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ABSTRACT

We recently reported the ubiquitous occurrence of
mycotoxins and their secondary metabolites in dairy
rations and a substantial variation in the feeding
management among Austrian dairy farms. The pres-
ent study aimed to characterize to which extent these
factors contribute to the fertility, udder health traits,
and performance of dairy herds. During 2019 and 2020,
we surveyed 100 dairy farms, visiting each farm 2 times
and collecting data and feed samples. Data collection
involved information on the main feed ingredients,
nutrient composition, and the levels of mycotoxin and
other metabolites in the diet. The annual fertility and
milk data of the herds were obtained from the national
reporting agency. Calving interval was the target crite-
rion for fertility performance, whereas the percentage
of primiparous and multiparous cows in the herd with
somatic cell counts above 200,000 cells/mL was the
criterion for impaired udder health. For each criterion,
herds were classified into 3 groups: high/long, mid,
and low/short, with the cut-off corresponding to the
<25th and >75th percentiles and the rest of the data,
respectively. Accordingly, for the calving interval, the
cut-offs for the long and short groups were >400 and
<380 d, for the udder health in primiparous cows were
>20% and <8% of the herd, and for the udder health
in multiparous cows were >35% and <20% of the herd,
respectively. Quantitative approaches were further per-
formed to define potential risk factors in the herds. The
high somatic cell count group had higher dietary expo-
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sure to enniatins (2.8 vs. 1.62 mg/cow per d), deoxyni-
valenol (4.91 vs. 2.3 mg/cow per d), culmorin (9.48 vs.
5.72 mg/cow per d), beauvericin (0.32 vs. 0.18 mg/cow
per d), and siccanol (13.3 vs. 5.15 mg/cow per d), and
total Fusarium metabolites (42.8 vs. 23.2 mg/cow per
d) and used more corn silage in the ration (26.9% vs.
17.3% diet DM) compared with the low counterparts.
Beauvericin was the most substantial contributing vari-
able among the Fusarium metabolites, as indicated by
logistic regression and modeling analyses. Logistic anal-
ysis indicated that herds with high proportions of cows
with milk fat-to-protein ratio >1.5 had an increased
odds for a longer calving interval, which was found to
be significant for primiparous cows (odds ratio = 5.5,
95% confidence interval = 1.65-21.7). As well, herds
with high proportions of multiparous cows showing lev-
els of milk urea nitrogen >30 mg/dL had an increased
odds for longer calving intervals (odds ratio = 2.96,
95% confidence interval = 1.22-7.87). In conclusion,
the present findings suggest that dietary contamination
of Fusarium mycotoxins (especially emerging ones),
likely due to increased use of corn silage in the diet,
seems to be a risk factor for impairing the udder health
of primiparous cows. Mismatching dietary energy and
protein supply of multiparous cows contributed to re-
duced herd fertility performance.

Key words: mycotoxins, phytoestrogens,
management, dairy cow performance, fertility

feeding

INTRODUCTION

Contamination of dairy feed commodities with multi-
ple naturally occurring toxins and endocrine disruptors
has been recently emphasized in the literature (Driehuis
et al., 2008a; Rodriguez-Blanco et al., 2020; Penagos-
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Tabares et al., 2022a,b). Mycotoxins, to some extent
neglected in ruminants (Rodrigues, 2014), are one of
the most critical threats to food/feed safety and secu-
rity due to their effects on human and animal health,
making these compounds pose considerable economic
implications (Fink-Gremmels, 2008b; Santos and Fink-
Gremmels, 2014; Gallo et al., 2015). The toxicological
activity of mycotoxins can be manifested as hepatotox-
icity, neurotoxicity, nephrotoxicity, and secondary infec-
tions induced by immunosuppression, and the signs or
lesion manifestations can be belated due to long-term
exposure (Sharma, 1993; Fink-Gremmels, 2008b; Sun
et al., 2022). Additionally, impaired fertility or disor-
ders could result from dietary exposure to mycotoxins
and phytoestrogens. Some fungal metabolites, such as
zearalenone (ZEN), as well as plant metabolites such
as phytoestrogens, are known compounds with estro-
genic activity (Reed, 2016; Mostrom and Evans, 2018;
Liu and Applegate, 2020). Ruminal microbiota me-
tabolize many toxins (Upadhaya et al., 2010), including
mycotoxins such as ochratoxin A to the less toxic com-
pounds ochratoxin o and phenylalanine (Hult et al.,
1976). However, the released metabolites from ruminal
mycotoxin degradation are not always less toxic. For
instance, the ruminal metabolism of ZEN in the rumen
can result in the metabolite a-zearalenol (Hartinger et
al., 2023), which has a potency factor of 60 compared
with the parent compound (EFSA Panel on Contami-
nants in the Food Chain et al., 2017). Additionally,
other Fusarium-derived toxins such as trichothecenes,
fumonisins B1 and B2 (FB1 and FB2), deoxynivalenol
(DON), and beauvericin (BEA) have been reported
to affect in vitro bovine granulosa cell function, as well
as generally affect the reproductive function of domes-
tic animals (Pizzo et al., 2016; Albonico et al., 2017;
Chiminelli et al., 2022).

Some of the generic signs associated with subclini-
cal mycotoxicoses in livestock are a reduction of feed
intake, a decrease in nutrient absorption, presentation
of metabolic disorders, endocrine alterations, and a de-
cline in reproductive as well as productive performance
(Richard and Thurston, 1986; Fink-Gremmels, 2008b;
Simion, 2018). Fusarium-derived mycotoxins and me-
tabolites are considered the most relevant fungal con-
taminants in the TMR of dairy cows (Nesic et al., 2014;
Santos Pereira et al., 2019) and animal feeds, which
could be detected across feedstuffs of TMR (Penagos-
Tabares et al., 2022a,b). Emerging mycotoxins such as
enniatins (ENN), BEA, and culmorin (CUL) co-occur
with other Fusarium mycotoxins such as DON, ZEN,
and FB1 (Mousavi Khaneghah et al., 2019). Enniatins
and BEA have antibacterial and cytotoxic properties
that can affect the rumen ecosystem, generating dys-
biosis. However, the implications of emerging mycotox-
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ins for health and performance in ruminants and other
zootechnical species are underexplored (Sy-Cordero et
al., 2012; Kfizovd et al., 2021).

