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Abstract

A skewed male-to-female ratio in cattle is believed to be due to the biased embryo losses

during pregnancy. The changes in biochemical secretion such as miRNAs by the embryo

due to altered maternal environment could cause a sex biased selective implantation result-

ing in a skewed male to female ratio at birth. Nevertheless, it is still not clear whether the

male and female embryos could modify their miRNA expression patterns differently in

response to altered physiological developmental conditions. Therefore, this study was

focused on identifying sex specific miRNA expression patterns induced in the embryo during

the elongation period in response to the maternal environment. For this, in vitro produced

day female and male embryos were transferred to Holsteins Frisian cows and heifers. The

elongated female and male embryos were then recovered at day 13 of the gestation period.

Total RNA including the miRNAs was isolated from each group of elongated embryo sam-

ples were subjected to the next generation miRNA sequencing. Sequence alignment, identi-

fication and quantification of miRNAs were done using the miRDeep2 software package and

differential miRNA expression analyses were performed using the edgeR bioconductor

package. The recovery rate of viable elongating embryos at day 13 of the gestation period

was 26.6%. In cows, 2.8 more viable elongating male embryos were recovered than female

embryos, while in heifers the sex ratio of the recovered elongating embryos was close to

one (1.05). The miRNA analysis showed that 254 miRNAs were detected in both male and

female elongated embryos developed either in cows or heifers, of which 14 miRNAs includ-

ing bta-miR-10b, bta-miR-148a, bta-miR-26a, and bta-miR-30d were highly expressed.

Moreover, the expression level of 32 miRNAs including bta-let-7c, bta-let-7b, bta-let-7g, bta-

let-7d and bta-let-7e was significantly different between the male and female embryos

developed in cows, but the expression level of only 4 miRNAs (bta-miR-10, bta-mR-100,

bta-miR-155 and bta-miR-6119-5p) was different between the male and female embryos

that were developed in heifers. Furthermore, 19 miRNAs including those involved in cellular

energy homeostasis pathways were differentially expressed between the male embryos
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developed in cows and heifers, but no significantly differentially expressed miRNAs were

detected between the female embryos of cows and heifers. Thus, this study revealed that

the sex ratio skewed towards males in embryos developed in cows was accompanied by

increased embryonic sexual dimorphic miRNA expression divergence in embryos devel-

oped in cows compared to those developed in heifers. Moreover, male embryos are more

sensitive to respond to the maternal reproductive microenvironment by modulating their

miRNA expression.

Introduction

Several lines of evidence have shown a skewed male-to-female ratio in cattle [1–6], and other

mammals including humans [7] at birth. This could be associated with sex biased embryo

losses during development. In addition, at early phase of the lactation, high yielding dairy

cows usually suffered from metabolic stress due to occurrence of negative energy balance lacta-

tion [8]. As the result of this, embryo losses is more frequent in cows than heifer [9].

Although deciphering major factors contributing to the skewed male-to-female ratio

remains the subject of subsequent investigation, several factors including time of insemination

[4], maternal condition [10], speed of development and morphology of the embryos [11–14],

stages of embryonic development before transfer [15], embryo manipulation technique such

as intracytoplasmic sperm injection (ICSI) or in vitro fertilization (IVF) [16] are believed to

contribute to the altered male to female ratio at birth.

Among the factors listed above, the pre-conception maternal condition which was pro-

posed by Trivers and Willard [10] is more relevant when the recipient’s physiological condi-

tion induces embryo losses in mammals. For instance, in Barbary sheep [17], dairy cattle [18]

and pigs [19] while better maternal body condition favors birth of more males, the poor mater-

nal body conditions favors female newborns. Under in vitro culture conditions, high glucose

concentration in the culture media seems to favor the development of male embryos compared

to female ones [20]. In addition, the biochemical contents (mRNAs and proteins) of embryos,

and the physical and biochemical milieu of the maternal tract cause sex-biased selective

implantations and skewed male-to-female ratio at birth [see review [21]]. For instance, in rats,

in-utero insults during the peri-conception period may be risky for female embryo viability

resulting in more males produced at birth while in-utero insults during mid- to late-gestation

could risk male embryos resulting in more females surviving until birth [22]. This can be

related to sex specific biochemical alteration in embryo and/or maternal environment. For

instance, under in vitro conditions, the female bovine embryos can produce double the

amount of pregnancy signalling factor, the IFN-tau, than the amount produced by male

embryos [20, 23]. Gene-expression analysis between male and female blastocysts by DNA

microarray also indicated the upregulation of genes associated with signal transduction and

cell differentiation and downregulation of genes associated with metabolic process and cell

cycle in female blastocysts compared to the male ones [24]. This altered gene expression is

believed to lead to sex-specific embryonic development or sex-specific embryonic losses [25].

A study by Heras et al. [26] showed differential expression of 119, 54 and 48 genes between the

male and female derived from vivo, cultured in serum-containing and cultured in serum-free

medium, respectively. These and other similar findings may suggest that the embryo of one

sex may signal its presence in the maternal environment more robustly than the other one by

secreting mRNA signals. Thus, further investigation is required to understand the gene
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regulatory mechanisms such as microRNAs (miRNAs) that are responsible for the survival of

one sex than the other one under different physiological developmental conditions.

MicroRNA, small non coding RNAs, are known to be one of the posttranscriptional regula-

tors of gene expression [27]. These tiny non coding RNAs were detected at various embryonic

stages and are implicated in embryonic development and implantation (see review, [28]. For

instance, differential expression miRNAs between the 4- and 8-cell stages [29], unhatched and

hatched bovine blastocysts [30], inner cell mass and trophectoderm [31], embryonic out-

growth and the blastocyst stage embryos [32] could indicate the stage specific role of miRNAs

during preimplantation development, cell differentiation and implantation.

