points (one data point per subject) are indicated by triangles and
circles in softened color

Fixation duration and distribution of the duration

As can be seen in Fig. 11, statistical tests showed that
species, algorithm and also their interaction significantly
affected duration of fixations (interaction: X2(1) = 25.65, p
< .0001, S = 21.22). Fixations classified by the Nyström
and Holmqvist (2010) algorithm were significantly longer
than fixations classified by the EyeLink algorithm (X2(1) =
41.79, p< .0001, S = 33.2). However, pairwise comparisons
results showed that this difference between algorithms was
significant only for dog fixations (Z = 6.47, p < .0001, S =
31.61) with effect size d = 0.28, 95% CI [0.20, 0.37]. The
average duration of a dog fixation classified by the Nyström
and Holmqvist (2010) algorithm was 1529 ms (SE = 143
ms), while that of the EyeLink algorithm was 1159 ms (SE
= 107 ms). For human fixations, those were 413 ms (SE =
36 ms) for the Nyström and Holmqvist (2010) algorithm,
and 398 ms (SE = 34 ms) for the EyeLink algorithm.

Further, we have compared the duration distribution of
the fixations between the two algorithms. The results of
two-sample Kolmogorov–Smirnov and Wilcoxon tests were
significant only for dog fixation duration data revealing
that the dog fixations classified by the two algorithms do
not belong to the same distribution function (Kolmogorov-
Smirnov: D = 0.14, p < .0001, S = 29.73; Wilcoxon:
W = 493834, p < .0001, S = 37.43). Specifically, as
demonstrated by the violin plots in Fig. 11, the data
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Fig. 11 Each violin plot, demonstrating kernel probability density,
depicts the distribution of fixation duration for human or dog data
classified by either algorithm. Note the difference in the widths of the
dog plots between two algorithms especially in the range below 500
ms. Solid shapes (a triangle or a circle) and error bars overlaid on
the violin plots depict marginal means and 95% confidence intervals
(±1.96 ∗ SE), respectively. Individual data points are indicated by
triangles and circles in softened color. Note that fixations shorter than
50 ms were not included in the analysis

produced by the EyeLink algorithm had a relatively larger
proportion of dog fixations in shorter duration range (< 500
ms) than the Nyström and Holmqvist (2010) algorithm.
Panel B in Fig. 12 shows an example of such a case, where
the EyeLink algorithm produced more and shorter fixations
than the Nyström and Holmqvist (2010) algorithm for the
same input data.

Fixation stability

The bivariate contour ellipse area (BCEA) values of dog
fixations were on average significantly larger than those of
human fixations (Z = 6.84, p < .0001, S = 36.84; dogs:
M = 0.13 deg2, SE = 0.02 deg2; humans: M = 0.02 deg2,
SE = 0.004 deg2) indicating that the eye-movement data
samples that comprise a dog fixation are significantly more
dispersed, i.e., less stable than those that comprise a human
fixation (Fig. 13). There was also more variation in BCEA
values of dog fixations than human fixations (dogs: SD =
0.29 deg2, humans: SD = 0.03 deg2).

Velocity thresholds

The mean velocity thresholds the Nyström and Holmqvist
(2010) algorithm used for the two species were very similar
(for human data: 28.7 ◦/s, SE = 2.16 ◦/s; for dog data: 27.7
◦/s, SE = 2.24 ◦/s), yet the thresholds used by the Nyström
and Holmqvist (2010) algorithm showed a slightly greater
range for dog data (dog data: from 14.78 to 72.78 ◦/s;

human data: from 13.05 to 69.3 ◦/s), and more trials of dogs
(22 trials) had velocity thresholds over 50 ◦/s than humans
(eight trials) as shown in Fig. 14. Therefore, two-sample
Kolmogorov–Smirnov and Wilcoxon tests revealed that the
thresholds used for dog and human data do not belong to
the same distribution function (Kolmogorov–Smirnov: D =
0.16, p = .0003, S = 11.81); (Wilcoxon: W = 60015, p =
.004, S = 7.97).

