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Abstract
Micro- and nanoplastics (MNPs) are recognized as emerging contaminants, especially in food, with unknown health signifi-
cance. MNPs passing through the gastrointestinal tract have been brought in context with disruption of the gut microbiome. 
Several molecular mechanisms have been described to facilitate tissue uptake of MNPs, which then are involved in local 
inflammatory and immune responses. Furthermore, MNPs can act as potential transporters (“vectors”) of contaminants and 
as chemosensitizers for toxic substances (“Trojan Horse effect”). In this review, we summarize current multidisciplinary 
knowledge of ingested MNPs and their potential adverse health effects. We discuss new insights into analytical and molecular 
modeling tools to help us better understand the local deposition and uptake of MNPs that might drive carcinogenic signaling. 
We present bioethical insights to basically re-consider the “culture of consumerism.” Finally, we map out prominent research 
questions in accordance with the Sustainable Development Goals of the United Nations.
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Back to the Roots: Origin, Release 
and Uptake of Plastic Particles

Back in the 1950s, when plastic revolutionized the mar-
ket, nobody anticipated the other side of the coin, until 
recently. Over the last few years, several studies have high-
lighted massively accumulating volumes of small plastic 
debris and its evident hazardous environmental conse-
quences, calling for further in-depth investigations on the 
effect of micro- and nanoplastics (MNPs) on human health 
in general and on carcinogenesis in particular.

The consumption of plastic particles, commonly termed 
microplastics (MPs; 0.1–5000 µm in size) and nanoplastics 
(NPs; < 0.1 µm in size) can occur either directly through 
the food chain or indirectly via the ingestion of inhaled and 
regurgitated particles (Wright and Kelly 2017). According 
to a study by the Marine Biology and Ecology Research 
Centre (MBERC) in England, the plastic load released 
from clothes made of synthetic fibers (polyester, poly-
ester-cotton and acrylic) amounts to over 700,000 large 
MP fibers per machine wash (per 6 kg load) (Napper and 
Thompson 2016) that end up in waste water. Tons of plas-
tic particles reach their final destination in the sea to enter 
the food chain through ingestion by marine life (Cho et al. 
2019; Van Cauwenberghe and Janssen 2014), through sea 
salt (Karami et al. 2017; Kosuth et al. 2018; Yang et al. 
2015) and/or drinking water (Mason et al. 2018; Schy-
manski et al. 2018) to further reincarnate on our dining 
tables. Recent studies have also indicated the presence of 
MPs in some terrestrial food items, such as edible fruit 
and vegetables and store-bought rice, but further research 
is needed to replicate these findings (Dessì et al. 2021; 
Oliveri Conti et al. 2020). Translated into more imaginable 
numbers, on average we ingest five grams of MPs per week 
per person (roughly corresponding to the mass of a credit 
card) depending on the region in which we live, our life-
style, and diet (Senathirajah and Palanisami 2021). How-
ever, in vitro human cell and in vivo mammalian models 
suggest that only a limited fraction of the smaller plastics 
particles will be absorbed by the human body (reviewed 
by Wright et al. (Wright and Kelly 2017)). A study of 
human consumption of MPs estimated the ingestion of 
90,000 particles through recommended levels of water 
intake annually from bottled sources of water, compared 
to 40,000 MPs through tap water only (Cox et al. 2019). 
The incidental annual human ingestion of plastic particles 
in the form of airborne MP fibers during an evening meal 
has been estimated to range between 13,731 and 68,415 
fibers per person (Catarino et al. 2018). As a result, MPs 
have been detected in feces of different species includ-
ing humans (Pérez-Guevara et al. 2021; Schwabl et al. 
2019; Zhang et al. 2021). A study group from Germany 

demonstrated widespread contamination of mineral water 
with xenohormones leaching from plastic bottles (poly-
ethylene terephthalate (PET)) that possessed potent estro-
genic activity in vivo (Wagner and Oehlmann 2009) which 
can have carcinogenic activity in the body of the consumer 
(Acconcia et al. 2017). Furthermore, in a biomonitoring 
study conducted by the U.S. Center of Disease Control 
(CDC), thirteen different phthalate metabolites (i.e., PET) 
were detected in the urine of 2636 participants (CDC 
2019). Placental uptake of twelve different types of MPs 
(between 5 and 10 µm), with polypropylene (PP) among 
others, was detected in four of six human samples (Ragusa 
et al. 2021); another study demonstrated the uptake of 
fluorescent polystyrene (PS) beads with a diameter up to 
240 nm in an ex vivo human placental perfusion model 
(Wick et al. 2010). Recently, a dataset was published con-
cerning plastic particle release from infant feeding bottles, 
demonstrating values ranging from 14,600 to 4,500,000 
MPs (> 1 µm) ingested per capita per day (Li et al. 2020b). 
Unfortunately, sterilization of baby milk exacerbates the 
issue whereby the process of mixing milk powder with hot 
water at a minimum of 70 °C, shaking and cooling down 
to feeding temperature, induces thermal and mechanical 
stress to the bottle material that might further aggravate 
MNP release (WHO/FAO 2007).

The fact that humans are such a powerful geological force 
led to the designation of the Anthropocene or “Age of Man” 
as a new geological epoch, popularized by Paul J. Cruzen, 
Nobel Laureate in Chemistry in 2002 (WHO/FAO 2007). 
As a cultural concept, it has the capacity to challenge estab-
lished narratives and emphasizes the eradication of estab-
lished knowledge boundaries and the stimulation of collabo-
ration between different disciplines. Humanity has already 
introduced a massive amount of plastic into the atmospheric, 
terrestrial, and aquatic environments, making plastic waste 
so ubiquitous that it will even contribute to an identifiable 
fossil trail for generations to come. In addition to impacting 
entire ecosystems (Andrady 2015), it could also have an as 
yet completely unexplored impact on human health.

