Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) [glmerMod] Family: Negative Binomial(12.1475) ( log ) Formula: Transitions ~ Sex + Bodymass + Starttime + Trainingsday * Trial + Age + (1 | ID) Data: data AIC BIC logLik deviance df.resid 2729.0 2784.7 -1352.5 2705.0 757 Scaled residuals: Min 1Q Median 3Q Max -1.9701554 -0.5511447 -0.2692439 0.2541117 6.2937537 Random effects: Groups Name Variance Std.Dev. ID (Intercept) 0.02502178 0.1581827 Number of obs: 769, groups: ID, 52 Fixed effects: Estimate Std. Error z value (Intercept) 1.084889e+00 3.488631e-01 3.10978 Sexm -1.399444e-01 6.848181e-02 -2.04353 Bodymass -3.358154e-04 2.507294e-03 -0.13394 Starttime -5.170634e+01 3.737115e+01 -1.38359 TrainingsdayFirst Training 2.267029e+00 1.929816e-01 11.74739 TrainingsdayLast Training -1.381388e-01 1.579028e-01 -0.87483 Trial -1.292673e-02 3.089037e-02 -0.41847 Age -1.800093e-03 3.564774e-03 -0.50497 TrainingsdayFirst Training:Trial -4.970795e-01 8.622393e-02 -5.76498 TrainingsdayLast Training:Trial 5.766107e-02 3.767188e-02 1.53061 Pr(>|z|) (Intercept) 0.0018722 ** Sexm 0.0410004 * Bodymass 0.8934537 Starttime 0.1664841 TrainingsdayFirst Training < 2.22e-16 *** TrainingsdayLast Training 0.3816640 Trial 0.6756027 Age 0.6135821 TrainingsdayFirst Training:Trial 8.1666e-09 *** TrainingsdayLast Training:Trial 0.1258651 --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Correlation of Fixed Effects: (Intr) Sexm Bdymss Strttm TrnnFT TrnnLT Trial Age TrFT:T Sexm -0.151 Bodymass -0.288 -0.130 Starttime -0.527 -0.006 -0.019 TrnngsdyFrT -0.582 0.053 0.031 0.047 TrnngsdyLsT -0.490 0.064 -0.120 0.016 0.582 Trial -0.270 0.000 0.012 0.002 0.477 0.580 Age -0.536 0.173 -0.503 0.110 0.453 0.451 -0.002 TrnngsdFT:T 0.126 0.022 -0.115 -0.004 -0.736 -0.193 -0.359 0.062 TrnngsdLT:T 0.216 0.009 -0.021 0.005 -0.388 -0.782 -0.820 0.014 0.295 fit warnings: Some predictor variables are on very different scales: consider rescaling optimizer (Nelder_Mead) convergence code: 0 (OK) Model is nearly unidentifiable: very large eigenvalue - Rescale variables? Model is nearly unidentifiable: large eigenvalue ratio - Rescale variables?