Interestingly, the uterus secretes specific miRNAs which may be taken up by the embryo to

modify the transcriptome profiles to facilitate implantation [33]. Conversely, it is also sug-

gested that miRNAs secreted by embryos can be taken by endometrial epithelial cells, and

cause a change in the endometrial function [34]. Previous studies also demonstrated that the

female and male bovine blastocysts secret miRNAs into the culture media which can be taken

up by the primary bovine endometrial epithelial [35]. This may provide a clue that male and

female embryos may signal to the maternal environment differently by releasing male and

female specific miRNAs. However, several questions associated with sex specific adaptations of

embryos need further investigation with respect to the in vivo embryogenesis and embryo

losses during embryo elongation, which is the critical stage that coincides with significant

embryo losses in cattle [36]. In addition, since high yielding dairy cows are affected by meta-

bolic stress induced by negative energy balance, pregnancy failure is more common in cows

than heifers [9]. Nevertheless, the question, of whether male and female embryos respond dif-

ferently to the maternal microenvironments via altered miRNA expression profiles during the

elongation stage, remains unanswered. Although male and female embryos showed intrinsic

differences in various epigenetic modifiers, including small noncoding RNAs, whether those

conceptuses respond to maternal microenvironment via changing their miRNA expression

pattern is not yet known. Thus, the current study aimed to investigate the miRNA-expression

profiles and associated molecular pathways in elongating male and female bovine embryos

developed in cows and heifers. The results from this study will contribute basic data for the

identification of miRNAs that are indicators of the sexual dimorphic response of embryos to

the maternal microenvironment during the critical periods of embryogenesis in mammals in

general and bovine species in particular.

Materials and methods

Animal handling and management

All experimental animals (cows and heifers) used for this study received similar total mixed

rations, and they were kept in the same farm and housing conditions. Handling and manage-

ment of experimental animals have adhered to the rules and regulations of the German law of

animal protection. The experiment dealing with animals was approved by the Animal Welfare

Committee of the University of Bonn with proposition number 84–02.05.20.12.075.

In vitro maturation, in vitro fertilization and in vitro culture

In the current study, we used in vitro fertilization using sex-sorted semen to produce day 2—

male and female embryos for nonsurgical endoscopic oviductal transfer into Holstein Friesian

cows with parity two and heifers. Therefore, this study involved in vitro oocyte maturation, in

vitro fertilization (using sex-sorted semen), in vitro culture and endoscopic-guided transfer of

preimplantation stage embryos into the oviduct. The overview of the experimental design is

indicated in Fig 1. Cumulus oocyte complexes (COCs) were collected from the ovaries of
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slaughterhouses and in vitro matured using a similar protocol used in our previous study [37].

At the end of in vitro maturation, a group of 50 COCs were in vitro fertilized with either X or

Y-chromosome-bearing sperm derived from Holstein Frisian bull. For this, frozen thawed sex

sorted sperm were subjected to a swim-up procedure. In vitro fertilization (2 × 10 6 sperm in

fertilization droplet) was performed in Fert-TALP medium supplemented with 20 μM penicil-

lamine, 10 μl PHE (Hypotaurine-Epinephrin-solution), 6 mg ml−1 BSA-FFA, 50 μg ml−1 genta-

mycin, and 1 μg ml−1 heparin. The COCs and sperm were co-incubated for 18 h. After the

removal of cumulus and sperm cells and washings, the two zygote groups were in vitro cul-

tured in 400 μl of synthetic oviductal fluid (SOF) culture medium supplemented with 0.6%

fatty acid-free bovine serum albumin (BSA) under 5% O2, 5% CO2 and 39˚C until day 2 prior

transferring to recipients.

Oviductal transfer of male or female embryos to cows and heifers

Transfer of embryos on day 2 and recovery on day 13 of the gestation period was required to

get an overview of the effect of the maternal environment (oviduct and the uterine challenges)

until embryo elongation. To perform this, Holstein Frisian heifers (n = 11) between 15–20

months of age and with no history of calving and Holstein Frisian cows (n = 10) with parity

two were oestrous synchronized by intra-muscular administration of 500 mg of the prosta-

glandin F2α (PGF2α) analogue cloprostenol (Estrumate; Munich, Germany) twice within 11

days interval. Each of the PGF2α treatments was followed by the administration of 0.02 mg

GnRH-analogue buserelin (Receptal) (Intervet, Boxmeer, the Netherlands). Afterwards, 6

cows and 6 heifers each received day 2 female embryos (n = 20 per recipient), while the other 4

cows and 5 heifers received day 2 male embryos (n = 20 per recipient) using endoscopic

embryo tubal transfer [38].

Fig 1. The experimental outline indicating the generation of in vitro day 2 sexed embryos and transfer to cows (C) and heifers (H), recovery

of four groups of day 13 embryos (CM, CF, HM & HF) and data analysis steps. IVM: in vitro maturation, IVC: In vitro culture, OET:

Oviductal embryo transfer.

https://doi.org/10.1371/journal.pone.0298835.g001
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Day 13 elongated embryo recovery

On day 13 of the gestation period, elongated embryos were recovered after the targeted slaugh-

ter of the pregnant animals from the nearby slaughterhouse. All experimental animals were

slaughtered and male and female elongated embryos were recovered. The elongated embryos

were then classified according to their sex and origin. Male and female elongated embryos

derived from cows were named CM and CF, respectively and male and female elongated

embryos derived from heifers were named HM and HF, respectively. All samples (CM, CF,

HM and HF) were initially snap-frozen in liquid nitrogen and stored at -80˚C until further

analysis.