Feeding management affects herds’ health, produc-
tion, and reproduction, as well as the quality and safety
of the derived dairy foods (FAO et al., 2014). Feeding
management also affects dietary contamination levels
with undesirable substances such as mycotoxins. For
instance, corn silage is a forage source with high energy
and is one of the most common forage ingredients in
the diets of dairy and beef cattle in Europe and North
America (Wilkinson and Toivonen, 2003). Unfortu-
nately, corn silage is also a primary feed source prone
to spoilage and, consequently, a risky feed ingredient
concerning mycotoxin contamination (Driehuis et al.,
2008b; Penagos-Tabares et al., 2022a,b). Diets fed to
dairy cattle without matching their optimal dietary
requirements, especially energy and protein, can also
lead to health problems, decreased productivity, and
fertility (Butler and Smith, 1989; Canfield et al., 1990;
Humer et al., 2018).

Monitoring and data collection are essential in assess-
ing dairy herds’ performance and health status because
they allow the identification of potential for improve-
ment (von Keyserlingk et al., 2012; Egger-Danner et al.,
2020). We previously showed that dairy farms varied
considerably in terms of feed management, for example,
feed choice, nutrient profiles, the hygienic status of feed-
stuffs, as well as physical characteristics (particle size)
of the rations, which had consequences for the dietary
contamination of risky naturally occurring compounds
(mycotoxins, phytoestrogens, and other secondary
metabolites) (Penagos-Tabares et al., 2022b). Exploit-
ing large datasets of cows (provided by the national
record agency) from the previously surveyed farms,
we explored the risks induced by feeding management
parameters and the exposure to mycotoxin/secondary
metabolites on the health status, and productive and
reproductive performance of Austrian dairy herds. We
hypothesized that farms with the greatest mycotoxin
contamination levels, high contents of phytoestrogens,
and suboptimal nutritional status would have higher
risks for impaired health, productive, and reproductive
performance.

MATERIALS AND METHODS

Farm Location and Description of Herds

This research was performed in the framework of a
large project called “D4Dairy” (https://d4dairy.com/
en/#start) that surveyed feed safety aspects of the
dairy sector in Austria. The data related to 100 dairy
farms surveyed, feeds, diets, feeding management as
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well as the level of contamination of the feeds with mix-
tures of mycotoxins and other secondary metabolites
are reported earlier (Penagos-Tabares et al., 2022a,b).
In brief, for this research, we first identified dairy farms
that represent typical dairy production systems in Aus-
tria, including farm size, feeding management, and alti-
tudes, and that fulfill these preconditions: (1) the dairy
farms are registered with Federal Recording Association
(LKV Austria) and provide regular and full records re-
garding cow performance, breeding, health, and fertility
to Zuchtdata EDV-Dienstleistungen GmbH, Austria,
(2) have a herd size of >30 lactating cows per farm and
operate a dairy freestall, (3) have full documentation
of the feeds, pastures, diets, and feeding management
including the fertilization and crop rotation for the en-
tire duration of the study, (4) allow full access to their
farms for sampling and data collection, as well access
to the data as mentioned previously and documenta-
tion. From a large pool of farms that fulfilled all these
preconditions, we randomly recruited 100 farms for this
study. After agreement on data protection and confi-
dentiality with the participating dairy farmers, access
to samples and data was provided. Because no animals
were involved in this research, Institutional Animal
Care and Use Committee approval was not required.
The dairy farms recruited were in the 3 provinces lead-
ing the country’s milk production: Upper Austria (n =
51), Lower Austria (n = 33), and Styria (n = 16). The
farms were in zones within altitudes varying from 262
to 1,300 m above sea level. The herd sizes (number of
lactating cows according to the data of LKV Austria
at the time of investigation according to the record
of Zuchtdata EDV-Dienstleistungen GmbH, Austria)
were, on average, 67 + 16 lactating cows per farm,
varying from 34 to 152 lactating cows per farm. The
annual average of milk production was 8,975 + 1,143
kg/cow per yr (mean + SD; range: 6,000-12,000 kg/
cow per yr), of fat was 376 £ 46.5 kg/cow per yr (mean
=+ SD; range: 250 to 500 kg/cow per yr), and of protein
was 316 + 44.5 kg/cow per yr (mean + SD; range:
200400 kg/cow per yr). The study included computed
data from a total population varying from 6,619 to
6,561 lactating dairy cows during the first and second
visits. Of this cow population, 28% were primiparous
and 73% multiparous. The dominant cattle breed in
the farms were Simmental (83.9%) and, less frequently,
Holstein-Friesian (8.3%) and Brown-Swiss (4.5%).

Data on Feeding Management and Daily Dietary
Exposure to Mycotoxins/Metabolites

Data on feeding management and the estimation
of daily dietary exposure to multiple mycotoxins and
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other secondary metabolites in 100 dairy farms were
obtained based on previously reported data (Penagos-
Tabares et al., 2022b). In brief, the multi-metabolite
analysis based on a validated multi-metabolite liquid
chromatography/electrospray ionization—tandem mass
spectrometry (LC/ESI-MS/MS) tested representa-
tive ration samples (considering basal feed and concen-
trate proportions [fed by automatic feeders and robotic
milking systems]). Precise information on the sampling
method, LC/ESI-MS/MS-based multi-metabolite ana-
lytical procedures, and the proximate nutrient analyses
is described in Penagos-Tabares et al. (2022b). Deter-
mining particle size distribution was done according
to Lammers et al. (1996) and Kononoff et al. (2003).
The dietary concentrations of mycotoxins, phytoestro-
gens, and other secondary metabolites are reported in
our previous article (Penagos-Tabares et al., 2022b).
Estimations of daily exposure (mg/cow per d) to my-
cotoxins and other secondary metabolites were based
on the reported dietary concentrations (expressed as
pg/kg DM of ration; Penagos-Tabares et al., 2022b),
considering the assumed average of DMI feed data of
the study (21.8 kg DM /cow). Information regarding the
diet ingredients of the basal feed and DMI was obtained
from the personnel responsible for feeding management
via interviews guided by a questionnaire. Two visits to
each pilot farm were performed. Each visit included feed
sampling and an interview concerning feeding manage-
ment. These visits were carried out from May 2019 to
September 2020, with 100 farms during the first round
of visits and 98 farms during the second round.