The Good, the Bad, and the Ugly of Plastics

Plastics are synthetic or semi-synthetic organic materials 
of a high molecular weight, usually produced from mineral 
oil through highly efficient energetic and economical pro-
cedures. Plastic molecular chains mainly consist of carbon, 
hydrogen, oxygen, nitrogen, chlorine, fluorine, and sili-
con atoms. Plastics are easy to mold into complex shapes 
and forms, are extremely durable, lightweight, corrosion-
resistant, thermally and electrically insulating, and offer a 
wide mechanical and multifunctional performance range. 
Their versatility and cost-effectiveness led to a spectacular 
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exponential increase in annual global plastics production 
from 1.7 million tons in 1950 to 359 million tons in 2018. 
Asia is the major producer (51%) followed by the countries 
of the North American Free Trade Agreement (NAFTA) 
(18%) and Europe (17%) (PlasticsEurope 2019). Major 
types of commercial plastics reported in the literature as 
contributing to MNP prevalence include polyethylene (PE), 
PP, polyvinyl chloride (PVC), polyurethanes (PUR), PET, 
PS, Polymethyl methacrylate (PMMA), styrene-butadiene 
rubber (SBR), and polyamide 66. The basic characteristics, 
fields of application, and market share of these polymer 
types are given in Table 1. In addition to synthetic polymers 
or mixtures thereof, commercial plastics are typically mixed 
with additives and fillers/reinforcement to further enhance 
performance properties and include different antioxidants 
and stabilizers, plasticizers (bisphenol-A (BPA) and phtha-
lates), flame retardants, colorants as well as various inor-
ganic particles (sizes ranging from nanometer to millimeter), 
and organic and inorganic fibers (Ambrogi et al. 2017). In 
addition, residues of the monomers of the starting mate-
rial are typically still prevalent in the plastics (Fries et al. 
2013). Today, this plastic material is irreplaceable in various 
technologies and applications, and also plays an important 
role in terms of resource efficiency. Prominent and com-
mon plastic resource savers include building insulations (i.e., 
reducing heating demand), lightweight vehicle components 
(i.e., dampening of fuel consumption), and packaging (i.e., 
extended storage life of foodstuffs). Plastics are also essential 
for regenerative energy production (e.g., solar-thermal and 
solar-electrical devices, wind turbines) (Andrady and Neal 
2009; Bonten and von Weizsäcker 2014). In healthcare, plas-
tics are viewed as being irreplaceable and facilitate higher 
hygienic standards (e.g., protheses, examination gloves, ster-
ile syringes, adhesive bandage strips, blood bags and tubes, 
heart valves). In terms of overall ecological characteristics 
(i.e., energy demand, emissions, and recyclability), plastics 
are superior to other materials in numerous applications.

As for degradation of plastics, various environmen-
tal processes occur through complex pathways involving 
hydrolysis, mechanical abrasion, thermal degradation, pho-
todegradation, and biodegradation (of note, biodegradation 
of most MNPs, excluding exclusive biodegradable types 
of plastics, is hampered by a lack of heteroatom scaffolds) 
(Andrady 2015). These degradation processes are gener-
ally very slow, decreasing the size of plastic particles in 
the range of 0–103 µm/year, depending on the plastic type 
(Min et al. 2020) and the environmental conditions (Chamas 
et al. 2020), producing particles that vary in size (Lambert 
and Wagner 2016) and shape (ter Halle et al. 2016). Fur-
thermore, photodegradation of plastics alters the chemical 
composition of these materials, introducing highly polar car-
bonyl groups. A recent study by Rowenczyk et al. showed 
that oxidation occurs at up to 600 µm depths from the 

surface of plastic objects (Rowenczyk et al. 2020). Thus, the 
surface of plastics in the environment contains oxidized, less 
hydrophobic moieties in varying amounts, which facilitates 
the adsorption of environmental compounds (Prunier et al. 
2019; Rowenczyk et al. 2020). Consequently, a plethora of 
different compounds can be produced from plastic waste 
with highly diverse structures, which is one of the major 
challenges in the characterization of their impact on health 
(EFSA 2016).

While primary MNPs are present in the environment 
by direct means (accounting for 15–31% of ocean debris), 
e.g., from textiles during washing (35%), tire wear (28%), 
and cosmetics (2%), secondary MNPs arise following the 
fragmentation of plastic items, polymeric coatings, and/or 
plastic debris, e.g., plastic bottles, bags, and fishing nets, 
or by abrasion or aging-induced embrittlement (69–81% 
of ocean debris) (Nature 2019). The resulting small plastic 
debris detected in water, soil, air, and food is heterogeneous 
in nature with a large variety of sizes and shapes (predomi-
nantly fibers but also particles, fragments, and films) and has 
a highly complex composition, including polymeric materi-
als and mixtures of chemicals (residual monomers, addi-
tives, and adsorbed chemical contaminants), biomolecules, 
and microorganisms (Barboza et al. 2018; Vethaak and Les-
lie 2016; Vethaak and Martínez-Gómez 2020).

The plastic additives or the chemical contaminants that 
become bound to MNPs in the environment (e.g., hydropho-
bic organic contaminants, heavy metals) can have a vari-
ety of toxic effects, including potential carcinogenic and 
epigenotoxic effects. BPA, for example, is widely used in 
the production of plastics and synthetic resins. It causes a 
wide range of disruptive effects in the body, partly because 
it interferes, at very low doses, with the function of vari-
ous hormones. Phthalates and some of the brominated flame 
retardants have been shown to have similar adverse effects 
(Groh et al. 2019; Lithner et al. 2011). These endocrine dis-
rupting chemicals (EDCs) can alter fetal programming at 
an epigenetic level, which can be passed down through gen-
erations and may play a role in the development of various 
chronic disorders later in life, such as metabolic, reproduc-
tive, and degenerative diseases, as well as some forms of 
cancer (Martínez-Ibarra et al. 2021). MPs can also release 
carcinogenic monomers, such as propylene oxide and vinyl 
chloride (Lithner et al. 2011). These substances are either 
left behind during the production process or are released as 
the plastics breakdown. Yet, there is controversy about the 
extent to which these substances are released from plastic 
products (EFSA 2016).

Plastic additives and other associated chemicals in 
plastic that leach out over the product lifecycle are gen-
erally ubiquitous global contaminants, exposing humans 
even before MNP ingestion occurs. Both absorbed chemi-
cal toxicants and additives in ingested MNPs often do not 
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contribute significantly to the observed total chemical body 
load from all exposure routes (ingestion, inhalation, and 
dermal absorption), as chemical partitioning models pre-
dict (Koelmans et al. 2016). Moreover, absorption by MPs 
can also have a beneficial effect, as chemicals are excreted 
more easily in this manner, via the feces. In contrast, data 
are available for chemical contaminants of organic as well 
as plastics of an inorganic nature—most of them are persis-
tent, bio-accumulative, and/or toxic—that adhere to MNPs 
(Mato et al. 2001) and might facilitate their toxicity or 
uptake by different organisms. Examples of contaminants 
are phthalates (Fossi et al. 2012), persistent organic pollut-
ants (POPs), polychlorinated biphenyls (PCBs) and polybro-
minated diphenyl ethers (Bouwmeester et al. 2015; Ogata 
et al. 2009), polycyclic aromatic hydrocarbons (PAHs), 
organochlorine pesticides, (Bouwmeester et al. 2015), and 
cations of partially toxic ions of heavy metal elements such 
as aluminum, chromium, manganese, iron, cobalt, nickel, 
zinc, cadmium, and lead (Holmes et al. 2012; Rochman 
et al. 2014). However, the potential combined implications 
of MNPs and associated chemical contaminants on human 
health are not well understood and remain to be elucidated 
(Campanale et al. 2020). Especially, NPs and small MPs 
carrying chemical substances as they are able to cross cell 
membranes and may enhance the bioavailability of the 
chemical, analogous to nanosized polymeric drug delivery 
vehicles and thus deserve special attention. Moreover, it was 
reported that microorganisms, such as plastic decomposing 
organisms and opportunistic human pathogens accumulate 
on plastic debris (Harrison et al. 2011, 2014; McCormick 
et al. 2014; Zettler et al. 2013). The World Health Organi-
zation (WHO) considers the risks from pathogens in MP-
associated biofilms to be far lower than the risk posed by 
the high concentrations and diversity of pathogens present 
in human and livestock waste (Organization 2019). Clearly, 
to date the consequences and impact of plastic debris and 
decay products for ecosystems and to human health have not 
been systematically and intensively investigated. In addi-
tion to MNPs, there is evidence that other contaminating 
particles, such as titanium dioxide  (TiO2) and aluminosili-
cates (such as kaolinite) might be engulfed in gut tissue and 
affect human health (Powell et al. 1996a, b, 2000, 2007), 
but are not covered in these particles/chemicals due to their 
inorganic origin and different physico-chemical properties.

