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Abstract
Aim: The non-stationarity in habitat selection of expanding populations poses a 
significant challenge for spatial forecasting. Focusing on the grey wolf (Canis lupus) 
natural recolonization of Germany, we compared the performance of different dis-
tribution modelling approaches for predicting habitat suitability in unoccupied areas. 
Furthermore, we analysed whether grey wolf showed non-stationarity in habitat 
selection in newly colonized areas, which will impact the predictions for potential 
habitat.
Location: Germany.
Methods: Using telemetry data as presence points, we compared the predictive per-
formance of five modelling approaches based on combinations of distribution mod-
elling algorithms—GLMM, MaxEnt and ensemble modelling—and two background 
point selection strategies. We used a homogeneous Poisson point process to draw 
background points from either the minimum convex polygons derived from telemetry 
or the whole area known to be occupied by wolves. Models were fit to the data of 
the first years and validated against independent data representing the expansion 
of the species. The best-performing approach was then used to further investigate 
non-stationarity in the species' response in spatiotemporal restricted datasets that 
represented different colonization steps.
Results: While all approaches performed similarly when evaluated against a subset of 
the data used to fit the models, the ensemble model based on integrated data per-
formed best when predicting range expansion. Models for subsequent colonization 
steps differed substantially from the global model, highlighting the non-stationarity 
of wolf habitat selection towards human disturbance during the colonization process.
Main Conclusions: While telemetry-only data overfitted the models, using all 
available datasets increased the reliability of the range expansion forecasts. The 
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1  |  INTRODUC TION

There is an increasing need to restore wildlife populations and ecosys-
tems in the 21st century (United Nations, https:// www. decad eonre 
stora tion. org), given the ongoing defaunation in the Anthropocene 
(Dirzo et al., 2014; Schmitz et al., 2023; Young et al., 2016). This 
holds particularly true for the world's large carnivores, who play key 
functional roles in ecosystems (Ripple et al., 2014), yet have been 
extirpated over much of their historical ranges in the past (Chapron 
et al., 2014). Restoring these species can bring major benefits in the 
context of rewilding and to human societies (Fernández et al., 2017; 
Perino et al., 2019), but also lead to increasing human–carnivore con-
flicts. As a result, predicting where and how large carnivore popu-
lations expand is important for their management and conservation, 
and ultimately for fostering coexistence between people and carni-
vores (Treves et al., 2004). Europe, where after centuries of perse-
cution and local extirpation large carnivores have expanded since 
the 1990s—and particularly the case of the grey wolf (Canis lupus, 
hereafter ‘wolf’)—provides a unique, but largely unexplored natural 
experiment to understand how large carnivore recolonization pro-
cesses take place (Chapron et al., 2014; Cimatti et al., 2021; Perino 
et al., 2019).

While the range expansion of wolves in Europe is a recent 
phenomenon that has been studied at broad scales (Nowak 
et al., 2017; Reinhardt et al., 2019), wolf recolonizations in North 
America have been studied in more detail scales (Gantchoff 
et al., 2022; Lesmerises et al., 2012; e.g. Mladenoff et al., 2009; 
Ripple & Beschta, 2012). For example, low road density and natu-
ral cover determined range expansion and habitat selection in the 
Midwest of the United States (Gantchoff et al., 2022; Mladenoff 
et al., 2009), whereas forest cover and food resources have been 
important in boreal forests (Lesmerises et al., 2012). Avoidance 
of high human-density areas is also a common pattern (van den 
Bosch et al., 2022). Analyses of North American wolf habitat selec-
tion patterns over time and space have thus shown considerable 
variability, possibly related to the increasing wolf population size 
(Mladenoff et al., 1997, 2009). When the initial wolf population 
is establishing in an area, it may select the most suitable habitat 
first, with lower-quality habitat subsequently filled as the number 
of packs increases (O'Neil et al., 2020). However, the landscapes 
which are colonized by wolves in North America and Europe dif-
fer hugely, with higher human population density, human pressure 

and habitat fragmentation in Europe, and it thus remains unclear 
whether the insights gained for the wolf expansion in North 
America can be transferred to Europe and other situations. For 
Europe, different attempts have been made to assess potential 
wolf habitat during the expansion of the populations (Fechter 
& Storch, 2014; Jedrzejewski et al., 2008; Louvrier, Chambert, 
et al., 2018; Marucco & McIntire, 2010; Nowak et al., 2017), but 
there is a huge variability in habitat selection factors found across 
these studies, from road avoidance and forest selection to alti-
tude or farmland areas. It remains unclear whether this variation 
reflects wolf preferences, differences in environmental conditions 
or food availability, or whether it is an artefact of the modelling 
process, especially due to data obtained at different phases of the 
expansion process.