Total RNA isolation

Total RNA including miRNA was isolated individually from 84 samples (CM = 20, CF = 13,

HM = 24, HF = 27) using AllPrep DNA/RNA/miRNA Universal Kit following the manufac-

turer’s protocol. Briefly, each of the elongated embryos was repeatedly vortexed in 300 μl lysis

buffer containing β-mercaptoethanol (1%), transferred into QIAshredder and centrifuged for

2 minutes at maximum speed. The supernatant was transferred into the DNA spin column

and centrifuged at full speed for 30 seconds to trap the DNA and allow the RNA to pass. After-

wards, 50 μl Proteinase K and 200 μl 100% ethanol were added and incubated at room temper-

ature for 10 min. At the end of the incubation period, 400 μl of 100% ethanol was added and

the sample was transferred into RNeasy1 spin column placed in a 2 ml collection tube and

centrifuged for 15 s. Washing of the sample was performed by centrifugation of the sample in

500 μl Buffer RPE for 15 s. DNA contamination was eliminated by performing on-column

DNA digestion. After successive washings in 500 μl Buffer RPE and 500 μl of 96–100% ethanol,

total RNA was recovered in 35 μl RNase-free water. The quality and quantity of RNAs were

evaluated using Agilent 2100 bioanalyzer integrated with RNA 6000 Nano LabChip1 Kit

(Agilent Technologies Inc, CA, USA) and Nanodrop 8000 Spectrophotometer (Thermo Fisher

Scientific Inc, DE, USA), respectively. A total of 20 individual RNA samples (5 RNA samples

for each CM, CF, HM and HF group) with RNA integrity number (RIN) � 6, A260/

A280 = 1.8–2.2 and with a total concentration of � 500 ng were selected for the next genera-

tion miRNA sequencing.

Small RNA library preparation and sequencing

Small RNA library preparations and miRNA sequencing were done by GENEWIZ Germany

GmbH (currently, GENEWIZ from Azenta Life Sciences). Briefly, small RNA libraries were

performed using TruSeq small RNA library preparation (Illumina, San Diego, CA) from a

total of 20 samples (5 RNA samples as biological replicates for each experimental group). Illu-

mina 3’ and 5’ adapters were ligated to the RNA molecules with a 5’-phosphate and a 3’-

hydroxyl group sequentially using � 500 ng total RNA as input. This was followed by reverse

transcription. Accordingly, cDNA constructs were enriched by PCR amplification using prim-

ers that annealed to the adapter ends. The amplified cDNA construct was purified by poly-

acrylamide gel electrophoresis, and the correct band (~145–160 bp) was excised from the gel

and eluted with water. The eluted cDNA was concentrated by ethanol precipitation. The

libraries for sequencing were validated on the Agilent TapeStation 4200 (Agilent Technologies,

Palo Alto, CA, USA), and quantified using Qubit 2.0 Fluorometer (Invitrogen, Carlsbad, CA)

and quantitative PCR (KAPA Biosystems, Wilmington, MA, USA). The sequencing libraries

were clustered on one flow cell. After clustering, the flow cell was loaded on the Illumina

instrument (4000 or equivalent) according to the manufacturer’s instructions. Image analysis

and base calling were conducted by the control software. Raw sequence data (.bcl files)
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generated by the sequencer were converted into fastq files and de-multiplexed using Illumina’s

bcl2fastq 2.17 software. One mismatch was allowed for index sequence identification.

Raw data quality assessment and adapter trimming

Quality evaluation of the raw sequence data was done with FastQC, a free available sequence

analysis tool, (http://www.bioinformatics.babraham.ac.uk/publications.html). The basic statis-

tics, the sequence quality, quality score, sequence content and GC content of each raw

sequence were evaluated and raw data that fulfilled basic quality parameters were used for

detection and expression analysis. Afterwards, we used miRDeep2 a software package to fur-

ther process the raw sequence data. Adapters and low quality ends were trimmed using cut

adapt and sequences with less than 18 bp were removed from downstream analysis.

Raw sequence alignment, identification and quantification of miRNAs

Prior to sequence alignment, packages including RNAfold, randfold and the perl packages

PDF:API and TTF were installed in the R software environment. The miRBase reference files

were downloaded and the mature miRNA and hairpin sequences were extracted using extra-

ctmiRNAs.pl and extract_miRNAs.pl, respectively. The bovine reference genome (Genome

assembly: ARS-UCD1.2) was indexed using bowtie-build version 1.3.0 https://sourceforge.net/

projects/bowtie-bio/files/bowtie/1.3.0/). Following this, the fastq files were parsed into fasta

format, sequences with non-canonical letters were discarded, and identical reads were col-

lapsed and mapped to the indexed bovine reference genome using the bowtie tool. Detection

of miRNAs were detected by miRDeep2.pl module using collapsed sequencing reads, the

bovine reference genome fasta file, mapped reads, known mature, and precursor miRNAs of

Bos taurus and mature miRNAs from Homo sapiens were used as inputs. Quantification of

miRNAs was done by mapping sequencing reads to miRNA precursors and subsequently the

mature miRNA sequences to the predefined precursors.

Identification of highly expressed and differentially expressed miRNAs

Prior identification of highly expressed and differentially expressed miRNAs, the CSV file gen-

erated by the quantifier module of the miRDeep2 software was imported into the R program.

Differential expression analyses were performed using the edgeR bioconductor package [39].

For this, first, the library size of each sample was determined, and the library sizes were nor-

malized by setting a set of scaling factors using a trimmed mean of M-values (TMM) between

samples. Quantile-adjusted conditional maximum likelihood common dispersion, trended

dispersions and tagwise dispersion were estimated using the estimateDisp function. The mean

expression differences between samples were tested with a quasi-likelihood F-test (Robinson

et al. 2010) and the false discovery rate method [40] was used to implement multiple hypothe-

sis testing correction. The miRNAs were considered to be significantly differentially expressed

between groups when the absolute value of the fold-change (FC) was higher than 1.5 (|FC| >

1.5) and the p-value < 0.05 and false discovery rate (FDR) < 0.1.

Functional annotation of highly expressed and differentially expressed

miRNAs

The functional annotation of highly expressed and differentially miRNAs was determined by

using their predicted target genes. Target gene prediction was done by miRNet, a miRNA-cen-

tric network visual analytics platform [41] using the bovine and the human orthologue. After-

wards, enriched pathways were identified using g:profiler tool [42]. For this, gene lists
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associated with miRNAs were imported to the program and Bos taurus species was selected on

the organisms’ dropdown menu. Pathway enrichment analysis was performed by considering

all bovine gene lists available in the Ensembl database and Benjamini-Hochberg p-value cor-

rection was used to identify significant pathways (Reactome and KEGG pathways).