“We Shall Require a Substantially New 
Manner of Thinking if Mankind is to Survive” 
(Einstein 1949)

An in-depth analysis of the novel class that is MNPs is 
particularly necessary in the age of the Anthropocene. As 
mentioned above, Paul J. Crutzen indicated that humans 

are the most important factor influencing atmospheric, 
aquatic, and terrestrial processes on Earth. In February 
2000, at the annual meeting of the International Geo-
sphere-Biosphere Programme, Crutzen brought the term 
Anthropocene to the attention of participants when he 
argued that we should no longer speak of the Holocene. 
Until then, the Holocene, which was placed at the end 
of the Pleistocene about 12,000 years ago, was the pri-
mary term used by experts to refer to Earth's age. Soon 
after, alternative concepts to the Anthropocene devel-
oped (Horn and Bergthaller 2019). The science theorist 
Donna Haraway coined the term Chthulucene instead, 
to illustrate that humans are not masters of their activi-
ties. Thus, Chthulucene clarifies that humans are deeply 
interconnected with other living beings and the environ-
ment (Haraway 2016). Between the proposed epochs 
Anthropocene and Chthulucene, it is important to con-
duct studies on MNPs. On the one hand, humans do not 
reduce plastic production and consumption by denounc-
ing the problems of MNPs (Anthropocene). On the other 
hand, MNPs already act as “agents” (Latour 1999) and 
affect our environment and health in ways we are far 
from understanding and consequently that we cannot 
control (Chthulucene). Studies of the effects of MNPs 
on (the environment and) human health will allow us to 
better understand and possibly narrow down their nega-
tive impact on humans and the environment. Moreover, 
the possible catastrophic consequences demand that we 
must develop a different approach to plastic, and gener-
ally propagate and practice a different lifestyle, first and 
foremost re-considering the “culture of consumerism” 
(McFague 2013). As mentioned before, sound studies 
on the impact of MNPs on the environment are avail-
able, also from a cultural studies perspective, analyzing 
MNPs under conditions of the Chthulucene (Bergman 
2019). We also want to elaborate on the impact of MNPs 
on humans as an interconnected species and discussion 
of recent findings will contribute to the sustainability 
debate. Humans are deeply interconnected with other 
(living) things and the environment. Physicist and phi-
losopher Karen Barad has developed the term “intra-
action” to illustrate that the autonomous subject does 
not exist. Humans and their health depend on other (liv-
ing) things, including the waste originally produced by 
humans, which in turn “intra-acts” with humans (Barad 
2007). A look back at science underlines the importance 
of tracing the intra-action of MNPs with humans: In 
1891, the Russian chemist Alexander Dianin first synthe-
sized BPA (Dianin 1891). Afterward, British researchers 
discovered its estrogenic effect and already used it in a 
therapeutic context as an estrogenic agent (Dodds and 
Lawson 1936). BPA is still a component of many plastic 
products nowadays.



39To Waste or Not to Waste: Questioning Potential Health Risks of Micro‑ and Nanoplastics with…

1 3

Ingestion and Deposition of Plastics 
in the Gastrointestinal Tract

The lack of consistency and standardization of sampling 
and analytical methods for detection of MNP pollution 
inhibits a global comparison of MNP deposition (Van Cau-
wenberghe et al. 2015). Geographical variations in MNP 
pollution are not only influenced by anthropogenic fac-
tors, but also by environmental causes such as oceanic cur-
rents, wind direction, and atmospheric deposition, driving 
the distribution of MNP particles on the planet (Barletta 
et al. 2019). To get an idea of regional differences in MNP 
exposure for humans, a comparison of the MNP load in 
filter feeders like mussels can be used as a surrogate. For 
example, in China 0.9–4.6 MP/g were found in mussels, 
whereas in Europe the range detected is from 0 to 0.51 
MP/g (De Witte et al. 2014; Li et al. 2016). According to 
a conservative example presented by the European Food 
Safety Authority (EFSA), the consumption of 225 g mus-
sels results in an exposure to 7 µg of plastics (assuming 
an estimated weight of 25 µg and a density of 0.92 g/cm3). 
Since mussels are eaten without removing the digestive 
tract where the maximum MP load is located, they are the 
most worrisome form of seafood with the highest known 
load of MPs (EFSA 2016). The gastrointestinal tract is 
the organ most exposed to plastic particles, since it has 
recently been shown that between 106 and 142 MP/day 
are ingested with food, 174–349 MP/day via bottled water 
and overall, per week up to 5 g MP are ingested (Cox 
et al. 2019; Senathirajah et al. 2021). However, no toxi-
cology data are available concerning the effects of MNPs 
on human health and their risks for, and potential roles in 
cancer development.

To consider a potential pathogenic role in humans, one 
should consider the routes of exposure and the cells with 
which MNP may interact. On ingestion in the diet, MNPs 
move through the gastrointestinal tract where they have 
been shown to interact with the microbiome. MNPs in the 
gastrointestinal tract have been shown to be degraded by 
microbes (and fungus) (Yuan et al. 2020), while plastic 
particles themselves induce changes to the composition 
of the gut microbiome (recently reviewed by Fackelmann 
et al. (2019)). For example, MNP exposure in the diet 
was associated with a decrease in the diversity of the gut 
microbiome as well as taxonomic changes in mice. In the 
same study, increased intestinal permeability and changes 
in amino acid and bile acid metabolism, and hepatic lipid 
metabolism (Jin et al. 2019; Lu et al. 2018) were shown. 
Interestingly, the effects of MNP on the mammalian gut 
microbiome, including changes in microbiome diversity, 
an increase in potentially pathogenic bacteria, a decrease 
in commensal gut bacteria, and resulting metabolic 

dysfunction, resemble common findings in chronic human 
diseases such as diabetes, obesity, or chronic liver disease 
(Weiss and Hennet 2017).