Forecasting species range expansion is not easy as it requires 
accounting for the potentially changing behaviour of the species 
in space and over time (O'Neil et al., 2020). While species dis-
tribution models (SDMs) have been shown to be very useful for 
delineating potentially suitable habitat for species based on en-
vironmental predictors (Elith & Leathwick, 2009; Guillera-Arroita 
et al., 2015), these models rely on the assumption of stationary 
processes to predict potential future areas for range expansion. 
In the context of habitat selection, stationarity refers to a con-
stant response of the species to environmental variables across 
time and space. Making reliable forecasts under non-stationary 
conditions—in other words, when the individuals react differently 
to certain environmental variables as may be the case of popu-
lations expanding beyond their current distribution—, may risk 
yielding spurious results due to poorly specified models as well 
as inappropriate spatial inference (Osborne et al., 2007; Rollinson 
et al., 2021). Non-stationarity is important in two ways. First, 
non-stationarity in environmental conditions occurs when the en-
vironmental variables defining the currently occupied habitat of a 
species differ from those defining habitat that the species can ex-
pand into. This makes the transferability of models a difficult task 
(Yates et al., 2018), leading to a potential underestimation of range 
expansion. Second, the habitat selection of individuals during a 
process of population expansion can be non-stationary, leading 
to changing functional responses of individuals towards envi-
ronmental factors over time (Matthiopoulos et al., 2011; Venne 
& Currie, 2021). These functional responses subsume several 
mechanisms behind selection (such as predator escape or foraging 
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non-stationarity in habitat selection pointed to wolves settling in the best areas first, 
and filling in nearby lower-quality habitat as the population increases. Our results cau-
tion against spatial extrapolation and space-for-time substitutions in habitat models, 
at least with expanding species.

K E Y W O R D S
Canis lupus, colonization, data integration, expanding population, human disturbance, large 
carnivore conservation, species distribution modelling
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habitat selection), and hence are correlative simplifications, dif-
ficult to transfer from one situation to the next. Recently, it has 
been suggested that habitat models incorporating data from many 
populations are often better suited for assessing range expansion 
potential than models based on individual populations (Kuemmerle 
et al., 2018; Zurell et al., 2018). Robust modelling techniques and 
careful cross-validation in space and time are needed to deal with 
non-stationarity. Data integration tools (Zipkin et al., 2017, 2021) 
and ensemble modelling approaches (Liu et al., 2019; Thuiller 
et al., 2009) corroborate considerable promise in this regard.

Here, we analyse such models' predictive ability to capture 
range expansions, using the example of a rapidly expanding grey 
wolf population in Germany. The growth of the wolf population 
from one pack in the year 2000 to approximately 130 packs over a 
20-year period (DBBW 2021; www. dbb- wolf. de/ home) is a major 
conservation success regarding the natural recolonization of the 
former range of the species, but also a challenge for co-existence 
of people and carnivores in shared landscapes. On one hand, bet-
ter wolf protection laws effectively restored wolf populations, 
bringing back key ecological functions given their role as top pred-
ators, and might have positive biodiversity effects by controlling 
herbivore populations or providing resources to scavenger spe-
cies (Ripple & Beschta, 2012; Wilmers et al., 2003). On the other 
hand, the presence of wolves may increase conflicts with farmers 
and hunters (König et al., 2020; Treves et al., 2011). These posi-
tive and negative aspects of returning wolves typically result in a 
highly polarized public attitude towards this iconic species (Arbieu 
et al., 2019; Treves et al., 2004). Although wolves are protected in 
most European countries including Germany (Chapron et al., 2014), 
illegal killing as retaliation for livestock depredation, in fear of 
competition for game and fear of wolves became a major source of 
wolf mortality (Ansorge et al., 2006; Bautista et al., 2019; Linnell 
& Alleau, 2016; Nowak et al., 2021; Sunde et al., 2021; Suutarinen 
& Kojola, 2017). Understanding where wolves are likely to expand 
is therefore urgently needed to proactively manage potential con-
flicts and to foster co-existence.

In this study, we aimed at determining the best modelling strat-
egy to obtain a reliable distribution map for potential habitat outside 
the current species range in an expanding population. To answer 
this, we (1) tested different modelling approaches—combinations of 
datasets and modelling algorithms—to predict the expansion of the 
population and validated the model fit with independent data and (2) 
analysed whether data from newly colonized areas showed non-sta-
tionarity in habitat selection that could affect the predictions for the 
species' range expansion forecasts. Specifically, we used telemetry 
data and monitoring locations of territories documenting the wolf 
population expansion in Germany for the first 20 years of popula-
tion establishment, while addressing two main questions: (1) How 
do data from different data sources affect model performance in 
an expanding population? and (2) Can we detect non-stationarity 
in the species' response to the environmental variables at different 
colonization steps, and how does this affect predictions of habitat 
suitability?

2  |  METHODS

The habitat suitability model description follows the ODMAP 
(Overview, Data, Model, Assessment and Prediction) protocol for 
describing SDMs (Zurell et al., 2020) (see Appendix S1: ODMAP).

2.1  |  Study area

Our study region was the highly human-dominated landscape of 
Germany in Central Europe. Germany has a population of circa 83 
million inhabitants (2018) on an area of about 358,000 km2, resulting 
in an average human population density of 232 people/km2. About 
14.2% of the country's surface is occupied by settlements and roads, 
with a total length of 13,000 km of motorways and 125,000 km 
of interstate and main roads, while forest areas represent about 
30%. Although Germany has 16 National Parks, covering a terres-
trial area of approximately 2150 km2 (Federal Agency for Nature 
Conservation—BfN, www. bfn. de/ en), this only constitutes 0.6% of 
Germany's land surface.

2.2  |  Wolf data

The grey wolf is currently recolonizing Germany, with the first ter-
ritories with pups established in Saxony, eastern Germany, in 2000 
(Reinhardt et al., 2021). Since then, the population has spread across 
mainly the northern part of Germany, with a few individuals dispers-
ing to the south (Appendix S2 in Supporting Information, Figure 
S2.1).