Datasets on the Performance and Health Status
of the Herds

Pseudonymized datasets of indicators related to
production, fertility, and udder health status of the
100 dairy herds were provided by Zuchtdata EDV-
Dienstleistungen GmbH, Austria, within the project.
This organization is commissioned to operate the
central data processing for the milk recording system
and performance testing of Austrian dairy farms.
Since 2006 Austria has been implementing a monitor-
ing system of herd health, fertility, and performance,
which has become part of the routine performance data
recording and is a tool of herd management support
for dairy farmers (Egger-Danner et al., 2012; Fuerst
and Egger-Danner, 2014). This monitoring system has
become widely disseminated; for instance, in 2017, 66%
of dairy herds and 80% of dairy cows in the country
joined this monitoring system (ZAR, 2018). The col-
lected data include multiple parameters of production
(e.g., yield), fertility (e.g., calving interval), health
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status (e.g., SCC and diagnostics), and indicators of
the nutritional status (such as MUN and milk fat-to-
protein ratio [FPR]), among others (Fuerst-Waltl et
al., 2016; Egger-Danner et al., 2020). All participating
farms achieved milk performance testing approximately
every 5 wk. The dataset included information on the
number of cows present on the farm during the refer-
ence period (one year), mean milk yield (kg), mean
calving to first service interval (d), mean calving in-
terval (d), and the nonreturn rate at 90 d (%). All the
included herds performed Al by veterinarians or quali-
fied personnel. Udder health variables included mean
SCC (x 10° cells/mL), percentage of cows in the herd
with SCC >200,000, and percentage of cows diagnosed
with udder issues (acute mastitis, chronic mastitis, ud-
der edema, and diseases of the udder and the teat) in
primiparous and multiparous cows. Milk variables asso-
ciated with metabolic status indicators such as the rate
of cows with milk FPR >1.5 (%) and the incidences of
metabolic diagnoses (such as milk fever, clinical keto-
sis, tetany, other metabolic diseases, rumen acidosis,
and displaced abomasum) were also provided. These
parameters were derived from validated data previously
described by Egger-Danner et al. (2013, 2020).

Statistical Analyses

All previously described data were curated (i.e.,
organized and integrated) and stored in Microsoft
Excel (Microsoft Corp.). All statistical analyses were
performed using the procedures of SAS (version 9.4,
SAS Institute Inc., Cary, NC). Data on health and
performance were at the herd level (i.e., means taken
from individual cow data over the year). Subsequently,
the herds were classified into 3 groups: low/short, high/
long, and mid (medium), corresponding to following
the <25th and >75th percentile and the rest of the
data, respectively. The duration of the calving interval
represented the fertility performance (long: >400 d,
mid: <400 to >380 d, short: <380 d). The insemination
index (defined as the number of inseminations per fer-
tilization) was also considered for the discussion of the
results. The udder health was defined by the proportion
of cows in the herd that experienced SCC exceeding
200,000 cells/mL milk. The SCC data of primiparous
cows (high: >20% of the herd, mid: >8% to <20%, and
low: <8%) were distinguished from multiparous cows
(high: >35%, mid: >20% to <35%, and low: <20%).
A comparison of these 3 groups per target trait was
performed with the MIXED procedure of SAS using
the following model:

Y =p+ g+ + ey
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where p is the overall mean, g; is the fixed effect of
the group i (high, mid, low), r; is the random effect
of the visit j (1 or 2), and ey is the residual error. An
orthogonal CONTRAST analysis between high versus
low was also performed.

A set of factors (contaminant variables or dietary
variables) that detected significant (P < 0.05) differ-
ences between the groups described above were further
tested using quantitative approaches. First, the odds
of various factors (i.e., mycotoxin concentrations and
dietary factors) to increase the likelihood for herd’s
long calving interval or high SCC incidence in primipa-
rous and multiparous cows was tested using the logis-
tic approach (PROC LOGISTIC) of SAS. Odds ratio
(OR) estimates and the respective profile-likelihood
confidence intervals (CI) were computed from expo-
nentiating the difference of the logits between the low
versus high groups. The UNITS statement was used to
specify units of change for the continuous explanatory
variable. Because the explanatory variables differ in
value intensities (e.g., high abundant mycotoxins vs.
low abundant ones), their standard deviation was used
to specify these units of change.

In addition, model building from the same set of tar-
get contaminants or dietary variables was done using
stepwise logistic regression in PROC LOGISTIC. The
final model included only significant predictors (P <
0.05) and was accepted when there was no evidence of
a lack of fit in the selected model (P > 0.05) accord-
ing to the Hosmer and Lemeshow test. The analysis
of maximum likelihood estimates was performed to
evaluate the effects of continuous explanatory variables
(i.e., Wald chi-square test), and compute the Wald CIT
and the predicted probability (i.e., using the option
PLOTS = EFFECTS). The receiver operating char-
acteristic (ROC) curve and the area under the curve
of the models were also computed. The 3-dimensional
surface plot underlining the response of the dependent
variable (z) to 2 explanatory variables (x and y) was
performed using the G3D procedure and the G3GRID
procedure of SAS. The G3GRID procedure interpolates
the value of the vertical (z) variables for each point on
the horizontal (x—y) plane.

RESULTS

Effects on Udder Health Status

As shown in Table 1, dietary concentrations of total
fungal metabolites (P = 0.202), total Fusarium metab-
olites (P = 0.006), DON (P = 0.015), ZEN (P = 0.035),
and the Fusarium-derived emerging mycotoxins, includ-
ing ENN (P = 0.052), and BEA (P = 0.001), CUL (P
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= 0.013), and siccanol (P = 0.011), were higher in the
high SCC group compared with the low counterparts
of primiparous cows. Such differences between the high
SCC group versus low SCC were not detected for mul-
tiparous cows (Table 1).