Results

Embryonic development

In this study, following the transfer of the day 2 embryos, the recovery rate of viable elongating

embryos on day 13 of the gestation period was 26.6% and the overall sex ratio was skewed

towards males (Table 1). The morphology of the recovered embryos ranges from an ovoid to

tubular shape and their size ranges up to 2 mm. The recovery rate of viable elongating embryos

in cows and heifers was almost similar, but in cows, 2.8 more viable elongating male embryos

than females were obtained. In heifers, the sex ratio of the elongating embryos was 1.05

(Table 1).

MicroRNAs required for embryo elongation

Twenty small RNA libraries (five for each group) were generated in the four sample groups

(CM, CF, HM and HF) and 12.9 million reads and 3763.3 Mbases per sample were generated.

The mean read quality score was 30.4 and about 43, 28, 36 and 29% of the reads in CM, CF,

HM and HF, respectively were mapped to the reference bovine genome.

Prior the identification of differentially expressed miRNAs, we evaluated the miRNAs

expressed in each sample group. For this, first, we filtered miRNAs which showed at least 5

read counts in at least three of the five biological replicates. Accordingly, 353, 363, 355 and 368

known bovine miRNAs were detected in the CM, CF, HM and HF samples, respectively. Of

these, 284, 299, 286 and 288 miRNAs were detected in all 5 biological replicates of the CM, CF,

HM and HF samples, respectively (Fig 2A). When all samples irrespective of the group were

considered, a total of 254 miRNAs were commonly detected in all 20 samples (Fig 2B, S1

Table). Of these, 14 miRNAs, bta-miR-10b, bta-miR-148a, bta-miR-6119-5p, bta-miR-21-5p,

bta-MiR-92a, bta-miR-378, bta-miR-191, bta-miR-22-3p, bta-miR-186, bta-miR-182, bta-

miR-30d, bta-miR-10a, bta-miR-26a, bta-miR-192 were expressed in all samples with average

read counts of 12,000–67682 (Fig 3). These miRNAs are localized on chromosomes X, 2, 3, 4,

5, 12, 14, 19, 22 and 29.

Table 1. Number of day 2 female and male embryo transferred, the recovery rate and sex ratio of the embryos on day 13 of the gestation period.

Recipient group Embryo group Total embryo transferred Viable elongated embryos recovered (%) Sex ratio of viable embryos

(Male/female)

Cows Male 80 42.0 2.80

Female 120 15.0

Total 200 26.0

Heifers

Male 100 28.0 1.05

Female 120 26.6

Total 220 27.2

Overall Male 180 34.4 1.60

Female 240 20.8

Total 420 26.6

https://doi.org/10.1371/journal.pone.0298835.t001
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To get an overview of the relevance of those highly expressed 14 miRNAs in bovine embryo

elongation, an in silico functional characterization was performed based on their predicted

bovine genes and/or validated target genes that were obtained from bovine and human data-

bases. Accordingly, among the highly expressed miRNAs, bta-mir-378, bta-mir-10a, bta-mir-

10b, bta-mir-182, bta-mir-192, and bta-mir-92a were associated with 433 genes. The represen-

tative interaction of miRNAs and their target genes is indicated in Fig 4 and S2 Table. Among

the total target genes compiled for downstream analysis, the miRNA-target interaction net-

works analysis using miRnet software also indicated 103 target genes of miR-21-5p including

SMAD7, MARCA4, IGF1R, SOD3 and PTX3 and 46 target genes of miR-22-3p including

PTEN, CDKN1A, BMP7, BMP6 and ADORA2A have been validated using luciferase assay

(S3 Table). Pathway analysis using their validated and predicted target genes indicated that

Fig 2. The number of detected miRNAs in male and female embryos developed in cows or heifers at day 13 of gestation. A) The number

of known miRNAs detected in 5, or only in 4, 3, 2 or 1 replicate/s (embryo/s) of CM, CF, HM and HF groups. B) The number of known

miRNAs detected in 20 or less samples when each replicate was considered as a sample and the groups were merged. A total of 20 samples

represent 5 replicates each in CM, CF, HM and HF groups. A total of 254 miRNAs were detected in all 20 samples.

https://doi.org/10.1371/journal.pone.0298835.g002
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those highly expressed miRNAs were involved in several pathways including immune response

related pathways (Toll-like receptor signaling, cytokine-cytokine receptor interaction, TNF

signaling, NF-kappa B signaling), cell cycle and apoptosis, cell-to-cell communication related

pathways (focal adhesion, endocytosis), Hippo and Foxo signaling pathways (Fig 5).

Sexual dimorphic miRNA expression patterns in elongated embryos developed in

cows. Following the identification of miRNAs expressed in each sample group, next we iden-

tified differentially expressed miRNAs (DEmiRNAs) by comparing their abundances in male

and female elongated embryos developed in cows. The results have shown 25 miRNAs were

significantly upregulated and 7 other miRNAs were downregulated in males compared to the

female elongated embryos (Fig 6). Among those, 11 miRNAs including the let 7 families (bta-

let-7c, bta-let-7b, bta-let-7g, bta-let-7d, bta-let-7e) were increased by > 4 folds in males com-

pared to the female elongated embryos (Table 2).

The functional relevance of these DEmiRNAs in embryo development and survival was ana-

lysed via their target genes. For this, first, we identified experimentally validated and in silico pre-

dicted target genes of these miRNAs. Accordingly, 24 miRNAs including the let 7 families (let-7a-

5p, -7b, -7c, -7d, -7e, -7g), bta-miR-181a and bta-miR-181c were predicted to target 1232 genes.

Among these, the miRNet identified 43 genes including AGO1 and AGO4 as validated target

genes of the let-7a-5p miRNA (S4 Table). Pathway analysis using the target genes indicated that

these miRNAs are involved in various pathways including the mammalian target of rapamycin

(mTOR) signalling, immune response related pathways (innate immune response, NF kappa B

Fig 3. The expression level of the top 14 detected miRNAs in in CM, CF, HM and HF groups.

https://doi.org/10.1371/journal.pone.0298835.g003
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signalling, cytokine-cytokine receptor interaction, TNF signalling), focal adhesion, apoptosis

(Fig 7, S5 Table). Interestingly, Let-7a-5p and let-7b were involved in many of these pathways

including the immune system, innate immune and mTOR signaling pathways.