Our wolf data comprised two complementary datasets. Our 
first dataset consisted of GPS telemetry locations of 20 collared 
resident wolves from 2009 to 2018 (hereafter ‘telemetry data’). 
Manipulation of individuals in the field was done following a strict 
ethical approach and within approved projects (Appendix S2: 
Table S2.1). We did not consider dispersing individuals for the 
analyses as our focus was on the establishment of territories. 
Three individuals (FT2, MT3, WF5) dispersed after collaring from 
their natal to new breeding territories, in which case only data 
from the newly established territories were used, as natal territory 
data were already available from a parent wolf. For ID1, data from 
its natal (ID1) and breeding territory (ID1p) were included, as no 
parent data were available. Additional information on the collared 
individuals is provided in Appendix S2: Table S2.2. The final telem-
etry dataset consisted of 3841 locations from 21 home ranges (12 
adults and 9 subadults including one home range shift, 183 ± 104 
locations per home range) followed between 2 and 23 months 
(Appendix S2: Figures S2.2 and S2.3). The average home range 
size, defined as the 95% Minimum Convex Polygon (MCP), was 
234.4 ± 129.0 SD km2 (range 45.8–461.8 km2). GPS collars pro-
vided locations every 1–4 h. Thus, to avoid temporal and spatial 
autocorrelation, we selected one location randomly per day (Hiller 
et al., 2015) and further filtered the remaining data to one location 
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per grid cell of 100 × 100 m (resolution of the environmental vari-
ables, see below).

Our second dataset consisted of centroids of known wolf territo-
ries monitored annually since 2000 (www. dbb- wolf. de/ Wolfs vorko 
mmen/ terri torien/ karte - der- terri torien; hereafter ‘monitoring data’) 
(Appendix S2: Figure S2.1). The centroids of the territories were as-
sessed after the end of the monitoring year as the central point of 
all activity signs (scats; camera trap images; telemetry data when 
available; opportunistic sightings; hunt remains) that were assigned 
to the same territory; however, GPS locations of these activity signs 
were not available. Territory areas for our study were delineated 
with a radius of 8 km around their centroids, resulting in territory 
sizes of approx. 200 km2. This refers to the standard procedure of 
the Germany monitoring protocol (Reinhardt et al., 2015).

2.3  |  Environmental variables

Wolves in Central and Northern Europe occur mainly in areas with 
high forest cover, low density of roads and low human population 
density (Cimatti et al., 2021; Jedrzejewski et al., 2008; Louvrier, 
Chambert, et al., 2018), although they can also use open areas such 
as mineral extraction sites (Ansorge et al., 2006). These variables are 
consistent with the species preferences in other areas of their range, 
where they favour forested and low-density road areas (Mladenoff 
et al., 1999, 2009). Therefore, we used five environmental layers to 
represent wolf habitat suitability, with four of them capturing human 
disturbance factors: Human population density (Pop_den), Human 
footprint (HFP), Distance to settlements (Dist_settl) and Distance to 
roads (Dist_roads) (Appendix S2: Table S2.3). Natural environment 
was represented by Corine Land Cover data (CLC2012), which were 
reclassified into seven classes based on habitat features relevant for 
wolves (Appendix S2: Table S2.4): forest, green area with cover (i.e. 
forest), green area without cover, agriculture, urban, water bodies 
and bare areas without cover.

We rasterized and resampled all environmental layers to a 
100 × 100 m resolution for the analyses and tested for multicol-
linearity using Pearson's correlation coefficient (r < |.7| in all cases, 
Appendix S2: Figure S2.4). After the habitat suitability modelling, we 
aggregated the resulting maps to a coarse resolution of 10 × 10 km2 
following the EU Reference Grid (https:// esdac. jrc. ec. europa. eu). 
We did this for visualization and safety reasons, to avoid showing 
exact locations of high suitability to avoid illegal killings. We kept 
a 10-km buffer around the German border to account for suitable 
areas in neighbouring countries that are connected to suitable areas 
within Germany.

2.4  |  Predicting habitat suitability for the 
expanding wolf population

We applied a ‘use versus availability’ approach, where the GPS loca-
tions of the individuals represent the presence of the species that 

were compared with background points representing the available 
range of values for the explanatory variables (Elith et al., 2011). As 
we were modelling the distribution of a species that is expanding 
its range, we used a two-step approach (Figure 1). First, we evalu-
ated different modelling methods and data selection procedures to 
find the best-performing approach in predicting habitat suitability 
for new areas by validating our model with the most recent data not 
used during the model fitting procedure (Step 1, see below). Then, 
we used that modelling approach to obtain the final habitat suitabil-
ity map for the species using all available data (Step 2, see below).

2.4.1  |  Step 1: Modelling habitat suitability for an 
expanding species

Predicting the habitat suitability of an expanding species comes with 
multiple challenges. For starters, predictions outside the range used 
to create the distribution model might be unreliable (Guillera-Arroita 
et al., 2015). Additionally, the area selected for the background 
point extraction can influence model outcomes (Kramer-Schadt 
et al., 2013; Merow et al., 2013; Phillips et al., 2009). With expand-
ing wolf populations being such a sensitive topic due to human–wild-
life conflicts and the strong effect of management measures for the 
species conservation (e.g. Cimatti et al., 2021), our main goal was to 
obtain a model as reliable as possible.