Three common fixation-related dependent variables

For both algorithms, the time to first fixation of dogs was
significantly larger than that of humans (EyeLink: Z = 3.29,
p = 0.003, S = 8.38; Nyström and Holmqvist (2010): Z =
4.18, p = 0.0001, S = 13.29) (Fig. 15A). Overall, time to first
fixations classified by Nyström and Holmqvist (2010) was
larger, yet the difference between algorithms was significant
only for dog fixations (Z = 3.09, p = 0.007, S = 7.16). The
estimated mean latency of dog first fixations classified by
the Nyström and Holmqvist (2010) algorithm was 705 ms
(SE = 90.6 ms), while that of the EyeLink algorithm was
560 ms (SE = 71.6 ms). For human fixations, those were 336
ms (SE = 41.1 ms) for the Nyström and Holmqvist (2010)
algorithm, and 313 ms (SE = 38.3 ms) for the EyeLink
algorithm.

For both algorithms, the total fixation count of dogs
was significantly smaller than that of humans (EyeLink: Z
= 11.75, p < .0001, S = 87.59; Nyström and Holmqvist
(2010): Z = 13.32, p < .0001, S = 117.12) (Fig. 15B).
Overall, the fixation count based on the EyeLink algorithm
fixations was significantly higher for both species, yet
comparing the effect sizes, the algorithm difference of only
dog fixations had practical significance (dogs: Z = 6.37, p <

.0001, S = 30.78, d = 0.28, 95% CI [0.19, 0.36]; humans: Z
= 4.40, p < .0001, S = 14.9, d = 0.09, 95% CI [0.05, 0.13]).
The estimated mean fixation count of dogs classified by the
EyeLink algorithm was 4.01 (SE = 0.32), while that of the
Nyström and Holmqvist (2010) algorithm was 3.04 (SE =
0.25). For human fixations, those were 14.08 (SE = 1.02)
for the EyeLink algorithm, and 12.89 (SE = 0.93) for the
Nyström and Holmqvist (2010) algorithm.

The total fixation duration of dogs was not significantly
lower than that of humans for both algorithms (Fig. 15C).
Also, the difference between algorithms was not significant
for both species. The estimated mean total fixation duration
of dogs classified by the EyeLink algorithm was 4642 ms
(SE = 306 ms), while that of the Nyström and Holmqvist
(2010) algorithm was 4548 ms (SE = 300 ms). For humans,
those were 5588 ms (SE = 359 ms) for the EyeLink
algorithm, and 5320 ms (SE = 342 ms) for the Nyström
and Holmqvist (2010) algorithm. We have further compared
the distribution functions of the total fixation duration

1528 Behavior Research Methods (2023) 55:1513–1536



Fig. 12 Panels A and B demonstrate an example of how similarly
(panel A) or differently (panel B) the EyeLink and Nyström and
Holmqvist (2010) algorithms classified eye-movement events in the
same data depending on the quality of the data being classified. The
two panels, composed of a scanpath plot (top half ) and a horizontal
gaze coordinate plot (bottom half ), show data of a trial for a differ-
ent dog. As shown in the lower plot of panel A, when classifying
data of good quality, the classified fixation results of both algorithms
were almost identical. On the other hand, when the data quality is
lower (panel B), the results differed greatly: the EyeLink algorithm

classified many more and much shorter fixations (eight fixations in the
range of 50 to 160 ms and ten artefactual fixations shorter than 50 ms)
than the two fixations (240 and 6672 ms) classified by the Nyström and
Holmqvist (2010) algorithm. The velocity thresholds (◦/s) Nyström
and Holmqvist (2010) algorithm used for each trial and the fixed Eye-
Link algorithm threshold (22 ◦/s) are indicated in the legend. A blue
and a red star in each scanpath plot mark the start and end data point of
each scanpath, respectively. The horizontal coordinate plots are labeled
with the onset of the fixations identified by each algorithm, which
correspond to the bar segments at the bottom

data of each algorithm between humans and dogs, and
also the data of each species between the two algorithms.
Two-sample Kolmogorov-Smirnov tests revealed that the
data of dogs and humans do not belong to the same
distribution function regardless of the algorithms used for
producing the data (EyeLink: D = 0.29, p < .0001, S =
38.54; Nyström and Holmqvist (2010): D = 0.26, p <

.0001, S = 30.9). Furthermore, within each species, the
total fixation duration data of the EyeLink and Nyström
and Holmqvist (2010) algorithms also did not belong to the
same distribution function (dogs: D = 0.12, p = 0.04, S =
4.64; humans: D = 0.25, p < .0001, S = 30.63). As Fig. 15C
shows, while most data of humans were aggregated between
5000 ms and 7000 ms, such aggregation was not seen in dog
data which is relatively fairly distributed from 0 to 7000 ms.
Similarly, dog data had many more data points near zero and
below 2000 ms than human data.