Among these potential Fusarium metabolites, we
showed that BEA was the strongest predictor of the
high incidence of primiparous cows showing high SCC
counts (>200,000 cells/mL) based on logistic analysis
(Figure la). Accordingly, the OR was 1.643 (95% CI
range: 0.92-3.19). Following the stepwise logistic re-
gression, the final model is Y = —0.9650 (+0.3709) +
[3.3774 (£1.3613) x BEA (mg/cow per d)], P = 0.013.
The area under the ROC curve is 0.6264 and high
probabilities (>0.6) of herds with high proportions of
cows experiencing high SCC levels are predicted when
the estimated daily BEA intake >0.5 g/cow (Supple-
mental Figure S1, https://doi.org/10.6084/m9.figshare
.24657369.v1; Zebeli, 2023). In contrast, none of the
target mycotoxin variables was found to be the signifi-
cant predictor in multiparous cows. However, DMI was
found to be influential. It showed a negative relation-
ship with elevated SCC in multiparous (20.8 kg/cow
per d for the high SCC group and 22.5 kg/cow per d for
the group with a low SCC group; Supplemental Table
S1, https://doi.org/10.6084/m9.figshare.24657369.v1;
Zebeli, 2023). This was in line with the modeling using
the stepwise logistic regression: Y = 5.5609 (+2.3543)
— [0.2520 (£0.1078) x DMI (kg/cow per d)], P =
0.019. The area under the ROC curve is 0.6734 and the
model predicted high probabilities (>0.6) of herds with
high proportions of multiparous cows showing elevated
SCC levels when the DMI is below 20 kg/d (Supple-
mental Figure S2, https://doi.org/10.6084/m9.figshare
.24657369.v1; Zebeli, 2023).

Our data further showed that the incorporation of
corn silage as well as hay in the diet seems to play a
role in udder health, considering that the content of
corn silage (P = 0.002) and hay (P = 0.075) in rations
of the high SCC group was higher than the low group
(Table 2). Both forage components increased the odds
of primiparous cows with SCC exceeding 200,000 cells/
mL (Figure 1b). Specifically, the average OR for corn
silage was 2.29 (95% CI range: 1.39-4.02, P = 0.002),
and for hay was 2.50 (95% CI range = 1.08-7.83, P
= 0.08). In good agreement, the modeling suggested
the significance of the corn silage content in increasing
the probability of high incidence of elevated SCC in
primiparous cows (Supplemental Figure S3, https://doi
.org/10.6084/m9.figshare.24657369.v1; Zebeli, 2023).
The parameter estimates are as follows: Y = —1.3308
(£0.4612) + [0.0514 (£0.0175) x corn silage (% in diet
DM)], P = 0.003, and the area under the ROC curve
of the model is 0.6264 (Supplemental Figure S3). More-
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over, corn silage contributed to the dietary concentra-
tions of BEA. Figure 2 depicts clearly that herds with
primiparous cows with high SCC incidence had both
high BEA concentrations and corn silage proportions
in their diets.

Concerning multiparous cows, of all Fusarium myco-
toxins tested, siccanol tended to be greater in the high
SCC group compared with the low counterpart, though
it did not reach significance (P = 0.11; Table 1). Its OR
(1.7583; CI = 0.8799-4.0501) for high SCC incidence
in multiparous cows was also the highest among other
Fusarium mycotoxins tested, albeit not significant (P =
0.137, Figure 3). Not all mycotoxins negatively affected
the udder health of multiparous cows. For instance, the
dietary concentration of Penicillium metabolites (P =
0.018) was lower in the high SCC group than the low
SCC group (Table 1).

Effects on Fertility Traits

Data showed that long and short groups did not dif-
fer regarding the dietary contamination levels of myco-
toxins, mycoestrogens, and phytoestrogens (Table 3).
The cut-off was sufficient to identify differences in the
other fertility traits, such as resting time and service
period, and a higher insemination index than the short
counterparts (P < 0.001), but neither had any effects
on yearly milk yield (Table 4). Although differences
in the fertility traits were present, the values suggest
that the participating farms in general did not have
differences in terms of reproductive performance. In
addition, the OR analysis also indicated that whereas
DON increased the odds of extended calving interval
(OR 1.58, P = 0.119), CUL decreased it (0.49, P =
0.085; Figure 4).

Our findings confirmed that the nutritional status
of dairy cows is critical for fertility, too. Table 2 shows
that the NFC content in the diet was higher in the herds
with long intervals compared with the short counter-
part (P < 0.05). The modeling also corroborates such a
positive relationship between the dietary NFC content
and long calving interval: Y = —1.8308 (40.695) +
[0.0627 (£0.028) x NFC (% DM)] (P = 0.023) with the
area under ROC curve of 0.6389 (Supplemental Figure
S4, https://doi.org/10.6084/m9.figshare.24657369.v1;
Zebeli, 2023). The model predicted high probabilities
(>0.6) for herds to have long calving intervals when the
dietary NFC content exceeds 35%. Likewise, a signifi-
cant effect (P = 0.038) was detected for the content of
particles with a size between 8 to 19 mm (usually as-
sociated with cereal grains or grain-containing forages,
such as corn silage; Table 2).

Nevertheless, results based on milk component vari-
ables of herds with different calving intervals suggest
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Figure 1. The likelihood of high incidence of udder health (i.e., >20% of the herd with SCC >200,000 cells/mL) in primiparous cows related
to (a) the dietary exposure of Fusarium-derived metabolites and (b) the dietary content (% of DM) of corn silage, straw, hay, and brewer’s spent
grains. Odds ratios estimates with the 95% profile-likelihood confidence limits (values in parentheses). *0.05 < P < 0.15; **P < 0.05.

that metabolic status may influence the fertility health
of the herd (Table 4). For instance, parameters such as
MUN and FPR of dairy cows showed negative implica-
tions on calving interval. Multiparous cows from herds
with longer calving intervals evidenced higher FPR dur-
ing the 100 d of lactation (P < 0.001), a higher occur-
rence of FPR >1.5 (P < 0.001), and MUN >30 mg/dL

Journal of Dairy Science Vol. 107 No. 2, 2024

(P = 0.008). We observed also that the proportion of
cows with high FPR (>1.5) reflected greater herd vari-
ability than when using the mean FPR value that was
only 0.02 units apart as a result of high cow-to-cow
variation in the herd (Table 4). Primiparous cows from
herds with longer calving interval showed a higher inci-
dence of FPR >1.5 (P = 0.028). The herds with longer
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Figure 2. The proportion of primiparous cows in the herd with elevated SCC (>200,000 cells/mL) levels in response to the daily dietary
exposure of beauvericin (mg/cow per d) and the dietary content of corn silage (% DM).