For that reason, we tested five modelling approaches, represent-
ing a gradient in the background selection from an individual-specific 
to a species-broad approach and compared single model algorithms 
with an ensemble model approach (Figure 1.1). Specifically, we 
tested:

1. a generalized linear mixed-effects model (GLMM) accounting for 
the individual's identity (‘individual-id model’) with background 
points obtained from each individual's home range;

2. a machine learning algorithm (MaxEnt; Elith et al., 2011; Phillips 
et al., 2006) as a common approach for SDMs favoured by the 
scientific community (Fourcade et al., 2014) using GPS locations 
as presences and background points obtained from the indi-
vidual home ranges, but without individual identity (‘telemetry 
model—MaxEnt’);

3. a similar MaxEnt model, but using as background points locations 
extracted from the areas occupied by the species as determined 
by the German monitoring program (‘integrated model—MaxEnt’);

4. an ensemble modelling approach (Liu et al., 2019; Marmion 
et al., 2009), as it has been proposed to outperform the individual 
algorithms (Breiner et al., 2015), based on the presence and back-
ground data from the individual home ranges (‘telemetry model—
Ensemble’); and

5. an ensemble model using the same approach as before, but with 
the background points obtained from the areas occupied by the 
species, as determined by the monitoring program (‘integrated 
model—Ensemble’). For the ensemble model, we used seven mod-
elling algorithms including regression (Boosted Regression Trees, 
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    |  5PLANILLO et al.

Multiple Adaptive Regression Splines, Generalized Linear Models 
and Generalized Additive Models) and machine-learning meth-
ods (Random Forest, MaxEnt and Artificial Neural Network). All 
models used a fine spatial resolution of 100 × 100 m, representing 
the resolution of the environmental data associated with the GPS 
locations used as presences.

In all cases, the presences were obtained from the telemetry data 
as the GPS locations of the collared individuals, temporally thinned 
to one location per day to avoid the effects of temporal autocorrela-
tion. For the individual-id analyses, background points were selected 
within the 100% Minimum Convex Polygon (MCP100) derived for 
each individual. For both telemetry models, background points were 
extracted following a homogeneous Poisson point process within the 
MCP100.s The integrated models combined the GPS and monitoring 
data by using the thinned collared data as presences and the known 
territories from the monitoring scheme as available background 

areas to randomly extract the background points also following a 
homogeneous Poisson point process (details in Appendix S2: Section 
S2.1). In all cases, we extracted 10 times more background points 
than observations. Both presences and background points were 
spatially filtered to retain no more than one location per grid cell to 
avoid overrepresentation of environmental variables (Table 1).

To assess model performance for the range expansion, we set 
aside the most recent data (after year 2018) from all datasets and 
used two different evaluation approaches. First, we ran the mod-
els with data from before 2018, separated into training (80%) and 
test (20%) sets. This test set was used to evaluate the model perfor-
mance within the observed range of the species (‘test1—evaluation 
data’, Table 1).

Second, we used the most recent data (data from 2018 to 2020) 
to validate the model's performance including those areas where 
the species expanded to (‘test2—validation data’, Table 1). We used 
receiver operating characteristic area under the curve (AUC, Elith 

F I G U R E  1  Modelling framework 
highlighting the main analyses and 
modelling steps. Panel (1) shows step 1 
of the modelling approaches related to 
first finding the best data structure and 
modelling algorithm. Panel (2) shows the 
final global model. Red ellipses in panel 
(3) delineate the area of data origin for 
the regional models that correspond with 
step 2 of our modelling approach to assess 
non-stationarity in habitat selection 
during the range expansion (cf. Figure 2). 
AUC, area under the curve; TSS, true skill 
statistic.
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et al., 2006), true skill statistic (TSS) based on maximized sensitiv-
ity and specificity (Allouche et al., 2006; Liu et al., 2013) and con-
tinuous Boyce index values (Hirzel et al., 2006) on the evaluation 
and validation test data sets. All SDMs were run in R v. 4.0 (R Core 
Team, 2020), using the packages lme4 (Bates et al., 2015) for GLMMs 
and biomod2 for MaxEnt and ensemble distribution models (Thuiller 
et al., 2023).

2.4.2  |  Step 2: Predicting suitable wolf habitat 
across Germany (‘global model’)

After the validation, we used the best-performing approach (inte-
grated model—ensemble) to obtain the final wolf distribution in the 
study area, now using all the available data (until 2020) to obtain 
a model as reliable as possible (Figure 1.2). In this case, given the 
high number of presence points in the full dataset, we used the same 

number of random background points as presences to optimize al-
gorithm performance (Liu et al., 2019). We ran each model 10 times 
using a random selection of points in each repetition, where 80% 
were assigned as training set and 20% of the points were assigned 
as test set. The final ensemble model (hereafter ‘global model’) was 
built as a weighted average based on AUC, with the threshold for 
inclusion greater or equal to AUC = 0.7 to account only for the best-
performing models.

2.5  |  Analysis of non-stationarity in the responses 
during colonization steps (‘regional models’)

We tested for non-stationarity in wolf habitat selection by param-
eterizing models representing different colonization steps of the 
expanding population (Figure 1.3). We divided the data into three 
different regions, representing different temporal colonization 

TA B L E  1  Number of points and environmental values used in each modelling approach comparing different datasets.