Dimorphic expression patterns of miRNAs in elongated embryos

developed in heifers

The DEmiRNAs between the male and female embryos developed in heifers were analyzed

using a similar method that was used in male and female embryos developed in cows. Results

indicate that only 4 miRNAs (bta-miR-6119-5p, bta-miR-10a, bta-miR-155 and bta-miR-100)

were significantly differentially expressed between the male (HM) and female (HF) embryos

developed in heifers (Fig 8A). Among these, bta-miR-155 and bta-miR-6119-5p were also dif-

ferentially expressed between male and female elongated embryos developed in cows (Fig 6B).

However, compared to the number of DEmiRNAs detected in CM vs. CF, the number of

DEmiRNAs identified in HM vs. HF was 8 folds lower. In silico functional analysis of the

DEmiRNAs identified between male and female embryos developed in heifers indicated that

endocytosis, immune systems related pathways, cell cycle and AMPK signalling pathways were

enriched by the target genes of these miRNAs (Fig 8B).

The miRNA expression profile differences between the male or female

embryos of cows and heifers

To investigate the extent of posttranscriptional regulation responses of the male embryos to

the maternal environment on day 13 of the gestation period, the miRNA expression profile of

Fig 4. The interaction of highly expressed bovine miRNAs and their target genes.

https://doi.org/10.1371/journal.pone.0298835.g004
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the CM was compared with the HM ones. Similarly, to understand, the extent of posttranscrip-

tional regulation responses of the female embryos with the maternal environment, the miRNA

expression profile of the CF was compared with that of the HF ones. While 19 miRNAs were

significantly differentially expressed between CM and HM (Fig 9A), there were no significantly

altered miRNAs between the CF and HF group (Fig 9B). Among miRNAs altered between CM

and HM, the expression levels of 12 miRNAs including bta-miR-12023, bta-miR-11985, bta-

miR-11976 and bta-miR-2411-3p were increased with > 4 folds in male embryos developed in

cows compared to those developed in heifers (Table 3). The significant relevance of these

DEmiRNAs with respect to embryo elongation and adaptation to the maternal environment

was studied by analyzing the pathways enriched by target genes of these miRNAs. These

DEmiRNAs were involved in PI3K-Akt signaling pathway, focal adhesion, axon guidance, cel-

lular energy homeostasis pathways (mTOR signaling pathway & AMPK signalling pathway),

phospholipid metabolism, parathyroid hormone synthesis, secretion and action and thyroid

hormone signaling pathways (Fig 10, S6 Table).

Sexual dimorphic miRNA expression in embryos irrespective of the

maternal environment

With the aim to investigate sexual dimorphic miRNA expression in the male and female

embryo at the elongation stage, irrespective of the effect of the maternal environment, we

Fig 5. Molecular pathways enriched by highly expressed miRNAs. The plus (+) and minus (-) symbols indicate the presence and absence

of the miRNAs in the specific pathway.

https://doi.org/10.1371/journal.pone.0298835.g005
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Fig 6. Differentially expressed miRNAs between CM and CF. A) Volcano plot showing the average (log2 fold change) expression of

miRNAs in CM compared to CF. Red and green dots represent the up and downregulated miRNAs, respectively in CM compared to the CF

group. The black dots represent miRNAs that did not show any significant expression differences between CM and CF. B) The heatmap

representing the expression patterns of differentially expressed miRNAs within and across the biological replicates. The red and green colors

represent increased and decreased miRNA expression.

https://doi.org/10.1371/journal.pone.0298835.g006

Table 2. Top differentially expressed miRNAs between the CM and CF embryo groups.

miRNA Log2 fold change P value FDR

bta-miR-11987 4.3 0.0000 0.0028

bta-miR-10225a 3.7 0.0003 0.0120

bta-miR-1949 3.5 0.0000 0.0023

bta-miR-2427 3.4 0.0000 0.0027

bta-miR-11975 3.2 0.0001 0.0053

bta-miR-2411-3p 3.0 0.0000 0.0027

bta-miR-11975 2.9 0.0000 0.0028

bta-miR-11976 2.9 0.0000 0.0028

bta-miR-4449 2.7 0.0003 0.0120

bta-miR-2332 2.5 0.0003 0.0149

bta-miR-11985 2.5 0.0005 0.0223

bta-miR-677 2.5 0.0000 0.0028

bta-miR-181c 2.5 0.0000 0.0023

bta-let-7c 2.5 0.0020 0.0652

bta-let-7b 2.4 0.0001 0.0053

bta-miR-1248 2.4 0.0013 0.0468

bta-let-7g 2.3 0.0000 0.0027

bta-miR-31 2.3 0.0000 0.0027

bta-let-7d 2.2 0.0002 0.0112

FDR: False discovery rate

https://doi.org/10.1371/journal.pone.0298835.t002
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performed a differential expression analysis between the male and female embryos by omitting

the second factor, i.e. the recipients. For this, the miRNA expression data of the male embryos

of cows and heifers were pooled in one group and the female embryos from cows and heifers

Fig 7. Molecular pathways enriched by differentially expressed miRNAs between CM and CF.

https://doi.org/10.1371/journal.pone.0298835.g007

Fig 8. Differentially expressed miRNAs between HM and HF. A) Volcano plot showing the average (log2 fold change) expression of miRNAs

in HM compared to HF. Red and green dots represent the up and downregulated miRNAs, respectively in HM compared to the HF group. The

black dots represent miRNAs that did not show significant expression differences between the HM and HF. B) Molecular pathways enriched by

differentially expressed miRNAs between HM and HF.

https://doi.org/10.1371/journal.pone.0298835.g008
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were pooled in the second group. Differential expression analysis indicated a significant upre-

gulation of 24 miRNA including the let-7 families (bta-let-7a-5p, bta-let-7b, bta-let-7c, bta-let-

7e, bta-let-7g and bta-let-7i) and downregulation of 12 miRNAs including bta-miR-9-5p, bta-

miR-9-3p, bta-miR-6119-3p and bta-miR-450b in male elongated embryos compared to the

female ones (Fig 11).