calving intervals also had higher incidences of elevated
SCC (>200,000/mL) in primiparous (P = 0.046) as
well as in multiparous cows (P = 0.005; Table 4). In
addition, logistic analyses were performed to underline
the likelihood of long calving intervals with SCC vari-
ables (Figure 5a), MUN variables (Figure 5b), and fat-
to-protein ratio (Figure 5c). The results confirmed the
discrete comparisons that herds with multiparous cows
with high MUN (>30 mg/dL) and herds with cows with
high FPR (>1.5) had an increased likelihood for long
calving intervals. Specifically, the OR for MUN >30
mg/dL in multiparous cows = 2.96 (CI = 1.22-7.87,
P = 0.021). For milk FPR >1.5, the OR for primipa-
rous cows was 5.49 (CI = 1.65-21.69, P = 0.009) and
for multiparous cows was 4.08 (CI = 0.98-18.61, P =
0.058; Figure 5).

DISCUSSION

The main hypothesis of this research was that farms
with the greatest mycotoxin contamination levels would
have higher odds for impaired udder health. Using the

Journal of Dairy Science Vol. 107 No. 2, 2024

SCC as an indicator of udder health, our data indicated
that udder health status of primiparous cows was the
most responsive variable to dietary contamination of
Fusarium mycotoxins. In healthy cows, SCC should
usually be <200,000 cells/mL, a value generally sug-
gested in the literature to predict intramammary infec-
tion (Pantoja et al., 2009; Malik et al., 2018). Previous
reports have linked increased SCC and reproductive dis-
ruption with the dietary intake of Fusarium mycotoxins
(Illek et al., 2010; Kiyothong et al., 2012; Falkauskas
et al., 2019). However, it is important to note that the
dietary levels of contamination with Fusarium myco-
toxins (DON, ZEN, FB1, and FB2) in our dairy farms
were lower than the guidance levels of the European
Commission (Penagos-Tabares et al., 2022b). Literature
has recognized that low levels of Fusarium mycotoxins
could have a hidden impact on impairing the udder
health status of cows (Fink-Gremmels, 2008b; Gallo et
al., 2022), and our data provide evidence linking subtle
levels of dietary contamination levels with Fusarium
mycotoxins with impaired udder health, particularly
in primiparous cows. In contrast, our analyses sug-
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Figure 3. The likelihood of high incidence of udder health (i.e., >35% of the herd with SCC >200,000 cells/mL) in multiparous cows. Odds
ratios estimates with the 95% profile-likelihood confidence limits (values in parentheses). *0.05 < P < 0.15.

gested that multiparous cows appear more resistant to
mycotoxins in terms of udder health than primiparous
cows in the herd. The dominant tendency of elevated
incidences of herds with elevated SCC incidences under
high concentrations of Fusarium mycotoxins was more
evident in primiparous, suggesting more susceptibility
to adverse effects of these kinds of toxins. This can
be explained because primiparous cows are generally
more predisposed to metabolic and oxidative stress,
social stress, rumen acidosis and dysbiosis, adaptation
at the physiological level, and negative energetic bal-
ance (NEB) than multiparous ones (Yehia et al., 2020;
Stauder et al., 2020; Pacifico et al., 2020). It seems
that, besides metabolic and general stress related to
the periparturient period, mycotoxins can also trigger
additional oxidative stress in the organism of mammals
(Mavrommatis et al., 2021; Zhang et al., 2021; Fu et
al., 2022). In addition, NEB in dairy cattle is directly
related to the suppression of the immune system (Goff,
2008; Mordak and Stewart, 2015), and the postpartum
primiparous cows show higher susceptibility to NEB
impacts than multiparous cows (Yehia et al., 2020).
The results seem to confirm the notion that even
low dietary mycotoxin levels can affect the efficiency of
dairy herds (Fink-Gremmels, 2008b; Gallo et al., 2022).

Journal of Dairy Science Vol. 107 No. 2, 2024

Culmorin potentially influences the toxicokinetics of
DON due to CUL suppressing the glucuronidation of
DON (Woelflingseder et al., 2019). The effect of myco-
toxins with antimicrobial activity (i.e., BEA and ENN)
in dairy cows could reduce feed conversion and increase
the prevalence of diarrheic events, thus decreasing
milk production and increasing SCC (Fink-Gremmels,
2008b). Toxic effects of Fusarium toxins on the mam-
mary gland have rarely been studied. Recent research
on bovine mammary epithelial cells suggests that DON,
ENN B, and BEA can impair the bovine mammary
gland homeostasis and its innate immune function (Xu
et al., 2022), which agrees with and supports our re-
sults. Emerging fusarial mycotoxins, such as BEA and
ENN, have been defined as fungal toxins that are non-
contemplated in the legislation and nonregularly exam-
ined but occur commonly in agricultural commodities
(Vaclavikova et al., 2013). However, previous studies,
including the scientific opinion of the European Food
Safety Authority (EFSA, 2014), did not report severe
risks for livestock species produced by these emerging
mycotoxins (BEA and ENN), highlighting the need for
additional toxicological research. Likewise, our results
and the high occurrence of these fungal toxins in ani-
mal feeds reinforce the idea of the necessity of further
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Table 3. Comparison of the estimated daily dietary exposure (mg/cow per d) to metabolites/mycotoxins and
other metabolites as well as feeding management parameters in herds differing in fertility performance based

on calving intervals

Based on calving interval'