Model Data type n points Main land use

pop_den HFP Dist_settl [m] Dist_roads [m]

Mean SD Mean SD Mean SD Mean SD

Individual-id model

train_presa 2591 104 7.60 29.30 10.16 5.27 529.53 471.37 769.10 647.19

train_bgb 24,722 104 56.03 303.90 12.26 7.15 379.71 382.71 485.35 508.11

test1Eval_presa 649 104 6.67 11.20 10.34 5.40 514.87 444.38 767.02 662.40

test1Eval_bgb 6412 104 49.90 280.33 12.15 6.96 380.50 375.87 486.50 507.19

test2Val_presa 601 104 8.90 47.95 9.08 5.18 889.95 735.37 1020.63 877.22

test2Val_bgb 5805 104 40.20 224.43 11.16 7.04 595.44 623.97 612.99 647.23

Telemetry model

train_presa 2591 104 7.60 29.30 10.16 5.27 529.53 471.37 769.10 647.19

train_bgc 25,920 104 147.34 683.19 15.20 9.22 305.31 342.18 365.79 450.78

test1Eval_presa 649 104 6.67 11.20 10.34 5.40 514.87 444.38 767.02 662.40

test1Eval_bgc 6480 104 151.83 682.53 15.10 9.09 308.21 354.67 362.45 432.44

test2Val_presa 601 104 8.90 47.95 9.08 5.18 889.95 735.37 1020.63 877.22

test2Val_bgc 6010 102 178.22 758.77 17.13 9.72 269.44 340.56 333.25 446.64

Integrated model

train_presa 2591 104 7.60 29.30 10.16 5.27 529.53 471.37 769.10 647.19

train_bgd 25,843 104 98.67 481.35 14.46 8.35 315.03 332.31 382.86 442.09

test1Eval_presa 649 104 6.67 11.20 10.34 5.40 514.87 444.38 767.02 662.40

test1Eval_bgd 6474 104 98.20 484.74 14.18 8.22 313.79 328.98 387.69 452.46

test2Val_presa 601 104 8.90 47.95 9.08 5.18 889.95 735.37 1020.63 877.22

test2Val_bgd 6009 102 112.87 554.20 14.82 8.39 311.95 340.00 371.44 435.24

Note: Data type refers to each of the data subsets used during the modelling process: before 2018 training (80%) and test (20%) evaluation set 
(‘test1Eval’), and after 2018 expansion validation set (‘test2Val’), with the second part of the name ‘_pres’ and ‘_bg’ identifying presence and 
background points, respectively. The superscripts refer to the origin of each subset of data. Environmental variables are explained in Appendix S2: 
Tables S2.3 and S2.4. Main land use 104 = forest, 102 = agricultural areas.
aTelemetry data filtered to one random observation per day and per grid cell.
bRandom points within 100% MCP, 10× presences, filtered to one per grid cell.
cRandom points with 0.99 probability in 100% MCP and 0.01 outside MCPs, filtered one point per grid cell.
dRandom points with 0.99 probability in 10 km buffer territories and 0.01 outside buffer, filtered one point per grid cell.
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    |  7PLANILLO et al.

steps (Jarausch et al., 2021). Region 1 refers to the area that was 
first colonized by wolves, with a population established in 2005 
and present in the region since then, and which holds the highest 
density of individuals. Region 2 groups individuals from a second, 
intermediate colonization phase that was the result of a long dis-
persal event from region 1 around 2009. Finally, region 3 groups 
individuals from the most recently established western territories, 
which were colonized after 2012 following another long dispersal 
event (Appendix S2: Figure S2.5). Wolf occurrence data in these re-
gions covered areas of 1582 km2 in region 1, 957 km2 in region 2, and 
810 km2 in region 3. Background data were subsampled as random 
points in a 50-km buffer around the 95% MCPs in each region, and 
an ensemble model was run with the same approach as the global 
model described above. Each of the resulting regional models was 
then subtracted from the global model to highlight discrepancies be-
tween these models. We assessed the extend of the environmental 
differences between model training and the predictions outside the 
observed range using multivariate environmental similarity surfaces 
(MESS, Elith et al., 2010), highlighting areas of higher uncertainty in 
the predictions.

To analyse if regional differences were caused by individu-
als' breeding status rather than region, we additionally ran two 
binomial GLMMs with individual-id as a random effect and the 
environmental variables as predictors in interaction with breed-
ing status (breeder, non-breeder) or colonization step (region 
1, region 2, region 3). We compared both models using Akaike 
Information Criteria for small sample size (AICc), which supported 
the use of region instead of breeding status of the individuals 
(ΔAICc = 4344.56, Appendix S2: Tables S2.5 and S2.6; Figure 
S2.6).

2.5.1  |  Habitat suitability effects on 
reproduction and assessment of territory numbers

To assess how habitat suitability might be associated with the 
reproductive success of the recolonizing population, we ran an 

exploratory analysis based on the number of reproductive events 
recorded in each territory monitored, based on opportunistic data 
obtained from the monitoring surveys. For this analysis, we fitted 
a GLM using the number of reproduction event per territory as 
the response variable and the mean habitat suitability of the terri-
tory as an explanatory variable, with a log link and a Poisson error 
distribution.

Finally, we transformed predictions into a binary map to es-
timate the potential number of wolf territories in Germany, as-
suming maximum occupancy of the study area and territory sizes 
of ~200 km2 (Reinhardt & Kluth, 2016). For this, we aggregated 
the predictions of the original distribution model consisting of a 
100 × 100 m resolution to a coarser resolution of 10 × 10 km, from 
which it was possible to assign wolf territories by selecting two 
consecutive cells. We used the existing monitoring territories of 
the wolf population and calculated mean habitat suitability within 
these territories and their associated variance as a reference value. 
We then generated two binary maps, a conservative map (mean 
habitat suitability minus one standard deviation), and a more op-
timistic map based on the lower 95% confidence interval of the 
mean habitat suitability value. Isolated cells that were too small to 
contain a wolf territory (i.e., single, unconnected 10 × 10 km2 cells) 
were removed.