It remains to be elucidated how MNP particles alter the 
microbiome although one might speculate that they may 
directly affect bacterial growth and/or metabolism by their 
physical presence, that they carry EDCs or are themselves 
polluted with microbial communities that alter the gut 
microbiome. The latter has been shown for marine microbi-
omes and zebrafish (Wan et al. 2019) but needs to be investi-
gated in humans (Rosato et al. 2018). The effects of additives 
on the human gut microbiome are also poorly understood. 
The widely used plasticizer diethyl-hexyl phthalate (DEHP) 
causes dysbiosis in zebrafish (Adamovsky et al. 2020; Jia 
et al. 2021) and mice (Deng et al. 2020; Lei et al. 2019). 
The varying toxicity of DEHP in different rodent species 
was attributed to diverse microbiome compositions (Wang 
et al. 2020). Chronic DHEP exposure may induce obesity 
through disruption of host lipid metabolism and gut micro-
biome composition (Su et al. 2022). In humans, data are 
available from newborns where early-life DEHP exposure 
altered gut microbiome composition and diversity, specifi-
cally leading to a decrease in Rothia sp. and Bifidobacterium 
longum (Yang et al. 2019). For BPA, evidence for microbi-
ome dysbiosis in zebrafish and mice is also available, and 
again, together with host factors (e.g., gender) an associa-
tion with metabolic disorders was hypothesized (Chen et al. 
2018; Diamante et al. 2021; Feng et al. 2020; Lai et al. 2016; 
Xu et al. 2019). In humans, data are scarce: In an in vitro 
model of the gut microbiome, BPA caused distinct shifts in 
microbial composition that were associated with hormonal 
effects and oxidative stress (Wang et al. 2018). In patients 
with binge eating disorders, BPA was elevated alongside 
distinct microbiome differences (Leyrolle et al. 2021). For 
other EDCs, e.g., nonylphenol, no data for living organisms 
are available yet, although environmental microbiome dis-
ruption has been described (Gálvez-Ontiveros et al. 2020; 
Mattana et al. 2019).

Besides alteration of the gut microbiome, it is likely 
that MNPs interact with the host gastrointestinal tract at a 
cellular level via contact with the gut epithelium. The pro-
pensity of the gastrointestinal tract to take up particles has 
been controversial since first discussed in The Monographs 
on Physiology on the “Absorption from the Intestine” by 
Professor F. Verzár in 1937 (Verzár, 1937). Considering 
the physiological conditions of the gastrointestinal tract 
and the pharmaceutical, biological and toxicological 
implications of this, systemic uptake of un-engineered par-
ticles might be considered as being of marginal likelihood 
(Sternson 1987) although uptake of peptides and proteins 
by Mucosal Associated Lymphoid Tissue (MALT) of the 
gut is estimated to reach 2–3% of the amount ingested and 
can be enhanced if the particles are “spiked” by special 
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ligands that “boost” entry to lymphoid and non-lymphoid 
tissue. For example, poloxamer-coated particles have been 
demonstrated to be taken up at a lower level in the gastro-
intestinal tract of rats compared to untreated PS particles, 
whereas covalently bound tomato lectin and invasin mol-
ecules lead to increased systemic uptake; lectin is sus-
pected to interact with cell surface carbohydrate moieties, 
and invasin mimics bacterial pathogens influencing immu-
nogenic cell responsiveness through pathogen-associated 
molecular patterns (PAMPs) (Ashwood et al. 2007; Brett 
et al. 1993). The tomato lectin effect has been exempli-
fied in animal experiments using PS latex particles, which 
showed a marked increase in systemic uptake accountable 
to lymphoid tissues (Hussain et al. 1997). However, after 
tissue uptake PS particles seem to be excreted mainly in 
bile, reaching levels of 18% for 50 nm, 8% for 500 nm, and 
1% for 1-µm-sized PS particles (Jani et al. 1996). Another 
mechanism proposed, that is supportive of particle uptake 
into tissue, is represented by the ability of bile acids to 
absorb the insoluble food additive, calcium phosphate 
(used as an anti-caking agent) (Govers et al. 1994). Given 
the physico-chemical properties of calcium phosphate and 
bile acid, it is obvious that the hydrophilic, highly polar 
surface of calcium phosphate particles is reversed by the 
addition of bile acids resulting in hydrophobic particles. 
Most of the MNPs in the environment have the chemical 
structure of PE or PP, and are therefore hydrophobic in 
nature, too. A similar mechanism as described for bile 
acid-bound calcium phosphate particles can therefore also 
be applied to MNPs. Also, EDCs, especially BPA may 
affect gut barrier integrity, systemic inflammation, and 
translocation of bacterial products, as shown in rodents 
and patients with Crohn´s disease (Braniste et al. 2010; 
Feng et al. 2019; Linares et al. 2021). For other EDCs 
insufficient evidence is available to support or refute an 
effect on intestinal barrier function, indicating the need 
for additional research efforts.

Consequently, the complexity of the particle surface 
structure is an important aspect to consider for tissue uptake. 
As reviewed by Kihara et  al., the “biological identity,” 
referred to as the “protein corona” (Cedervall et al. 2007a), 
dictates complex formation and hence adsorptive properties 
of nanoparticles (Di Silvio et al. 2017; Fleischer and Payne 
2014; Lesniak et al. 2012). Proteins residing in the gut fluid 
can be competitively adsorbed to the particle surface with 
altered affinity (Cedervall et al. 2007b; Kasche et al. 2003; 
Tenzer et al. 2013); if bound and participating in corona for-
mation, these proteins undergo complex structural changes 
with physico-chemical consequences that influence tissue 
uptake and complicate further investigation (Caillou et al. 
2008). The role of the changing composition of environ-
mental or biomolecular corona covering the MNP particle, 
from the outside to the inside of the human body, across 

tissue barriers, and its effects on uptake, fate, and toxicity, 
is understudied and deserves special attention (Vethaak and 
Legler 2021).