The functional relevance of the sexually dimorphic differentially expressed miRNAs with

respect to embryonic survival and adaptability was investigated using their target genes. Of the

differentially expressed miRNAs between the male and female elongated embryos, 32 miRNAs

including mir-9-3p and the let-7 families (let-7a-5p, -7b, -7c, -7e, -7g and let-7i) were found to

potentially target 1566 genes. Of these, the miRNet identified 70 target genes including AGO1,

Fig 9. Volcano plot showing the average (log2 fold change) expression of miRNAs in CM compared to HM (A) and in CF compared to HF

(B). Red and green dots represent the up and downregulated miRNAs, respectively in CM compared to the HM group. Black dots represent

miRNAs that did not show significant expression differences between groups.

https://doi.org/10.1371/journal.pone.0298835.g009

Table 3. Top differentially expressed miRNAs between the CM and HM embryo groups.

miRNA Log2FC P value FDR

bta-miR-12023 4.6 0.0004 0.0292

bta-miR-11985 4.0 0.0000 0.0011

bta-miR-11976 3.9 0.0000 0.0004

bta-miR-11975 3.9 0.0000 0.0004

bta-miR-11972 3.8 0.0003 0.0292

bta-miR-1949 3.5 0.0000 0.0007

bta-miR-11987 3.3 0.0004 0.0309

bta-miR-2427 3.1 0.0001 0.0081

bta-miR-2411-3p 2.9 0.0000 0.0037

bta-miR-4449 2.7 0.0003 0.0292

bta-miR-2332 2.5 0.0004 0.0292

bta-miR-1246 2.1 0.0002 0.0218

FDR: False discovery rate

https://doi.org/10.1371/journal.pone.0298835.t003
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63 genes including XIAP, and GATA6, 50 genes including YY1 and, 31 target genes including

AGO4 and DICER1, as validated target genes of the miR-9-5p, miR-181a-5p, miR-31-5p and

let-7a-5p, respectively. These miRNAs were involved in key molecular pathways including

metabolic pathways, cellular censuses, focal adhesion, ras signaling, immune related pathways,

calcium signaling and foxO signaling (Fig 12).

Discussion

Sex specific embryo survival involving sex specific coping mechanisms against the develop-

mental insults, including the suboptimal physiological condition of the mother, fosters the

pregnancy success of one sex than the other. In the current study, the cows seem to favour

male embryo survival while the heifer’s environment was not biased towards the male or the

female male embryos (Table 1). The skewed sex ratio in cows, but relatively the absence of this

phenomenon in heifers may explain the sex biased embryo loss or survival according to the

physiological status of the recipients. Thus, sex specific survival of embryos under different

physiological conditions could be associated with their ability to establish bidirectional com-

munication with the maternal environment by secreting sex specific molecules. The sex spe-

cific molecules such as miRNAs may help the embryo to signal its presence in its maternal

environment by regulating the expression of various genes involved in a cell-to-cell communi-

cation and signaling pathways involved in developmental processes.

Fig 10. Molecular pathways enriched by differentially expressed miRNAs between CM and HM. The plus (+) and minus (-) symbols

indicate the presence and absence of miRNAs in the specific pathway, respectively.

https://doi.org/10.1371/journal.pone.0298835.g010
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MicroRNAs that possibly involved in embryo elongation on day 13 of the

gestation period

Since a single miRNA can target several genes in a given pathway, focusing on the sex specific

role of miRNAs during embryo elongation will provide greater opportunities for developing

sex specific embryonic miRNA markers associated with development and survival. Therefore,

in the current study, we were interested in identifying miRNAs that are expressed in female

and male elongated embryos developed in cows or nulliparous heifers. Accordingly, at least

254 miRNAs were detected in all male and female elongating embryo samples (Fig 2B, S1

Table). This may in turn suggest that these miRNAs may have a housekeeping role during

embryo elongation independent of the sex of the embryo and the environment in which they

developed. However, further research is required to determine the potential role of those miR-

NAs in various physiological processes of embryo elongation and implantation. Nevertheless,

in the current study, the involvement of highly expressed miRNAs in pathways related to

immune response, cell proliferation and elongation, and cell-to-cell communication suggests

that these miRNAs could be directly or indirectly required for embryo elongation and implan-

tation by regulating various genes involved in various developmental processes. For instance,

Fig 11. Heatmap depicting the expression pattern of differentially expressed miRNAs between the male and female embryos

irrespective of the reproductive microenvironment of the maternal environment. Red and green colours indicate the up and

downregulated miRNAs in elongated male embryos compared to female counterparts.

https://doi.org/10.1371/journal.pone.0298835.g011
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miR-10b, miR-148a, miR-21-5p, miR-378, miR-22-3p, and miR-10a and miR-30d were

commonly involved in cell cycle and endocytosis. The cell cycle is critical during embryonic

development for regulating the pace of cell proliferation and timing of cell cycle progression

[43], whereas endocytosis during development may be required for gastrulation [44, 45].

But to what extent, these miRNAs regulate embryonic development via these pathways

remains the future research interest. Nevertheless, previous studies demonstrated the rele-

vance of some of these miRNAs in embryogenesis. For instance, increased expression of

miR-10a and miR-10b during embryonic development could be required for proper angio-

genesis which is one aspect of proper embryonic development [46] and miR-21-5p may be

required for embryo implantation [47] and it was implicated as a potential biomarker for

pregnancy establishment [48]. Likewise, overexpression of miR-30d could increase embryo

adhesion to the maternal environment [49], and improve implantation rate and fetal devel-

opment by increasing maternal receptivity [50]. Similarly, miR-148a and miR-378 were

reported to be associated with enhanced early embryonic development [51] and blastocyst

hatching [52], respectively.