3  |  RESULTS

Almost all modelling approaches performed adequately to pre-
dict wolf habitat suitability for the period used to fit the models, 
although their performance dropped when validated against the 
expansion data (i.e. the most recent data of the expanding popula-
tion) (Table 2). While Boyce index and TSS values showed little vari-
ation in the evaluation of the different datasets, AUC values showed 
larger differences, pointing to this metric as the most sensitive score 
for model performance and thus, we base the following results on 
the AUC values. When evaluated against new independent data 
(test2—validation data), the largest performance drops occurred in 

TA B L E  2  Evaluation metrics for the five modelling approaches based on different background selection and algorithms.

Modelling approach

Evaluation data (test 1) Validation data (test 2)

AUC TSS Boyce index AUC TSS Boyce index

Individual-id model—GLMM 0.729 0.334 0.998 0.665 0.216 0.999

Telemetry model—MaxEnt 0.815 0.491 0.999 0.656 0.469 0.990

Integrated model—MaxEnt 0.817 0.519 0.999 0.837 0.451 0.997

Telemetry model—Ensemble 0.841 0.503 0.999 0.845 0.555 0.999

Integrated model—Ensemble 0.844 0.511 0.999 0.852 0.520 0.999

Note: Test 1—evaluation data (before 2018) corresponds to the data used to fit the model. Test 2—validation data (after 2018) corresponds with the 
most recent data from the expanding population that includes new areas and was not used for model fitting. For MaxEnt models, AUC and TSS values 
correspond with the average value of the 10 model replicates. For ensemble models, the ensemble predictions were evaluated.
Abbreviations: AUC, area under the curve; TSS, true skill statistic.
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8  |    PLANILLO et al.

the model that accounted for individual-id (‘individual-id model’) 
and the MaxEnt model based on telemetry data (‘telemetry model—
MaxEnt’). On the other hand, the ensemble models had the highest 
scores, with the highest AUC value for the ensemble model based 
on the combined data from telemetry and monitoring territory loca-
tions (‘integrated model—Ensemble’, Table 2).

The global model based on all available data and the approach ‘in-
tegrated model—Ensemble’ identified the Land Cover (class Forest) 
and the distance to roads as the most relevant variables, both with a 
positive effect on wolf habitat suitability. This model predicted areas 
of high habitat suitability in the north-east and south of the exist-
ing wolf population, with lower habitat quality towards the western 
part of Germany (Figure 2, top left). Considerable suitable habitat 
areas that are currently not occupied occurred in southern Bavaria 
and the forested areas in central Germany (the Harz and Odenwald-
Spessart-Rhön lower mountain ranges).

Regarding the non-stationarity in the responses, the habitat 
suitability models built from data exclusively from each of the 
areas related to the colonization steps (regions 1–3) varied widely 
in their habitat suitability values (Figure 2, second row), show-
ing a clear change in the species selection across the expansion. 
While the general patterns remained similar, the model based on 
data from region 1 (earliest colonization) was more optimistic in 
its predictions of habitat suitability than the global model, espe-
cially in the northern part of Germany, assigning higher values to 
areas closer to roads. The MESS analysis showed that the ranges of 
environmental values represented in the data from region 1 were 
similar to the ranges of values in the predicted area, suggesting 
it to be a good representation of the country (Figure 2, third and 
fourth rows). The habitat prediction based on wolf data from re-
gion 2 (intermediate colonization step) showed generally lower 
habitat suitability than the global model, although with higher suit-
ability values in the southern part of Germany. Finally, the habitat 
suitability map derived from the model with wolf occurrence data 
from region 3—the most recently colonized area—underestimated 
habitat suitability for wolves across most of Germany. This model 
also accounted for the least environmental variability throughout 
the country, as environmental values associated with data from re-
gion 3 did not represent the full range of possible values across the 
country, especially for higher human disturbance areas (Figure 2, 
bottom right plot).

The exploratory analysis of the number of reproductive events 
showed a clear positive association between the total number of 
reproductive events and higher habitat quality (β = 2.60 ± 0.54, 
p < .001, Figure 3). The mean habitat suitability within the existing 
monitoring territory was 0.386 ± 0.107. Finally, the binary territory 
maps from the global ensemble model estimated the number of po-
tential wolf territories in Germany to range between 652 and 1407 
(Figure 4), depending on the threshold variance used for habitat 
suitability values. These numbers are similar to a prior exploratory 
study with only one modelling algorithm and dataset (Kramer-Schadt 
et al., 2020).

4  |  DISCUSSION

Large carnivores provide key ecosystem functions but are also asso-
ciated with human–wildlife conflicts. Forecasting range expansions 
of large carnivores into human-dominated landscapes can there-
fore help to proactively devise strategies that foster co-existence. 
However, predicting range expansions robustly is a very challenging 
task as SDMs typically assume species' responses to environmental 
factors to be constant over time and in space, which may not be 
the case for range-expanding species. This can make predictions a 
tightrope walk towards accuracy and predictive power. Using the 
natural experiment of an expanding wolf population in Germany, we 
showcased the best modelling approach to obtain reliable distribu-
tion models for an expanding population. Furthermore, we revealed 
non-stationary habitat selection in the expanding wolf population, 
which could hide potential habitats if not accounted for during the 
data-collecting process.