The process of particle uptake in MALT of the gastro-
intestinal tract has been proposed to be executed by three 
main routes: (1) phagocytosis, (2) transcellular uptake—via 
intestinal enterocytes, or (3) paracellular uptake—via tight 
junctions between enterocytes (Florence 1997). Accordingly, 
the following factors supporting particle uptake by MALT in 
the gut have been described: particle stability, particle diam-
eter (< 5 µm), lack of surface charge, surface hydrophobic-
ity, and the presence of specific ligands (Florence 1997). Of 
these factors, particle size is the most studied and has been 
determined as being important for endocytosis (< 0.5 µm) 
and also for phagocytosis, the latter conducted in particular 
by macrophages (> 0.5 µm) (Yoo et al. 2011). Phagocytosis 
is dependent on macrophage volume as demonstrated after 
intraperitoneal injection of polymethacrylate and PS parti-
cles (1, 5, and 12 µm) into mice (Tomazic-Jezic et al. 2001). 
Considering the sizes of the particles under consideration, 
and the presence of an intact epithelial barrier, transcellular 
and paracellular transport could be excluded as routes of par-
ticle uptake (Alberts et al. 2002). Due to increased intestinal 
barrier permeability, patients with inflammatory bowel dis-
ease, show an increase in MNP particle uptake of 25% com-
pared to healthy controls after administration of engineered 
particles as oral drug delivery vehicles (Schmidt et al. 2013). 
Generally, particles with a size range of 0.1–150 µm can be 
taken up via the intestinal barrier by engulfment through the 
plasma membrane of microfold (M) cells in Peyer’s Patches 
(Galloway 2015; Hussain et al. 2001). According to these 
data, plastic particles (< 150 µm) and probably all nano-
sized particles are able to invade the mucosal barrier and 
form local deposits that might translocate to cause systemic 
exposure with yet unknown consequences. In evidence, the 
systemic exposure rate of MPs (< 150 µm) was shown to be 
limited (≤ 0.3%) whereby only particle fraction of < 1.5 µm 
penetrate deeper into organs (EFSA 2016). In contrast to 
larger particles (> 10 µm) where methods of detection and 
quantification are largely established (Cole et al. 2011; Prata 
et al. 2019), the identification of smaller particles is far more 
challenging (Correia and Loeschner 2018; Zhou et al. 2019), 
since uptake does not follow strict characteristic features like 
particle size or composition. Consequently, data on systemic 
bioaccumulation in distant organs are contradictory and 
partly inconsistent (Deng et al. 2017; Stock et al. 2019). Sev-
eral studies investigating in vitro intestinal absorption were 
based on the widely established PS particle model; here, the 
uptake of PS particles (50–100 nm) varied excessively with 
rates ranging from 1.5 to 10% reflecting the broad physico-
chemical properties of NPs (des Rieux et al. 2007; Kulkarni 
and Feng 2013; Walczak et al. 2015). In addition to being 
restricted by particle size, surface chemistry and the model 
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system used, research might further be limited by particle 
degradation through chemical pretreatment resulting in an 
underestimation of the quantification of particles (Silva et al. 
2018). A study that used Fourier-Transform Infrared (FT-IR) 
microspectroscopy as the method of choice for MP particle 
detection in human stool samples reported further detection 
issues with regard to the percentage cut-off set for spectral 
similarity of MPs with reference MPs, as well as the analytic 
differentiation between MPs and solids remaining after sam-
ple preparation; though various sorts of MPs (50 to 500 µm) 
were detected in the analyzed stool samples, no conclusions 
could be drawn regarding the origin or fate of MPs (Schwabl 
et al. 2019). While animal experiments showed that NP and 
small MP particles (0.5 to 5 µm) were spared from further 
processing and degradation due to their structural stability 
(Florence 1997; Smith et al. 1995), another study demon-
strated the intracellular bio-persistence and long-term stabil-
ity of NPs taken up by endolysosomes after passing through 
the modeled intestinal barrier of Caco-2 cells (Magrì et al. 
2018).

Are Complexes of Micromolecules 
and Plastic Particles Drivers 
of Carcinogenesis?

While it is clear that plastic particles can affect human 
health, little data are available on their role in the patho-
genesis of gastrointestinal cancer which might be predicted 
given that the gastrointestinal tract is a major route of expo-
sure. So far, we know that NPs migrate to organs through 
lymphatic and/or vascular invasion more frequently than do 
larger particles (Ai et al. 2011); if smaller than 100 nm, par-
ticles can hijack intestinal uptake routes to overcome physi-
ological barriers (Pietroiusti et al. 2013), depending on their 
physico-chemical properties such as shape, size, material, 
and surface characteristics (Qiu et al. 2018). Plastics in the 
nanoparticle range have been associated with biochemical 
events crucially involved in carcinogenesis, such as genomic 
alterations including those that alter gene expression, and 
potentially affect post-translational modification (Hollóczki 
and Gehrke 2019; Qu et al. 2019; Zhang et al. 2020), oxida-
tive stress (Chen et al. 2017; Cortés et al. 2020), membrane 
damage and DNA fragmentation (Sendra et al. 2019) as well 
as cytotoxicity (Gopinath et al. 2019), most of which have 
been described by Hanahan and Weinberg in their essay 
“Hallmarks of Cancer” as malignancy enabling properties 
(Hanahan and Weinberg 2011).

With respect to gastrointestinal cancer, a multi-endpoint 
toxicological study demonstrated increased uptake and intra-
cellular accumulation of MP and NP particles in colorectal 
cancer (CRC) cell lines (Hesler et al. 2019). Furthermore, 
the administration of high PE concentrations disrupted the 

microbiome and induced intestinal inflammation in mice, 
as shown by increased IL-1 α secretion and decreased intes-
tinal infiltration by Th17 and Treg cells (Li et al. 2020a). 
Another study tested the size-dependent effects of PS par-
ticles (0.1 µm and 5 µm), but found minimal effects on cell 
viability, oxidative stress as well as cell membrane integrity 
and fluidity of CRC cell lines. However, PS particles were 
associated with inhibition of cell membrane transporter 
activity and increased production of reactive oxygen species 
(ROS) following arsenic exposure. ROS generation is widely 
known for its crucial role in the growth and proliferation of 
cancer cells through disturbances in cellular signaling due 
to their mutagenic activity (Manda et al. 2015; Poillet-Perez 
et al. 2015; Tang et al. 2011). According to these data, plas-
tic particles might act as substrates for membrane transport 
activity and as a chemosensitizer of toxic substances (the so-
called “Trojan Horse effect” (Wu et al. 2019)) and in doing 
so, might “boost” their carcinogenic effects.