Short Mid Long Contrast:
Variable (mn=62) (mn=92) (n=44) SE P short vs. long
Metabolite (mg/cow per d)
Alternaria-derived 7.79 10.72 9.55 1.78 0.249 0.403
Aspergillus-derived 2.78 2.37 3.42 1.42 0.184 0.301
Ergot alkaloids 0.08 0.14 0.22 0.06 0.366 0.157
Fusarium-derived 29.6 27.8 36.4 7.19 0.352 0.294
Penicillium-derived 4.60 4.80 3.47 0.56 0.157 0.139
Total fungal metabolites 47.2 48.2 55.1 9.09 0.486 0.266
Phytoestrogens 1,497 1,684 1,267 323 0.282 0.419
Deoxynivalenol 2.89 2.60 4.32 0.62 0.152 0.139
Zearalenone 0.40 0.35 0.62 0.11 0.137 0.140
Fumonisins 2.40 2.13 2.67 0.45 0.685 0.686
Beauvericin 0.23 0.22 0.23 0.03 0.864 0.870
Enniatins 1.77 1.55 1.64 0.24 0.465 0.566
Culmorin 7.62 6.69 8.05 1.91 0.507 0.755
Siccanol 7.02 8.01 11.11 3.97 0.348 0.158
Mycoestrogens + phytoestrogens2 1,500 1,688 1,271 323 0.281 0.420
Nutrient composition’
DM (% as fresh) 37.6 36.5 37.9 0.8 0.228 0.578
CP (% of DM) 15.4 15.6 14.9 0.4 0.123 0.185
Ash (% of DM) 8.5 8.0 8.1 0.2 0.246 0.292
EE (% of DM) 2.8 2.6 2.7 0.1 0.296 0.605
NDF (% of DM) 51.1 50.8 48.9 3.6 0.154 0.067
NFC (% of DM) 22.2¢ 23.0 25.3" 3.2 0.047 0.016
Forage in diet (% of DM) 65.7 65.6 66.9 1.8 0.757 0.533
Particle fraction' (% retained)
Long 51.6 44.5 44.2 2.4 0.053 0.053
Medium 20" 24.5" 23.5" 1.4 0.038 0.099
Short 24.2 26.4 27.3 1.2 0.186 0.093
Fine 4.3 4.6 5.0 0.4 0.396 0.396
DMI (kg/cow per d) 22.1 21.6 21.5 0.4 0.491 0.299
Main ingredient (% of DM)
Corn silage 19.5 23.9 23.4 1.8 0.154 0.167
Grass silage 43.5 38.5 40.2 2.1 0.174 0.308
Straw 1.6 1.8 2.1 0.3 0.512 0.252
Hay 0.9 0.7 1.2 0.4 0.635 0.576
Brewer’s spent grains 1.3 1.1 0.3 0.763 0.748
Other silages 0.3 0.3 0.3 0.192 0.968

““Mean values of daily dietary exposures and feeding management parameters that differ significantly (P < 0.05).
"The short, mid, and long groups correspond to the <25th, 25th to 75th, and >75th percentile, respectively.
For instance, short: <380 d, mid: >380 and <400 d, and long: >400 d.

P . . .
Mycoestrogens = accumulated concentration of zearalenone, alternariol, and alternariol-methyl-ether; phy-
toestrogens = accumulated concentration of biochanin, coumestrol, daidzein, daidzin, formonetin, genistein,

genistin, glycitein, glycitin, and ononin.

30f basal diet. EE = ether extract. The additional fed concentrate was not included.

‘Estimated using Penn State Particle Separator consisting of 3 sieves with aperture diameters of 19 mm (long),
8 mm (medium), and 1.18 mm (short) in diameter and pan (fine), on an as-fed basis, according to Lammers

et al. (1996) and Kononoff et al. (2003).

research on their toxicological properties (EFSA, 2014).
The high co-occurrences (>70%) of ENN, BEA, CUL,
and others indicate that the research emphasis, risk
assessment, and prevention should be focused on these
recurrent toxic metabolites and their mixtures (Pena-
gos-Tabares et al., 2022b). These toxins have been ne-
glected in cattle for several years compared with other
zootechnical species. Still, now it is well known that the
idea that fusarial mycotoxins are only detrimental to

Journal of Dairy Science Vol. 107 No. 2, 2024

monogastric animals is obsolete and antiquated (Gallo
et al., 2022). Mycotoxins can also induce immunotoxic
effects (Sun et al., 2022). Interestingly, ENN (A and
B) and BEA showed higher cytotoxicity than ZEN and
DON on a human neuroblastoma cell line. The same
study evidenced that DON possesses more cytotoxic-
ity than the also regulated ZEN (Pérez-Fuentes et al.,
2021), suggesting that its toxicity should be seriously
considered. In general, in vivo toxic effects of fusarial
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Table 4. Comparison parameters of productive and reproductive performance, as well as udder health and metabolic status in herds, with

groups differing in calving interval

s 1
Based on calving interval

Short Mid Long Contrast:
Variable (n = 62) (n=92) (n = 44) SE P short vs. long
Productive performance
Milk yield (kg/cow per yr) 8.932 9.165 8.638 156 0.039 0.189
Milk fat (kg/cow per yr) 375 381 369 6 0.417 0.539
Milk protein (kg/cow per yr) 314 321 307 6.1 0.192 0.444
Reproductive performance
Resting time (d) 60.3° 70" 79.5" 14 <0.001 <0.001
Service period (d) 83.8° 102" 132" 1.6 <0.001 <0.001
Insemination index (primiparous) 1.90° 2.01" 2.39" 0.07 <0.001 <0.001
Insemination index (multiparous) 1.56° 1.71° 2.09" 0.07 <0.001 <0.001
Cows diagnosed with fertility issues (%) 24.7 23.8 23.4 3.6 0.970 0.816
Udder health status
Primiparous
SCC (x 1,000/mL) 120 129 139 6.7 0.176 0.064
Cows with SCC >200,000 cells/mL (%) 12.5” 13.9” 15.4* 0.9 0.133 0.046
Cows diagnosed with udder issues (%) 6.04 5.72 5.00 1.19 0.850 0.573
Multiparous
SCC (x 1,000/mL) 221° 232" 270" 14.8 0.009 0.003
Cows with SCC >200,000 cells/mL (%) 25.2° 27.0" 30.2° 14 0.017 0.005
Cows diagnosed with udder issues (%) 11.6 10.3 13.5 1.5 0.324 0.414
Metabolic status
Primiparous
Milk FPR? the first 100 d of lactation 1.257 1.262 1.274 0.01 0.593 0.315
Cows with milk FPR <1.00 (%) 7.26 7.14 6.92 0.86 0.966 0.795
Cows with milk FPR >1.5 (%) 10.9” 12.4° 15.1° 1.2 0.088 0.028
Cows with MUN >30 mg/dL (%) 8.8 9.5 13.3 1.6 0.144 0.066
Cows with MUN <15 mg/dL (%) 21.3 18.2 19.3 2.2 0.553 0.568
Multiparous
Milk FPR the first 100 d of lactation 1.23 1.25° 1.28° 0.008 0.001 <0.001
Cows with milk FPR <1.00 (%) 11.3 10.3 9.6 0.9 0.488 0.241
Cows with milk FPR >1.5 (%) 10.0° 11.9¢ 16.2° 0.8 <0.001 <0.001
Cows with MUN >30 mg/dL (%) 7.8° 11.2"° 13.6" 14 0.025 0.008
Cows with MUN <15 mg/dL (%) 20.7 17-0 18.8 2.0 0.326 0.517