Discussion

Our results show that several morphological characteristics
of the face of dogs interfere with the image processing and
gaze estimation operations of P–CR eye trackers, thereby
increasing the chances of data quality reduction in dogs,
as compared to humans. Furthermore, we found that dogs
blinked less often than humans but their blink was longer.
Whether for morphological reasons, due to more head
movement, or difficulties in calibration, our results support
the indications of lower quality in dog eye-tracking data
reported by previous studies and confirm that the quality of
dog eye-tracking data is overall lower than that of humans.
Classifying fixations with dog data was more sensitive to
algorithm choice. That is, there were significant between-
algorithm differences for dog data, but not for human data
in the two fixation classification outputs, proportion of
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Fig. 13 Each violin plot, demonstrating kernel probability density,
depicts the distribution of BCEA values calculated for human and
dog fixations classified by the Nyström and Holmqvist (2010)
algorithm. Solid symbols and error bars overlaid on the violin plots
depict marginal means and 95% confidence intervals (±1.96 ∗ SE),
respectively. Background symbols indicate data used in the model.
For visualization purpose, one dog fixation with BCEA value over 5
pixels2 is not shown in the plot

artefactual fixations and average duration of a fixation.
Furthermore, most of our fixation-related measures were
affected by the choice of algorithm: time to first fixation
and total fixation count differed between our two algorithms
in dogs but not in humans. Two measures derived from the
Nyström and Holmqvist (2010) algorithm that reflect noise
in data further supported lower quality of dog data compared
to human data. Dog fixations were less stable than human
fixations, and the Nyström and Holmqvist (2010) algorithm
needed to use many more extreme velocity thresholds with
dog data than with human data. In the following, we discuss
our findings in detail.

Subject selection and data collection

Using the eye-video of a P–CR eye-tracking system, we
have observed that several morphological characteristics
of dogs interfere with the performance of the eye
tracker, mostly by blocking the view of the pupil
or corneal reflection or by interfering with reliable
determination of their centers. Our results demonstrate
the importance of recognizing and familiarizing oneself
with these morphological characteristics and their impact
before conducting an eye-tracking experiment with dogs to
be able to avoid their detrimental effects on data quality
as much as possible. We recommend experimenters to
thoroughly examine each dog for the characteristics when
they recruit dogs for eye-tracking experiments. Note that
while we used the eye-video images to examine and show

Fig. 14 Each violin plot, demonstrating kernel probability density,
depicts the distribution of velocity thresholds the Nyström and
Holmqvist (2010) algorithm used to classify eye-movement events of
dog and human data per trial. The lower and upper hinges of the
notched box plots depict 25% to 75% inter-quantile ranges (IQRs) of
dog and human data, respectively, with the ranges of their whiskers
representing observation greater than or equal to the hinges ± 1.5 *
IQR. Each notch of a box plot displays a confidence interval around the
median which is based on the median ± 1.58*IQR/

√
n. Solid shapes

(a triangle or a circle) and error bars overlaid on the violin plots
depict marginal means and 95% confidence intervals (±1.96 ∗ SE),
respectively. Shapes in softened color in the background indicate
threshold used for classifying the data of each trial. Note the wide
range of variety in the thresholds the Nyström and Holmqvist (2010)
algorithm used for both species data. The black dashed line indicates
the velocity threshold of the EyeLink algorithm: 22◦/s

how the characteristics could cause tracking interruptions,
a thorough naked eye examination should in practice be
sufficient for spotting problematic morphology in most
cases.

In practice, it would be best to recruit dogs with
shorter and more downward-pointing snout, less droopy
eyelids, bigger eye clefts, less-spiky or shorter facial hair,
lighter-colored eyelid margins, and minimally visible third
eyelid. Additional preparations may also be necessary
for successful eye tracking, or improving the quality of
the recorded data. For example, similar to eye make-up
removal that is commonly practiced in human eye tracking,
researchers could carefully flush out excess mucus on the
eye surface of dogs and clean the facial area surrounding
the eyes using sterile buffered saline and gauze, possibly
with support of a veterinarian. Further, some of the spiky
and long hairs on the snout could be cautiously cut away
if they interfere with the eye tracker’s view of the dog’s
eyes. It is plausible that tracking both eyes of a dog
subject at the same time is difficult when the dog subject
is brachycephalic (short-nosed), even without obvious
physical characteristics that could be expected to cause track
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Fig. 15 Each violin plot, demonstrating kernel probability density,
depicts the distribution pattern of one of the three fixation-related
measures per trial (plot A: Time to first fixation; plot B: Total fixation
count; plot C: Total fixation duration) derived from dog or human
fixations classified by either algorithm. The black dashed line in panels
A and C indicates stimulus presentation duration. Solid symbols (a
triangle or a circle) and error bars depict marginal means and 95%
confidence intervals (±1.96 ∗ SE), respectively. Smaller symbols of
the same shape in softened color in the background indicate trial data
used for the analysis. Note that fixations shorter than 50 ms were not
included in the analysis