As for the particle surface, the formation of charge-spe-
cific macromolecular complexes has been shown to affect 
particle uptake (Walczak et al. 2015). In addition to the 
above-mentioned tomato lectin-invasin complex, conju-
gated lipopolysaccharide (LPS), a molecule found on the 
outer layer of gram-negative bacteria, a pathogen-associated 
molecular pattern (PAMP) recognized by host cells, can 
boost particle uptake. LPS is recognized by toll-like receptor 
4 (TLR 4) that activates several signaling pathways involved 
in tumor progression and is almost ubiquitously expressed 
by human intestinal cells (Vaure and Liu 2014). In addi-
tion to TLR signaling, LPS has been shown to activate the 
NF-κB pathway that induces TNFα-mediated inflammatory 
CRC growth (Luo et al. 2004). Indeed, Wu et al. showed 
that PS-coated MP beads influence NF-κB and MAP kinase 
pathways, cytokine–cytokine receptor interactions and 
TLR-induced signaling; these findings were supported by 
the identification of a transcriptional program reflective of 
increased expression of inflammatory and proliferation-asso-
ciated genes in PS particle-exposed CRC cell lines. In addi-
tion, this group demonstrated that cell viability decreased 
when the cells were exposed to higher doses of PS particles 
(12.5 mg  L−1 or 50.0 mg  L−1 for 24 h) (Wu et al. 2020).

Recent evidence of EDC-induced alterations in fetal epi-
genetic programming led to invitations to produce health 
policies to protect humans from plasticizers including BPA, 
phthalates, and nonylphenols; the structural analogy to sex-
ual hormones allows these compounds to drive or inhibit 
hormonal actions at a multifactorial level (Martínez-Ibarra 
et al. 2021; Noorimotlagh et al. 2020).

BPA, which enters the gastrointestinal tract through 
release from the lining of canned foods and beverage con-
tainers, has been studied since its generation and identifi-
cation as a xenoestrogen (Dianin 1891; Dodds and Law-
son 1936); because of evident in vivo tumor-promoting 



42 E. S. Gruber et al.

1 3

properties and the induced susceptibility to breast and pros-
tate cancer (Keri et al. 2007; Seachrist et al. 2016), it has 
been proposed that it may be a human carcinogen. In vitro, 
BPA alters DNA methylation and gene expression through 
classical estrogen receptor (ER)-binding or through mem-
brane-initiated signaling by GRP30; exemplarily, BPA has 
been shown to induce SCGB2A1 overexpression—a gene 
that is associated with proliferation and cancer stem cell 
survival as well as with response to chemo- and radiotherapy 
in colorectal cancer cells (Caiazza et al. 2015; Munakata 
et al. 2014). As for colorectal cancer, ER-ß is expressed in 
the epithelium of normal and malignant colon cells (Elbanna 
et al. 2012); in clinical studies, ER-ß expression was related 
to disease grade and stage and inversely correlated with 
tumor progression (Jassam et al. 2005; Rudolph et al. 2012); 
consequently, it has been hypothesized that BPA-driven 
disruption of ER-ß function results in the loss of its tumor 
protective function by inhibition of estrogen-induced pro-
apoptotic signaling and gene expression (Bolli et al. 2010). 
Studies of hepatic genome alterations elucidated that BPA 
significantly influenced the miRNome and transcriptome 
of adult zebrafish; these gene signatures further associated 
with human orthologs involved in oxidative phosphoryla-
tion, mitochondrial dysfunction, and cell cycle (Renaud et al. 
2017). In an isogenic mouse model, dose-dependent hepatic 
carcinogenesis (neoplastic and preneoplastic lesions) was 
found after perinatal BPA exposure (50 mg BPA/kg diet) in 
10-month-old mice (Weinhouse et al. 2014); these findings 
might be explained by BPA-driven peroxisome proliferator-
activated receptor (PPAR) overexpression, that resulted in 
aberrant fetal programming of the liver of mice (García-
Arevalo et al. 2014). However, although BPA is detected 
systemically in approximately 90% of tested humans, with 
the highest amounts found in infants and children (Calafat 
et al. 2005, 2009; Edginton and Ritter 2009; Kuroda et al. 
2003; Lee et al. 2008; Nepomnaschy et al. 2009), the exact 
carcinogenic mechanism of BPA in humans is currently not 
known. As for phthalates, alterations of lipid storage and 
metabolism are mainly driven by PPAR and pregnane-X 
(PRX) receptor signaling, that have been associated with 
uncontrolled hepatic cell proliferation and the induction 
of enzymes involved in steroid metabolism and xenobiotic 
dysfunction in mouse models (Hurst and Waxman 2004; 
Yavaşoğlu et al. 2014), respectively). In another study using 
the liver cancer cell line HepG2, nonylphenol (NP) was 
brought into context, with ER overexpression by activation 
of luciferase (Yoon et al. 2000); in addition, NP induced the 
carcinogenic signaling pathways ERK and TGF-ß in colo-
rectal cancer cell lines, that together drove CRC develop-
ment (Yang et al. 2017).

Although evidence regarding the involvement of MNPs 
in the pathogenesis of cancer is scarce (Sharma et al. 2020), 
comparisons with the aforementioned data can be used to 

extrapolate hypotheses and mechanisms that form the basis 
of future studies. The lack of knowledge about the effects 
of MNPs on the human organism and their contribution to 
disease development results in an urgent need for targeted 
research in the field of microplastic–health interactions. 
In particular, it is important to understand which disease 
mechanisms triggered by MNPs can lead to carcinogenesis 
as well as concomitant inflammatory and immunological 
effects. To do this, we need to address the technological 
means by which MNPs can be detected in human tissues.

Analytical Insights: Detection, 
Quantification, and Tracking of Plastic 
Particles

The chemical analytical study of MP is in part well-estab-
lished. The most commonly applied measurement principles 
are simple observations by the human eye, optical micros-
copy, Fourier transformation infrared (FT-IR) spectroscopy 
and microscopy, Raman spectroscopy and microscopy, gas 
chromatographic separation (GC) and mass spectrometric 
detection (MS) after pyrolysis (py-GC–MS), or pyroly-
sis–gas chromatography time of flight mass spectrometry 
(py-GCToF) following thermo-extraction and desorption 
(TED-GC–MS). Raman spectroscopy (RS) and FT-IR 
microscopy methods are particularly advantageous over 
MS methods as they require minimal sample preparation 
and quantities of material, and have a very high throughput. 
Raman spectroscopy has the additional advantage compared 
to FT-IR of a wider spectral coverage, better resolution and 
lower water interference, the latter aspect being important 
for in vitro and in vivo studies (Araujo et al. 2018). Taken 
together, analysis of MP is mainly performed using FT-IR 
and RS (Renner et al. 2018) and recently a fully automated 
MP identification method based on FT-IR was presented, 
which assigns > 98% of MP correctly (Renner et al. 2019).