In addition, miR-26a was one of the top miRNAs enriched in male and female elongated

embryos developed in cows or heifers. Gene ontology analysis has shown that this miRNA

along with miR-21-5p, miR-22-3p and miR-10a is involved in the Hippo signaling pathway,

which is essential for trophoblastic differentiation and inner cell mass formation [53]. The

available data showed that miR-26a can stimulate trophoblastic proliferation [54] and can be a

potential biomarker of early pregnancy [55]. Taken together, miRNAs enriched in both male

and female embryos are found to be involved in various key processes that are important for

the development and survival of elongated bovine embryos for subsequent establishment and

maintenance of pregnancy.

Fig 12. Molecular pathways enriched by the differentially expressed miRNAs between elongated male and female embryos.

https://doi.org/10.1371/journal.pone.0298835.g012
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Sexual dimorphic miRNA expression patterns associated with adaptation

to suboptimal maternal environment

Embryo losses in cows are more frequent compared to heifers [9], partly due to factors associ-

ated with negative energy balance [8]. Thus, we attempted to investigate the molecular

response of the male and the female embryos towards the cow’s and the heifer’s maternal

reproductive microenvironment by analyzing DEmiRNAs between the male and female

embryos developed in cows as well as in heifers. Interestingly, the number of DEmiRNAs

detected between the male and female embryos in cows was 8 times higher compared to the

DEmiRNAs detected between male and female embryos developed in heifers (Figs 6 and 8)

suggesting that the reproductive microenvironment of the cows may foster the sexual dimor-

phic miRNA expression as a response to the maternal environment. Here, the main question

that needs to be answered is what triggers the increased number of DEmiRNAs between the

male and female embryos that were developed in cows, but not in heifers? Although its fate

after day 13 of the gestation period is not known, the developmental data from the current

study showed that compared to the female ones, the male embryos were able to adapt to the

cow’s microenvironment until day 13 of the gestation period. The oviduct and uterine micro-

environment in cows could be affected by increased metabolic stress such as non-esterified

volatile fatty acids and beta hydroxybutyrate at the early stage of lactation [56]. Thus, embryos

that can survive in such a microenvironment may exhibit remarkable plasticity by modifying

signaling pathways including those associated with the immune system. With this respect,

when we looked into the functional annotations of DEmiRNAs identified between male and

female embryos that were developed in cows, 14 differentially expressed miRNAs including

let-7a-5p and let-7e were involved immune related pathways including the innate immune sys-

tem, TNF signaling, NF-kappa B signaling and chemokine signaling (Fig 7, S5 Table). For

instance, the role of let-7 family miRNA in regulating the innate immune response in facilitat-

ing robust developmental programs even under stress conditions has been documented [57].

Immune processes are the critical factors in determining the fate of pregnancy and miRNA

mediated immune system regulation has been reported in various circumstances [58, 59].

Thus, it is possible to suggest that the male embryos can adapt to the maternal environment by

regulating transcripts that are associated with the immune system, although further research is

required to reach a valid conclusion.

In addition to the immune system, the mammalian target of the rapamycin (mTOR) signal-

ing pathway was also among the key pathways enriched by differentially expressed miRNAs

between the male and female elongating embryos developed in cows. Nine DEmiRNAs includ-

ing let-7a-5p, let-7b, let-7c, let-7d, let-7e, miR-225b, and miR-555 were involved in mTOR

pathway (Fig 7, S5 Table). Of these, let-7a-5p is believed to regulate the mTOR signaling by

regulating the expression of MAP4K3, a gene which is responsible for the formation of

mTORC1 in the mTOR signaling cascade [60]. Similarly, miR-125b is involved in mTOR sig-

naling pathway by targeting PIK3CD and regulate cell proliferation and cell cycle progression

[61] and miR-155 involves in autophagy processes by targeting RHEB, RICTOR and RPS6KB2
genes which are essential in the mTOR pathway [62]. It is believed that embryo elongation

involves the exponential increases in length and weight of the trophectoderm which supports

uterine epithelial-derived histotroph [63]. Nevertheless, to what extent does the mTOR signal-

ing regulate embryo survival in suboptimal development environments? mTOR signaling,

which is evolutionarily conserved serine/threonine kinase, involves in regulating many biolog-

ical processes including cell growth, proliferation and survival, and metabolism, by sensing

and integrating intracellular and extracellular signals in the form mTOR complex 1

(mTORC1) and mTOR complex 2 (mTORC2) [64, 65] and it is a key signaling pathway in

PLOS ONE Sexual dimorphic miRNA mediated responses of bovine elongated embryos

PLOS ONE | https://doi.org/10.1371/journal.pone.0298835 February 29, 2024 18 / 26

https://doi.org/10.1371/journal.pone.0298835


regulating cellular homeostasis in an environmental stressor-dependent manner [66]. Inacti-

vation of the mTOR signaling can impair cell proliferation in both embryonic and extraembry-

onic compartments followed by the death of the embryo soon after implantation [67]. The

mTOR signaling also regulates embryonic diapause, the temporary suspension of development

of the embryo occurs due to the consequence of adverse environmental conditions or meta-

bolic stress, when further embryo development could be risky [68]. Therefore, regulating the

mTOR signaling pathway could be one of the key processes that can be triggered by embryos

in a sex specific manner for its further development, adaptation and survival in suboptimal

developmental conditions.

Male elongated embryo is more susceptible to altering its miRNA

expression in response to maternal environments

Once we confirmed the presence of miRNA expression divergences between the male and

female elongated embryos developed in cows than heifers, we also opted to obtain an addi-

tional insight into the effect of maternal environment and the sex specific response of the

embryos by comparing the miRNA expression profile of the male elongated embryos of the

cows with the male elongated embryos of the heifers, and the female elongated embryos of the

cows with the female elongated embryos of the heifers. Interestingly, no significantly differen-

tial expression of miRNAs was detected between the female embryos developed in cows and

heifers, but the expression level of 18 miRNAs was increased in the male elongated embryos

developed in cows compared to the male elongated embryos developed in heifers (Fig 9).