loss, because of the generally more laterally oriented eyes
in such dogs. An inability to conduct binocular recordings
would limit investigations of binocular eye movements such
as vergence. Further, we note that adjusting the luminance of
the stimulus might be beneficial to eye-tracking data quality.
Considering that the pupils of dogs are relatively large
compared to the size of their eye cleft, using bright stimuli
and recording in a relatively well-lit environment would
make the pupil smaller and, thus reduce the chance that
the pupil is (partially) covered by surrounding ophthalmic
structures (Drewes et al., 2014; Holmqvist, 2015). This
has been shown also to reduce variability in eye-movement
data of human adults (Hooge et al., 2019). However, note
that it is important to keep the luminance of the screen
and the illumination of the environment the same during
the calibration and validation procedures and the stimulus
viewing task to prevent pupil size-related offsets in the
estimated gaze location (Wyatt, 2010; Drewes et al., 2012;
Choe et al., 2016; Hooge et al., 2021).

We have also shown for the first time that dogs blink
differently than humans. Dogs were unlikely to blink during
our seven-second long recording, while humans likely
blinked at least once. The average duration of dog blinks
was however longer than that of humans. The results suggest
that dog data may be less likely affected by blink incidences
than human data as long as stimulus presentation remains
as short as maximum several seconds. At the same time
we found bigger variation in blink duration among dogs
than humans. This may in turn be one factor affecting the
greater variability in the amount of data loss and the number
classified eye movements for dogs compared to humans. On
the other hand, as we have discussed in the subsection Other
conditions in the Result section, dogs are known to make
partial blinks that can be falsely classified as saccades by
current algorithms. Filtering out partial blinks from the data
may be possible by detecting rapid changes in the pupil size
signal provided by most P-CR eye trackers.

Additionally, unlike humans, dogs do not have sweat
glands on most parts of their skin. Dogs thus mainly pant
when they need to reduce their body temperature. This
makes recording eye-movement data from dogs at relatively
high environmental temperatures problematic, as the head
of the dog would constantly slightly move up and down,
inducing potential inaccuracies in the eye-movement data.
We thus advise to avoid recording during warm weather
conditions, or take measures to maintain cooler body
temperature during the experiment, since this would help
reduce their panting and thus this head movement.

Many dog eye-tracking studies, including ours, have
used a chinrest. The effect of a chinrest on data quality
has not been systematically investigated with dogs. In
our experience using a chinrest with dog subjects was
useful, because it helped to minimize lateral translations and
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rotations of the dog’s head, which are known to negatively
affect data quality in human participants (e.g., Hessels
et al. (2015) and Niehorster et al. (2018)). To the best
of our knowledge so far only one study has explored the
effect of using a chinrest on the quality of data recorded
from highly experienced human participants who were
instructed to sit still. While this study reported mixed results
(Holmqvist et al., 2021), we expect that for dogs having a
chinrest is likely more important than for humans since it
is significantly more difficult to instruct dogs to minimize
their head movement.

While our study used a stationary eye-tracking system,
head-mounted eye-tracking systems which have success-
fully been used with cats (Einhauser et al., 2009) and
non-human primates (Mennie et al., 2014) might be a use-
ful alternative to stationary systems for doing eye tracking
with dogs. Already some systems have a supplementary
head tracking option, yet the head-mounted systems would
be especially useful if researchers want to record eye move-
ment of dogs that engage in exploratory behavior outside
of the experimental room. There has been one experimen-
tal attempt to develop such devices which used an existing
infrared eye-tracking system and placed it on a muzzle with
minor modification (Williams et al., 2011), although we are
not aware of further published studies that report data col-
lected using the system. Head tracking-only systems were
also developed for tracking a dog’s field of view (Rossi
et al., 2014), however we see such techniques as more suit-
able for studying the gaze behavior of animal species such
as owls that make only head movement for shifting gaze in
contrast to dogs and humans (Ohayon et al., 2008).