Analysis of tissues in the process of histopathological 
diagnostics is largely conducted with formalin-fixed par-
affin-embedded (FFPE) tissue. It has recently been shown 
that the detection of MP that have incorporated into tissues, 
should also be possible within FFPE material. This would 
allow correlations to be made between the amount and type 
of MP and their potential association with the severity and 
progression of diseases. This was recently demonstrated by 
the detection of silicon particles in histopathological slides 
from women with leaking breast implants using stimulated 
Raman scattering imaging (van Haasterecht et al. 2020). 
This technology will also help to specify the role of PS 
MNPs in cancer formation (Gonçalves et al. 2018). In order 
to analyze and correlate the increase in plastic production 
from the early 1950s to today, with an increase in the con-
centration of MP in a large number of FFPE tumor samples 
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and with clinical endpoints, it will be necessary to expand 
and automate this technology to develop a high-throughput 
approach.

NPs (i.e., < 0.1 µm) are more difficult to detect and 
quantify. The detection of smaller particles by the com-
monly applied RS and FT-IR microscopy techniques is 
limited by the diffraction limit of the optical microscope, 
which is about 0.3 µm. Hence, there is the potential for 
single particle analysis. However, the smaller the particles 
and therefore the resolution requirements of the instru-
ments are, the longer the screening of larger tissue areas 
will take. This limitation is most obvious with the latest 
developments in instrumentation combining atomic force 
microscopy (AFM) with FT-IR (AFM-IR) or RS (Tip 
Enhanced Raman Spectroscopy, TERS), allowing the 
study of particles at a lateral resolution of 10 nm (Schwa-
ferts et al. 2019). TERS also enables the investigation of 
a material’s properties, but experimental difficulties and 
the sensitive equipment make routine measurements more 
difficult. Thus, for the study of MNPs, tissue screening 
methods for localizing MNP particles in neoplasia of large 
areas require sophisticated instrumentation e.g., IR-AFM 
or detailed material identification. To our knowledge, this 
combination for the systematic study of MNPs in malig-
nant tissue is not applied routinely and will require fur-
ther methodological development including in situ iden-
tification with a focus on sample preparation. However, 
the challenge remains to track MP and possibly NP with 
respect to adsorption, distribution, and excretion, non-
invasively, in animals and humans. A major challenge for 
this, will be to sample and analyze, as far as possible, in 
plastic-free settings, for example by avoiding contact of 
body tissues and fluids with plastic medical devices and 
using clean air chambers.

Several studies have applied carbon-14 to the investiga-
tion of MNP accumulation and distribution in seafood (Al-
Sid-Cheikh et al. 2018). For relatively small animals, like 
scallops, the ingestion and distribution of carbon-14 labeled 
microplastics can be followed by measuring emitted radia-
tion. Carbon-14 can be used in humans during ADME stud-
ies, but its application to MNP detection is limited. The reg-
ulations for carbon-14 studies only allow a single micro-dose 
(3.7 MBq), followed by the radioanalytical determination of 
excreta and plasma (Beaumont et al. 2014). Real-time bio-
distribution of carbon-14 labeled MNPs is not possible due 
to the low energy released during its relatively long half-life 
and a short travel distance for the beta-radiation of carbon-14 
in tissue. Present-day medicine offers contemporary hybrid 
imaging modalities that open up the possibility of tracking 
such MNP in real time (2017). The imaging modality of 
choice has to fulfill defined requirements covering (a) high 
sensitivity to detect very low amounts of MNPs in a complex 
matrix, (b) high resolution to precisely locate the position of 

enrichment of the MNPs, and (c) non-invasiveness to allow 
long-term studies.

Live imaging modalities that satisfy these requirements 
include positron-emission tomography and single-photon 
emission computed tomography (SPECT), both applied as 
hybrid techniques coupled to computer tomography (CT), 
magnetic resonance tomography (MR), or dynamic near-
infrared fluorescence (DNIF) imaging, which is still under 
development for whole-body coverage in humans (Huang 
and Pu 2020; Piper et al. 2013). Both techniques require 
the introduction of a label, either a radio- or fluorescence 
label for a detectable and verifiable signal. Beyond that, 
the label has to be non-toxic, metabolically stable and 
the chemical structure of the applied MNPs should not 
be changed to avoid any alterations in their biochemi-
cal behavior. Not all MNPs have the chemical properties 
needed to introduce such a label. In particular, PE and 
PP particles do not have the required functional groups 
for direct labeling of the degraded plastic particle (see 
chemical structures in Table 1). Here, the label has to be 
chemically introduced during the production of the plas-
tic, before the degradation process takes place, and the 
respective break down into smaller pieces to yield MNPs 
has to be simulated. Considering the demands for both, the 
imaging technology and the signal delivering label, it is 
obvious that the mentioned imaging methodologies have 
their advantages, but also significant limitations.

Nuclear medicine-based techniques including positron-
emission tomography (PET) and SPECT require posi-
tron or photon-emitting radionuclides to detect traceable 
MNPs. The ability to use the PET radionuclides carbon-11 
(half-life 20  min) and fluorine-18 (half-life 110  min) 
allows radiolabeling with a barely altered chemical struc-
ture (authentic labeling) and subsequently high metabolic 
stability and very high sensitivity of detection. The major 
limitation of the very short synthesis and imaging time 
restricted by the half-life of the radionuclide remains, 
limiting the real-time tracking of the MNPs of up to just 
one day. SPECT radionuclides, like iodine-123 (half-life 
13.22 h), significantly expand the time-frame of tracking 
MNPs, but it goes hand in hand with a loss of spatial reso-
lution compared to PET (Khalil et al. 2011).

DNIF will be highly suitable for tracking MNPs in ani-
mals but not in humans, as this technique has not been 
implemented in routine clinical practices so far. DNIF per-
mits deep-tissue imaging of fluorescently labeled plastic 
particles with high signal sensitivity and specificity. How-
ever, the introduction of fluorescence entities on to MNPs 
will significantly alter their chemical composition and 
presumably, their biochemical behavior too. An advan-
tage compared to PET and SPECT are the resolved time 
constraints enabling long-term studies.
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Ex Machina: Molecular Modeling 
to Understand the Adverse Effects of NPs 
on Biomolecular Systems

The immense array of conceivable MNPs poses a signifi-
cant challenge for research. Using realistic mixtures—e.g., 
derived from environmental samples—would make the 
identification of structures and the delineation of effects 
difficult, while simpler samples may overlook whole fami-
lies of less prevalent but more toxic compounds, as well as 
synergistic or combinatorial effects. To consider all these 
possibilities in a rational manner is impossible, and prob-
ably also unnecessary.

In the past few decades, molecular modeling has 
become an invaluable tool to overcome such obstacles 
and to improve our understanding of the principles that 
govern complex biological systems at the molecular level 
(van Gunsteren et al. 1997; Warshel 1997). In silico stud-
ies have proven extremely useful to define new directions 
for research, and increase efficiency through reducing the 
number of costly unsuccessful experiments (van Gunsteren 
and Berendsen 1990). Exploiting the predictive character 
of theory and modeling regarding the behavior of materi-
als have aided screening for molecular properties of inter-
est in large libraries of compounds, e.g., in drug design 
(Congreve et al. 2005). Similarly, modeling could provide 
the kind of structural and systematic understanding which 
may facilitate an exploration of the highly complex and 
important field of NPs.