The non-stationarity in the response was likely explained by the 
increasing number of wolves in regions with long-time presence of 
the species, as region 1 was the longest-occupied one and contained 
the highest density of individuals (www. dbb- wolf. de). This might 
have resulted in the use of lower-quality habitat once high-qual-
ity habitat is occupied as the population increases (Mladenoff 
et al., 2009; O'Neil et al., 2020). Specifically, wolves appear to estab-
lish packs first in high-quality areas characterized by forest cover and 
lower human disturbance, which was shown in the models for the 
recently colonized areas (regions 2 and 3), filling areas with increas-
ing human disturbance when the species density increases and no 
more high-quality habitat is available. This last case is clearly shown 
in the models based on region 1, which was occupied for 20 years 
and shows territories in areas with higher human disturbance values. 
The observed differences in habitat suitability between the regional 
models might point to a flexible territory selection of the species 
depending on the available habitat that is not already occupied by 
conspecifics.

Differences in habitat quality are expected to translate into 
differences in fitness (Mosser et al., 2009; O'Neil et al., 2017). 
Furthermore, the flexible habitat selection of the species from 
high- to low-quality habitats as the number of individuals in-
creases may also create source-sink dynamics in the population, 
with packs in low-quality areas maintained by immigration from 
high-quality areas (Mladenoff et al., 2009; O'Neil et al., 2017). 
Both, the difference in fitness and potential source-sink dynamics 
are partially supported by our exploratory analysis on reproduc-
tion, as the more suitable habitats were associated with a higher 
number of reproductive events. However, this result should be in-
terpreted with caution, as we do not have information about pup 
survival and the opportunistic nature of our reproduction data 
might bias results.

Methodologically, we showed that the combination of different 
data sources is highly beneficial, as models using both datatypes (te-
lemetry data for the presence of the species and territory monitoring 
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    |  9PLANILLO et al.

F I G U R E  2  Wolf ensemble habitat suitability models based on the combined datasets. Top left, model based on the global dataset. Top 
right, definition of the three different regions based on the colonization steps. Rows two to four show the habitat suitability maps (second 
row), the differences with the global map (third row) and the multivariate environmental similarity surfaces (MESS, fourth row) for the 
regional ensemble models based on region 1 (left), region 2 (middle) and region 3 (right). Differences to global model: orange colours show 
areas with habitat quality over-predicted by the regional model. MESS: negative values in red show environmental values outside of the 
range used in training the model.

 14724642, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/ddi.13789 by V

eterinärm
edizinische U

niversität W
ien, W

iley O
nline Library on [04/12/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



10  |    PLANILLO et al.

data as a representation of the background or availability) clearly 
outperformed models based only on one dataset in terms of pre-
dictive performance (Renner et al., 2019; Zipkin et al., 2021). While 
models using background points obtained from the MCP of the in-
dividuals performed very well for the current conditions, their ac-
curacy when extrapolated to new areas clearly decreased, pointing 
to an overfitting of the model to the specific individuals used during 
the fitting process. In contrast, using background from all areas with 
the known presence of the species (represented by the territories in 
the monitoring data) provided the model with enough flexibility to 
predict the expansion.

Additionally, the ensemble modelling approach outperformed 
the single MaxEnt algorithm, especially when validated against 
the data from the population expanding to new areas. Although 
ensemble approaches are not necessarily better than other 
models (Hao et al., 2019), in the particular case of the expand-
ing population, single algorithms like MaxEnt might again overfit 
the model (Fourcade et al., 2014; Merckx et al., 2011) and play 
against the ability of this approach to extrapolate the predictions 
to new territories. By combining multiple algorithms, the ensemble 
model might overcome some of the limitations that can appear 
in single algorithm models (Norberg et al., 2019), especially for 

cases like large carnivores, where usually data are scarce (Breiner 
et al., 2015).

We showed how validating models against quasi-independent 
data, collected from periods after the training and test data, helps 
to properly assess the predictive power of the model, as suggested 
by Treves et al. (2011) and Treves and Rabenhorst (2017). Models 
that relied only on one dataset performed overall poorly in pre-
dicting range expansion. The model based only on telemetry data 
underestimated the potential distribution of wolves as it was highly 
dependent on a single individual's habitat selection and thus, a lim-
ited representation of the population (Milakovic et al., 2011). Thus, 
monitoring programs will benefit from purposefully gathering dif-
ferent types of data, and we advise agencies to use a combination 
of extensive and intensive methods (e.g., territory mapping and te-
lemetry data, respectively) and to accurately assign a GPS location 
to each activity sign.

Our results highlight the importance of assessing the popu-
lation status of expanding carnivore populations before attempt-
ing to forecast range expansion. As already shown in the case 
of hunting site selection by wolves, the species has flexible be-
haviour, thus predictive modelling should be done very carefully 
(Treves et al., 2011). This also means that the commonly used 

F I G U R E  3  Representation of the number of reproductive events registered at each monitoring territory related to mean habitat 
quality (x-axis) and the standard deviation or the habitat quality (y-axis). Each pie chart represents one monitoring territory, with the size 
representing the total number of years that the territory was monitored. The histograms over the axis represent the number of events per 
value of habitat suitability.
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    |  11PLANILLO et al.

space-for-time approach could be problematic in range-expansion 
models, as habitat selection might vary across different regions 
and/or at different time steps. Although differences in repro-
ductive status could be partially responsible for the observed 
non-stationarity in wolf habitat selection, our suggestion that 
non-stationarity was due to colonization time steps was sup-
ported by the fact that the models accounting for regions per-
formed much better than the model including the breeding status 
of individuals (Appendix S2: Tables S2.4 and S2.5).