Analysis of dog eye-tracking data

Understanding the impact of data quality on eye-tracking
data analysis

Our results show that dog data are more susceptible to
algorithm choice because of its relatively lower quality
compared to human data. First, only for dog data the
EyeLink classification algorithm produced a significantly
higher proportion of artefactual (<50 ms) fixations than
the Nyström and Holmqvist (2010) algorithm, while for
human data this outcome did not depend on the algorithms.
Excluding these artefactual fixations, we then examined the
duration of the classified fixations. Similar to the result
of proportion of artefactual fixations, only for dog data
a difference between algorithms occurred. The results of
fixation stability and velocity threshold, the two measures
derived from Nyström and Holmqvist (2010) algorithm,
further support that the quality of dog data is lower than
human data. First, dog fixations classified by Nyström

and Holmqvist (2010) algorithm were more dispersed than
human fixations. This finding that dog data is noisier is
likely at least partially because dogs make more frequent
head movement than humans or due to their unique eye
morphology. On the other hand, the higher BCEA values
may indicate that dog fixations have more fixational drift
than human fixations, but we cannot rule out that it is
due to dogs making more head movements during the task
despite being positioned on a chinrest. Further investigation
of fixational eye movement in dogs needs to clarify to
what extent higher dispersion in dog fixations reflects true
species-specific differences in eye-movements of dogs and
humans.

Second, the results of velocity thresholds that the
Nyström and Holmqvist (2010) algorithm used for classi-
fying dog and human data showed that, while the average
thresholds for dog and human data did not differ signif-
icantly, there were many more extreme thresholds (over
50 ◦/s) for dog than human data. As the Nyström and
Holmqvist (2010) algorithm adaptively uses higher veloc-
ity thresholds for noisier trial data, the finding indicates that
dog data had more trials that were noisier than human data.

Wass et al. (2014) have shown how differences in data
quality influence the results of key dependent variables in
eye-tracking studies. One of the dependent variables they
examined was the time to first fixation, and they suggested
that more data loss, which often occurred in their infant
subjects, may manifest as longer latency. Our results of
time to first fixation supports this. Visually examining the
trial data in Fig. 15A, it can be noticed that the latency
of the first fixations is largely concentrated on the lower
range (<500 ms) for both species, yet dogs have more first
fixations dispersed in higher latency range than humans.
This seems to indicate that the larger estimated mean time to
first fixation of dogs is biased by the data in higher latency
range rather than that dogs overall make first fixations more
slowly than humans. It is unclear if the data in higher latency
range is due to lapses of attention or data quality in dogs.
However, it should be noted that our latency measure has
the limitation that dogs, in contrast to humans, could not
be clearly instructed to start each trial with fixating on the
center of the screen.

Certain fixation-related measures are inevitably influ-
enced by the average duration of the fixations (Orquin &
Holmqvist, 2017). One of them is total fixation count, which
one would expect to be lower for trials of constant dura-
tion if the average fixation duration is higher. We indeed
saw this in our data, where the total fixation count of dogs
was significantly lower than that of humans who have sig-
nificantly shorter fixations than dogs. Also, the pattern of
statistical results for total fixation count was identical to that
for fixation duration i.e., while the counts of both algorithms
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for dogs were significantly lower than those for humans,
only dogs’ total fixation counts were significantly differ-
ent between algorithms. The two fixation-related dependent
variables above are popularly used in eye-tracking studies
as key dependent variables in combination with areas of
interest (AOIs) on the stimuli planned by researchers, as the
results of the variables are used to gauge subjects’ atten-
tional status on the AOIs. Our results show how important
it is to put more effort to collect better quality data and
to use data processing tools more robust to lower quality
data in order to increase the reliability of the results and,
consequently, the conclusions of dog eye-tracking studies.