In the last decade there have been several successful 
attempts to acquire practical, useful information regarding 
NP–biomolecule interactions from modeling. It has been 
observed in in silico experiments that for NPs, entering the 
hydrophobic core of lipid bilayers is energetically favorable 
and in a certain size range, this process may occur without 
a free energy barrier (Thake et al. 2013). PP and PS parti-
cles spontaneously disentangle in lipid membranes, while 
PE chains remain aggregated (Bochicchio et al. 2017; Hol-
lóczki and Gehrke 2020) (Hollóczki and Gehrke 2019; Rossi 
and Monticelli 2014). The structure and dynamics of the 
membrane are altered in a manner that suggests physiologi-
cal effects (Rossi et al. 2014). Upon contact with NPs, the 
propensity of a model protein to form α-helical and β-loop 
secondary structures was shifted, with the changes being 
qualitatively different for PE and nylon 6,6 (Hollóczki and 
Gehrke 2019). Furthermore, the behavior of PE-NP in vari-
ous solvents was explored through molecular modeling, 
revealing that in micro-structured amphiphilic liquids, e.g., 
ionic liquids, control over the disintegration (i.e., disentan-
glement) of NP analytes into free polymer chains can be 
achieved, which could be applied to extraction strategies for 
analytical purposes (Elfgen et al. 2020).

The wide spectrum of these data shows how multifari-
ous and fruitful modeling can be when applied to problems 
related to NPs. On the other hand, for a better alignment with 
experiments, it will be extremely important in the future to 
move toward a higher level of complexity, and to incorporate 
certain realistic aspects of NPs into the applied models. This 
includes not only larger particle sizes, but also the introduc-
tion, for instance, of protein and environmental coronae, as 
well as oxidized groups when investigating the biochemi-
cal effects of these materials, as their surface structure will 
define most of their impact on their environment (Kihara 
et al. 2021).

Outlook: Facing the Possible Consequences 
of MNPs on Human Health

Considering the above, there is evidence, that pollution 
through MNPs represents a health risk. It could be a health 
risk that may be irreversible, and the more plastic that is 
produced, the more the next generation will have to suf-
fer its effects, which are not yet fully understood. Despite 
all of this evidence, plastics will remain an irreplaceable 
part of daily life for the time being. On the one hand, in the 
field of communication technology and healthcare, both of 
which are strongly linked to the social aspect of sustainable 
development. On the other hand, technologies that promote 
resource-efficient lifestyles with environmental sustainabil-
ity rely on plastics and their versatile properties and poten-
tials. The environmental impact of plastics is largely deter-
mined by product eco-design, retailer responsibility, and 
the efficiency of waste management systems. Experts and 
stakeholders from different disciplines need to work together 
to solve the complex interrelationships between plastic waste 
and the formation of MNPs. The polymer industry itself is 
called upon to provide biodegradable plastic products or 
safe-by-design products. With the increasing production of 
plastics, there is also a growing need to finally investigate 
the interaction of MNPs with living organisms both system-
atically and comprehensively, and their possible connection 
with the pathogenesis of disease.

What the media back in 1950 praised as the “matter 
plastic” has now turned into a “plastic matter.” The widely 
understudied interaction of MNPs and human health repre-
sents a major issue on many fronts of specialized disciplines. 
Now, representatives from dedicated disciplines are called 
to join forces to build on the above discussed fundamen-
tals within the scope of a recently emerging research field 
termed “medical polymer science.” In accordance with the 
Sustainability Development Goals of the United Nations, 
the following prominent research questions must be defined 
(Fig. 1):
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1. Physico-chemical matter: What quantities of MNPs are 
released from food and beverage packaging, synthetic 
clothes, or other plastic items? What is the size, shape, 
and composition of these particles?

2. Clinical matter: What fractions of ingested MNPs are 
excreted? Have excreted particles undergone degrada-
tion during gastrointestinal transit? Do these particles 
change the human microbiome composition or alter the 
intestinal barrier? Do they accumulate in the gut or in 
distant tissues and to what extent? Are there any local 
influencing factors such as dysbalanced microbiota or 
increased permeability that boost MNP tissue uptake? Is 
the “Trojan Horse effect” divertible to therapeutic sub-
stances; to induce local cancer treatment by targeting 
particle-driven signaling pathways?

3. Analytical matter: How can we detect MNPs in situ, in 
cell culture systems and/or tissue samples? How can we 
track MNPs on their way through the body?

4. Pathological matter: If accumulated in gut tissue, do 
MNPs and associated contaminants contribute to cancer 
development, growth and spread to other organs? Does 
a high MNP concentration in cancer cells correlate with 
high-grade tumors with poor differentiation states and 
poor prognostic clinical endpoints?

5. Biochemical matter: Are there potential biochemical 
mechanisms to remove or degrade MNPs resident in gut 
tissue?

6. Comparison matter: Do MNPs exhibit different uptake 
and toxicity profiles and pathological signatures com-
pared to other absorbed anthropogenic or natural par-
ticles such as soot, aluminosilicates or artificial  TiO2 
nanoparticles?

Conclusion

The above-mentioned research questions in “Medical 
Polymerscience” will help us to understand MNPs for 
their ability to interact with other substances and materi-
als, which challenge the “plasticity” of the human body. 
The philosopher Catherine Malabou differentiates “crea-
tive plasticity” from “pathological plasticity,” which is 
based on phenomenological analysis of the human brain 
(Malabou 2008), that further applies to the whole human 
body. Creative plasticity affects all life and takes place as 
a balance of destruction and construction. Pathological 
plasticity highlights that this balance cannot be kept, it 
changes the human being in a primarily destructive way. 
In relation to plastic, especially to MNPs, it remains to be 
answered how we can avoid “pathological plasticity” on 
a physical level. To what extent plastic production intro-
duces MNPs into the world that changes the human on 
a biological level in such a way that we are confronted 
with new or known, but modified diseases. Our aim is to 
understand “intra-action” of MNPs with the human body 
at the organ level, at the cellular level and at the protein 
level using the methods detailed above to find more sensi-
tive analytical methods that will detect MNPs in vivo, or 
try to understand their ways of “intra-action” using new 
in silico studies. More detailed research on how MNPs 
affect the structures and processes of the human body, and 
whether and how MNPs can transform cells and induce 
carcinogenesis is urgently needed, particularly in light 
of the exponential increase in plastic production and the 
ensuing accumulation of non-degradable MNPs, the prob-
lem is becoming more urgent with each day.
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