Therefore, this data provided clear information that the maternal environment has more

impact on the male embryo miRNA expression compared to the female ones. This result

seems to be coinciding with the developmental data by which the sex ratio of the elongated

embryos that were developed in cows was skewed to males (Table 1). This in turn reveals the

increased survival rate of the male embryos than females in the cow’s microenvironment. Pre-

vious studies on mRNA expression also indicated that suboptimal culture conditions exhibited

a 3 fold increase in the number of differentially expressed genes compared to their female

counterparts [26]. Moreover, while comparing the in vitro produced male and female embryos

to their in vivo counterparts at day 32 of the gestation period, [69] also indicated about 12

times more differentially expressed genes between males were detected compared to those

detected between females. This may indicate that male embryos are more susceptible to alter-

ations in gene expression due to suboptimal developmental conditions. Therefore, 8 fold

increase in the number of DEmiRNAs between the male elongated embryos compared to the

number of DEmiRNAs detected between the female elongated embryos. This may suggest the

that the male embryos could respond to suboptimal maternal environment by modulating

their gene regulatory machinery for its survival and maintain pregnancy.

It is also interesting to identify individual miRNA that are solely associated with sexual

dimorphism and/or the maternal environment. Perhaps, merging the DEmiRNAs obtained

from different comparisons (CM vs. CF, HM vs. HF, CM vs. HM and M vs. F) using the Venn

diagram (Fig 13) and looking into exclusive and common DEmiRNAs may help to filter miR-

NAs that are specific to the intrinsic characteristics of the embryos (sexual dimorphism) or

altered by the maternal environment. Accordingly, it appears that at least four miRNA expres-

sion patterns, namely sex biased miRNAs expression patterns which are directly associated

with the sex of embryos, maternal environment induced sex biased expression patterns, mater-

nal environment induced expression patterns only in the male embryos and expression pat-

terns that can be altered by the confounding effect of maternal environment and sex of

embryos can be identified. For instance, it appears that 14 miRNAs including bta-miR-9-3p,
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bta-miR-499, bta- miR-199a-3p, bta-miR-6526, bta-miR-11986c, bta-miR-503-3p and, bta-

miR-450b were differentially expressed between male (M) and female (F) embryos when the

maternal environment was omitted from analysis suggesting that these miRNAs may be

mainly affected the sex of the embryo than any other factors. The majority of these were down-

regulated in males but increased in female embryos. For instance, bta-miR-6119-3p, bta-miR-

6526 and bta-miR-11986c which were significantly decreased in male embryos are transcribed

on X chromosome and others including bta-miR-9-3p, bta-miR-499 are transcribed from

autosomal chromosomes. Although further research is required to track the function of these

miRNAs in male and female embryogenesis, it is speculated that these miRNAs could be asso-

ciated with various sex specific processes of embryo development including sex differentiation

and gonadal development. Previous reports have also indicated the role of miR-199-3p in

granulosa cell migration and steroid genesis in goose ovarian follicles [70], sex biased expres-

sion of miR-9-3p on day 15.5 of mouse development [71] and in 1–3 old yellow catfish [72]

and miR-499 in the gonads of 1–4 years of Chinese giant salamander [73]. On the other hand,

6 DEmiRNAs (bta-let-7d, bta-miR-10225a, bta-miR-2424, bta-miR-502b, bta-miR-361, bta-

miR-425-3p) were specific to the CM vs. CF whereas bta-miR-10a was specific to the HM vs.

HF comparison suggesting that the sex biased expression patterns of these miRNAs at day 13

of the gestation period might be mainly induced by the maternal environment. Thus, these

miRNAs can be considered as maternal environment induced sex-biased miRNAs. Similarly,

altered expression of bta-miR-1246, bta-miR-11972, bta-miR-12023, bta-let-7f, bta-miR-129

and bta-miR-129-5p between the CM and HM may indicate that the expression patterns of

these miRNAs can be altered exclusively in male embryos in response to the maternal environ-

ment. For instance, miR-1246 was highly expressed in the serum of heat-stressed Holstein

Fig 13. Venn diagram depicting exclusively and commonly expressed miRNAs in CM vs. CF, HM vs. HF, and CM vs. HM and M vs. F.

Since, no significantly differentially expressed miRNAs were detected in CF vs. HF, this comparison was not included in the Venn diagram.

Arrows " and # indicated the upregulation and downregulation of miRNAs, respectively in the first compared to the latter group.

https://doi.org/10.1371/journal.pone.0298835.g013
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cows [74] and a significant increase in primary human trophoblast cells cultured in 20% com-

pared to 10% O2 concentration [75] may indicate that the expression profile of miR-1246 can

be altered by stress condition. Moreover, this miRNA was found to be significantly increased

on day 21 of trophectoderm cells cultured in vitro suggesting the involvement of this miRNA

in the maternal-foetal cross-talk [76].

Conclusion

The current study revealed the outline of the molecular responses of male and female embryos

to maternal microenvironments by modifying their miRNA abundances, which is required for

fine-tuning the activity of genes required for the development and survival. Interestingly, sex-

ual dimorphic differences in miRNA expression have been manifested when embryos devel-

oped in the cows, which are supposed to be suboptimal environments, compared to their

heifer counterparts. Especially male elongated embryos tend to respond to the unfavorable

maternal microenvironment better than the female which might be associated with intrinsic

sexual dimorphic ability to modulate the miRNA machinery. This has been further supported

by that those candidate DE miRNAs between male and female embryos developed in cows

were involved in various key processes including immune system regulation, mTOR signal-

ling, cell-to-cell communication, cell proliferation and differentiation signalling pathways.

Furthermore, irrespective of the origin of the embryos, 36 miRNAs that were involved in vari-

ous pathways including metabolic pathways, immune related pathways, cell division and com-

munication were differentially expressed in male and female elongated embryos. This may in

turn provide a clear picture of the sexual dimorphic miRNA dynamics during the early elonga-

tion period. Overall, this study indicated that the increased sex ratio towards males in embryos

developed in cows was also complemented by increased divergences in sexual dimorphic

miRNA expression between male and female embryos as a response to the maternal microen-

vironment. The male elongated embryos were found to respond to suboptimal maternal con-

dition by modifying their miRNA expression which might be crucial for their survival as

evidenced in the skewed sex ratio of elongated embryos developed in the cow’s environment.
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