Nevertheless, not all eye-tracking data of dogs are of
lower quality. It should be noted that, while the quality of
dog data is overall poorer than that of humans, there is also
much more variation in the quality across individuals and
their trials in dogs than humans. We have shown an example
of such with scan path visualizations of two different dogs
in Fig. 12, where panel (A) visualizes the data of a dog with
the data quality that is roughly equal to that of most human
subjects, while panel (B) visualizes a very different case.
The classification results of the dog data in panel (A) did
not differ much between algorithms as shown with a bar
segment plot below the scan path plot. This particular dog
not only passed the subject selection criteria by not having
major morphological features that could interfere with
tracking, but also was one of the highest performing dogs
in chinrest and calibration training. This emphasizes again
the value of selecting subjects based on their morphological
characteristics and training performance.

Understanding the impact of algorithms on eye-movement
event classification of dog data

The results discussed above highlight the impact of
algorithm choice on eye-movement event classification in
dog data. Following our results of artefactual fixation
ratio, only EyeLink algorithm produced significantly
different ratios between species. This difference in how
the EyeLink and the Nyström and Holmqvist (2010)
algorithms performed can possibly be due to the fixed
velocity threshold employed by the EyeLink algorithm,
while the adaptive thresholding procedure used by the
Nyström and Holmqvist (2010) algorithm enabled it to
adapt to differences in data quality between and within the
data sets of the two species, and also the differences in
eye-movement characteristics between the two species or
individuals.

Similar differences in the results derived from the dif-
ferences among algorithms can also be observed when we
compare our results to that of other studies. The average

duration of a dog fixation calculated based on the fixations
classified by the Nyström and Holmqvist (2010) algorithm
in this and our previous study (that used a larger data set)
differ greatly from those other previous studies reported.
The average duration of a fixation reported by our previous
study was 1593 ms (Park et al., 2020), which is longer than
the 827 ms reported by Barber et al. (2016) and much longer
than the 214 ms reported by Somppi et al. (2012). The combi-
nation of the varying quality of dog data and the different
algorithms used across the studies are likely the cause of
this difference. Therefore, we re-emphasize the point made
by others (e.g., Holmqvist et al., 2011; Oakes, 2010) that to
make results comparable across dog and human eye-
tracking studies, it is crucial that future dog eye-tracking
studies describe in detail their eye-movement event classi-
fication procedure, including the algorithm they used, any
parameter settings employed, and the procedure for filter-
ing out artefactual eye movements, if any. Holmqvist et al.
(2022) present advice on how to report these method details.

The longer average duration of dog fixations needs to
be taken into account when designing dog eye-tracking
experiments. So far, many dog-eye-tracking studies have
used stimulus presentation durations as short as 1500 ms
(Table 1). We argue that if researchers aim to observe more
than three fixations, a minimum duration of 5000 ms is
needed for stimulus presentation.

Our findings also highlight the importance of post hoc fil-
tering of artefactual eye-movement events, such as too short
fixations and saccades. Wass et al. (2013) compared how
two algorithms classified eye-movement events in infant
data, and reported that their custom-made algorithm that
had post hoc filtering of artefactual eye-movement events
performed better than an algorithm provided by the eye-
tracker’s manufacturer without post hoc filtering. Accord-
ingly, SR Research, the manufacturer of the EyeLink, rec-
ommends post hoc filtering of artefactual eye movements in
addition to trying out different sets of thresholds in order to
find optimal threshold values for a given data set.

Five different eye-tracking systems from four manufac-
turers have been used across the dog-tracking literature (see
Table 1), and it should be asked if our results are limited to
work done with an EyeLink eye-tracker, or also have bear-
ing on studies performed with other systems. While it is
not possible to predict what the data quality of each system
would be when tracking dog eyes without a direct com-
parison study, a statement can be made regarding the event
classification algorithms that these other manufacturers pro-
vide. Specifically, the default algorithms of Tobii Pro Lab
and SMI BeGaze are to the best of our knowledge also
velocity-based algorithms that work with a fixed velocity
threshold. As such, assuming similarly lower data quality in
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dogs than in human eye-tracking data with these systems,
we would expect a similar pattern of results as presented
here for the EyeLink algorithm.

While based on our results, we recommend using a
noise-adaptive algorithm, in extreme cases where such
automatic approaches are not available, manual coding of
eye-movement events might be considered as an alternative
method for event classification of dog data (but see Hooge
et al., 2018). While we echo the advice of Hooge et al.
(2018) that manual classification of eye-movement data
should only be performed if no other options are available,
it is worth noting that manual classification is relatively
tractable in case of dog eye-movement data, because the
number of subjects and the total duration of experiments are
usually limited due to the short attention span of dogs.
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