““Mean values of productive, reproductive performance, udder health, and metabolic status parameters that differ significantly (P < 0.05).
'The short, mid, and long groups correspond to the <25th, 25th to 75th, and >75th percentile, respectively. For instance, short: <380 d, mid:

>380 and <400 d, and long: >400 d.
’FPR = fat-to-protein ratio.

mycotoxins can also be generated by intake reduction
and feed refusal, depletion in nutrient absorption, and
impaired metabolism, as well as alteration of the en-
docrine or exocrine systems (Fink-Gremmels, 2008b;
Santos and Fink-Gremmels, 2014). Emerging mycotox-
ins derived from Fusarium species have been reported
to have detrimental effect on the reproductive perfor-
mance of domestic animals with different mechanisms,
such as impairing the development of oocytes, reducing
granulosa cell steroidogenesis, and inhibiting sperm mo-
tility, among others (Albonico et al., 2017; Chiminelli
et al., 2022). However, more studies on the toxicity and
action mechanisms of Fusarium mycotoxins (especially
the emerging ones) in animals and humans should be
addressed (Chiminelli et al., 2022).

The presented results reinforce the idea that corn si-
lage could be a potentially risky feedstuff in the diet of
Austrian dairy cows, highly correlated with Fusarium

Journal of Dairy Science Vol. 107 No. 2, 2024

(emerging) mycotoxins. Previous reports also describe
corn silage as a potentially risky feed, regarding my-
cotoxin contamination in dairy cattle (Reisinger et
al., 2019; Danicke et al., 2020). The presented results
indicate that higher levels of corn silage can implicate
a risk with the increment of SCC, which agrees with
an experiment carried out for 12 wk evaluating the ef-
fects of diets based on grass silage and corn silage. The
grass silage feeding presented decreased SCC compared
with their corn silage—fed counterparts (Déanicke et al.,
2020). The association between corn silage and disease
risks was evidenced via a systematic approach in a
study that included 166 Austrian dairy farms with a
total of 5,858 dairy cows (Matzhold et al., 2021).
Although a reduction in milk yield performance re-
lated to the dietary exposure to mycotoxins was not
evidenced in this study, previous research using con-
trolled in vivo experiments has evidenced that Fusarium
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Figure 4. The likelihood of herds with long calving intervals (>400 d) related to the dietary exposure to Fusarium mycotoxins. Odds ratios
estimates with the 95% profile-likelihood confidence limits (values in parentheses). *0.05 < P < 0.15.

mycotoxin can reduce milk production (McKay et al.,
2019; Falkauskas et al., 2022). An in vivo feeding study
with dairy cows during a 28 d period with different con-
centrations of Fusarium mycotoxins (DON and ZEN)
below the EU guidance levels can decrease farm pro-
ductivity (McKay et al., 2019). Another study, which
fed diets with 1,966 pg of DON/kg of TMR DM and
366 pg of ZEN /kg of DM did not find an effect on DMI,
milk production, or composition of early lactation. Al-
though a not significant decrease of 0.74kg/cow per d
in milk production due to feeding contaminated rations
was reported, the reduction in the output generated a
significant decline in farm gate income (McKay et al.,
2019). Another trial, which fed dairy cows with natu-
rally contaminated TMR with ZEN (300-500 pg/kg)
and DON (102-200 pg/kg), evidenced a significantly
reduced milk yield (20.8%), fats (11.8%), and proteins
(3.5%; Falkauskas et al., 2022). An influence in the
hepatic enzymes has been also reported in the same
study; for instance, alkaline phosphatase increased by
25%, albumin decreased by 8.7%, and creatinine de-
creased by 40% (Falkauskas et al., 2022).
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Additionally, mycotoxins can modify the rumen
microbiota and induce dysbiosis due to their antimi-
crobial activity and exert a modulating effect on the
host animal’s immune system, even at low doses (Liew
and Mohd-Redzwan, 2018; Hartinger et al., 2022). My-
cotoxins represent relevant factors linked to high SCC
and udder diseases. In practice, it is not rare to see
that the supply of moldy feeds significantly negatively
affects udder health and can substantially increase SCC
(Fink-Gremmels, 2008a; Kaskous, 2021). Crops and
feedstuffs must be protected from contamination with
fungi secondary metabolites to avoid the high burdens
of these ubiquitous undesirable compounds. When con-
tamination is unavoidable and has been identified, de-
toxifying substances are promissory approach to reduce
the negative impacts of the toxins (Falkauskas et al.,
2022). Detoxifying substances (like anti-mycotoxin ad-
ditives, adsorbents, or binders) can decrease mycotoxin
passage to blood and target organs. Previous studies
have demonstrated the efficacy of anti-mycotoxin addi-
tives in reducing SCC (Kiyothong et al., 2012; Mendoza
et al., 2014; Falkauskas et al., 2022).
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Figure 5. The likelihood of the herd having a long calving interval (>400 d) is associated with (a) SCC-related variables, (b) MUN variables,
and (c) milk fat-to-protein ratio values. Odds ratios estimates with the 95% profile-likelihood confidence limits (values in parentheses). PP =
primiparous; MP = multiparous. *0.05 < P < 0.15 and **P < 0.05.
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Regarding the impairment of reproductive perfor-
mance associated with mycotoxins (also mycoestro-
gens) and phytoestrogens, our results, with no detected
effects, contradicted our expectations. However, it can
be explained because the concentrations of the estro-
genic compounds (mycoestrogens and phytoestrogens)
detected in the surveyed farms were relatively low
(Penagos-Tabares et al., 2022b). Although the pre-
sented data do not suggest reproductive impairment,
several controlled in vivo experiments have evidenced
both mycotoxins and phytoestrogens, in higher levels,
can impair cow reproductive efficiency (Whitlow and
Hagler, 2010; Woclawek-Potocka et al., 2013; Mostrom
and Evans, 2018; Grgic et al., 2021). Mycoestrogens
and phytoestrogens have shown synergistic estrogenic
effects in some in vitro studies (Hessenberger et al.,
2017; Vejdovszky et al., 2017). The unnoticeable dif-
ferences among fertility groups in dietary levels of
these potential metabolites might indicate the higher
tolerance level regarding reproductive performance in
dairy cows. The findings may be related to the farm
characteristics. A calving interval of one year is usually
considered in dairy farming as the optimum lactation
cycle, which includes 10 mo of lactation and 2 mo of
dry period (Ma et al., 2022; Temesgen et al., 2022).