A number of conservation and management implications derive 
from our work. Wolf populations show a leap-frogging colonization 
pattern, based on long-distance dispersal events and subsequent 
spreading and filling-in of habitat in the surrounding, initially oc-
cupied, prime habitat (Jarausch et al., 2021; Louvrier, Duchamp, 
et al., 2018; Reinhardt et al., 2019). The historical expansion of 
wolves in Germany followed an east to north-west path, driven 
by wolves' preference for forested areas away from human distur-
bance (Cimatti et al., 2021; Louvrier, Chambert, et al., 2018; e.g. 
Mladenoff et al., 2009). The first individuals arrived from Poland, 
following the expansion of the local population (Czarnomska 
et al., 2013; Reinhardt et al., 2021) and quickly expanded over the 
available habitat. In accordance with other European analysis of 
wolf habitat selection (Fabbri et al., 2007; Jedrzejewski et al., 2008; 
Louvrier, Chambert, et al., 2018; Ražen et al., 2016), our results 

show that wolf-preferred natural areas and avoided high human 
disturbance. We also identified suitable habitat in remote, forested, 
mountainous regions in Germany that have not yet been occu-
pied but are likely to be colonized in the near future. Additionally, 
our study highlights widespread suitable habitat in the lowlands 
of the north and west of Germany. These areas were previously 
considered unsuitable for the establishment of wolf packs, given 
low forest cover. Similarly, the recent colonization by wolf packs 
in predicted ‘low-quality’ habitat—such as in Saxony or unsuit-
able areas in Poland— underlines the high plasticity of this species 
(Nowak et al., 2017; Reinhardt et al., 2019). Considering similar 
evidence from other studies—such as wolves colonizing agricul-
tural areas in Spain despite intensive human use of the landscape 
(Blanco & Cortés, 2007), or wolves using anthropogenic structures 
to access prey in boreal forests (Lesmerises et al., 2012)—, suggests 
that past assessments of wolf habitat suitability for Europe (e.g. 
Fechter & Storch, 2014; Louvrier, Chambert, et al., 2018; Marucco 
& McIntire, 2010) were rather conservative. By colonizing the new 
areas in Germany, the wolf population could expand to serve as a 
natural connection between eastern and western wolf populations 
in Europe. Finally, as other wolf populations increase in Europe, 
such as the alpine population (Wolf Alpine Group, 2023), immigra-
tion from those populations is to be expected in Germany, strength-
ening the expansion of the population.

F I G U R E  4  Binary maps showing suitable wolf territory areas (orange) in Germany. Two thresholds were applied for binary conversion: (a) 
mean minus one standard deviation of habitat suitability values in the monitored territories and (b) lower 95% CI of these values.
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12  |    PLANILLO et al.

According to our binary territory maps, the number of poten-
tial territories (assuming a territory size of 200 km2) ranges from 
~650 to 1400 in Germany, compared to a current number of 158 
packs, 38 pairs and 22 solitary territorial wolves (monitoring year 
2020/21; www. dbbw- wolf. de). Prey density could be a limiting 
factor, although we did not explicitly include it in our models. The 
main prey of wolves in Germany are wild ungulates, and especially 
roe deer, which accounts for more than 50% of wolf diet (Wagner 
et al., 2012). There were three reasons why this variable was left 
out. First, to our knowledge, there is no reliable, fine-scale infor-
mation on ungulate abundance across Germany. Second, we ex-
pect ungulate densities in the study area to be highly correlated 
with land cover, especially forest cover (Heurich et al., 2015). 
Third, prey density is very high across much of Europe, including 
Germany (Massei et al., 2015; Reinhardt et al., 2021). In a regional 
analysis of prey abundance versus wolf abundance (Appendix S3), 
we did not find any effect of wolf pack numbers on the population 
trends of any prey species. We furthermore note that prey num-
bers are currently increasing in Germany since the 1980s (Burbaite 
& Csányi, 2009, German hunters association, 2022).

5  |  CONCLUSIONS

We highlighted the importance of explicitly accounting for non-
stationary habitat selection and, when modelling range-expanding 
carnivores, that species are not in equilibrium with their environ-
ment. Forecasting range expansions of species, and particularly of 
generalist species such as many large carnivores, comes with high 
levels of uncertainty. As limiting as this may seem, analysing range 
expansions can help tremendously to improve our understanding of 
species' ecology, and more generally about the usefulness and limi-
tations of SDMs. Analysing the natural experiment of an expanding 
wolf population in Germany, we here demonstrated the advantage 
of integrating diverse occurrence datasets to increase the predic-
tive power of models to forecast range expansions. Likewise, we 
uncover major non-stationarity in wolf habitat selection over time 
(i.e. early colonization phase vs. established populations), resulting 
in considerable bias in habitat predictions if non-stationarity is not 
considered. Our results highlight that habitat models based on data 
from recent colonized areas will underestimate habitat for range-
expanding species, and instead all available data, and particularly 
those from areas where populations are already established should 
be used. Furthermore, we showed how the combination of multi-
ple data sources and the use of ensemble modelling approaches 
improve the performance of the distribution models with the aim 
to predict new areas of expansion, therefore we recommend moni-
toring agencies to collect data on all possible signs of the species 
presence to increase prediction accuracy.
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