Regarding the nutritional status, milk FPR >1.5 is
considered an indicator of NEB because lipomobiliza-
tion increases the fat content, and energy deficiency de-
creases milk protein (Friggens et al., 2007; Buttchereit
et al., 2012). Cows with FPR >1.5 has been have been
reported showing poor reproductive performance (Heu-
er et al., 1999). A study criticized that FPR cannot be
used as a robust indicator of NEB at an individual cow
level (Cabezas-Garcia et al., 2021). Negative energetic
balance induces a loss of body tissue mass and is linked
with alterations in metabolic and hormone profiles,
which in turn influence fertility (Pryce et al., 2001).
Milk urea nitrogen is a standard parameter used to
estimate diet composition and feeding disorders. Milk
urea nitrogen is highly correlated with the BUN, and
serves as an indicator of protein intake and nitrogen
metabolism in dairy cows (Butler, 1998; Nousiainen et
al., 2004). Previous investigations have also suggested
the increased levels of MUN are negatively related to
dairy cow fertility (Butler, 1998; Rajala-Schultz et al.,
2001; Nourozi et al., 2010). In cattle, several interrelated
events occurring in various sections of the reproductive
tract, resulting in the conception and the establishment
of pregnancy, can be influenced by the urea, ammonia,
and other toxic products of the protein metabolism,
impairing the reproductive efficiency (Ferguson and
Chalupa, 1989; Staples et al., 1993; Butler, 1998).
Specifically, these physiological key events required
until the early pregnancy stage are the progression of
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follicular development, the subsequent ovulation, fertil-
ization, transport and development of the embryo(s),
maternal-embryonic recognition, and implantation (Le-
roy et al., 2015; Lonergan et al., 2016). Concentrations
of BUN (very correlated with MUN) higher than 19
mg/dL have been linked with altered uterine pH and
reduced fertility rate in dairy cows (Butler et al., 1996).
Uterine pH has been inversely related to BUN (Elrod
et al., 1993; Ocon and Hansen, 2003). The increment
of urea not only implicates a pH gradient alteration,
but it also increases the secretion of PGF,, by bovine
endometrial epithelial cells (Butler, 1998). Increased
uterine luminal PGF,, triggers luteolysis, interfering
with embryo development and survival in cows. This
explains another physiological route that links the re-
lationships between elevated MUN, likely as a result
of elevated BUN concentrations and decreased fertility
performance (Skrzypek et al., 2005; Siatka et al., 2020).
As fertility is a multifactorial process that implicates
multiple genetic, nutritional, metabolic, and endocrine
parameters, results on the relationship between milk
production and reproductive performance vary widely
between productive systems, farms, and individuals.
Previous studies indicate that cows with higher milk
production can be positively related to high fertility
(Lépez-Gatius et al., 2006; Temesgen et al., 2022).
However, extensive literature also suggests that dairy
herds with superior milk production generally have
poorer fertility (Lean et al., 1989; Butler, 2000; Pryce
et al., 2004). Overall, our data suggest that decreased
fertility performances can be induced in herds that are
oversupplied with protein relative to the energy supply,
such that higher CP content in the basal diets would
be anticipated, but this was not the case. These results
also suggest that the mismatch of nutrients likely origi-
nated from the management of additional concentrates
given to cows. It is also important to emphasize that
the approach of the ecological studies (like presented
here) is focused on data at the group (dairy herd) level
but not on an individual level (Morgenstern, 1995).
Such studies possess practical advantages, and are
valid and ideal to generate an initial understanding of
the research question. However, these studies also have
limitations including methodologic problems that limit
causal inference, cross-level bias, as well as problems of
confounder control (Morgenstern, 1995). Additionally,
data concerning the kinetic and toxicological interac-
tion of mycotoxins and their mixtures are required to
understand their metabolism and toxic effects before
and after absorption. Some toxic effects can be indirect
(not specific against the animal cells), like the disrup-
tion of the rumen microbial ecosystem by mycotoxins
with antibacterial properties such as the emerging
Fusarium metabolites BEA and ENN (Sy-Cordero et
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al., 2012; Kifzova et al., 2021). Rumen dysbiosis can af-
fect the complete physiology of cattle, inducing, among
others, udder health issues (Wang et al., 2021) as well
as disrupting the rumen metabolism (degradation) of
other mycotoxins (May et al., 2000; Debevere et al.,
2020). Aspects concerning the toxicokinetic and toxi-
codynamic of mycotoxins and their mixtures should be
explored in the next years to obtain a more holistic
overview of the implications of these contaminants on
dairy cattle health and performance.

CONCLUSIONS

The findings of this study underline the potential
risks of dietary contamination of Fusarium metabolites,
especially emerging Fusarium mycotoxins such as BEA,
ENN, and siccanol, on the udder health of dairy cows.
Primiparous cows were more susceptible compared
with multiparous cows in this regard. Corn silage was
found to be a risky feed source affecting udder health
traits because it is associated with Fusarium mycotoxin
contamination in dairy rations. The reported levels of
mycotoxins (i.e., mycoestrogens) and phytoestrogens
detected in the diets of Austrian herds seem not to af-
fect the reproductive performance greatly. Substandard
nutritional status related to the energy and protein of
multiparous cows decreased the fertility performance of
the herds. Considering the limitations of the ecologi-
cal studies, research using controlled conditions will be
necessary to clarify the effects and thresholds of myco-
toxins and other secondary metabolites on the health
as well as productive and reproductive performance of
dairy cattle. Managing feeding and nutrition of cows
will also be instrumental to improve the fertility health
of cows in dairy herds.
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