Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) [glmerMod] Family: Negative Binomial(2.2932) ( log ) Formula: Duration ~ Sex + Bodymass + Starttime + Trainingsday * Trial + Age + (1 | ID) Data: data AIC BIC logLik deviance df.resid 7079.6 7135.4 -3527.8 7055.6 757 Scaled residuals: Min 1Q Median 3Q Max -1.2947718 -0.7483967 -0.3957172 0.3201434 7.7330845 Random effects: Groups Name Variance Std.Dev. ID (Intercept) 0.08788219 0.2964493 Number of obs: 769, groups: ID, 52 Fixed effects: Estimate Std. Error z value (Intercept) 4.224786e+00 3.511176e-01 12.03239 Sexm 8.922473e-03 9.860779e-02 0.09048 Bodymass 1.662017e-03 2.698944e-03 0.61580 Starttime -1.687625e+02 2.502621e+01 -6.74343 TrainingsdayFirst Training 3.161601e+00 2.382200e-01 13.27177 TrainingsdayLast Training -2.362062e-01 1.439731e-01 -1.64063 Trial 5.471144e-02 2.477593e-02 2.20825 Age -7.242481e-03 3.930602e-03 -1.84259 TrainingsdayFirst Training:Trial -7.673016e-01 1.177027e-01 -6.51898 TrainingsdayLast Training:Trial 1.011348e-01 3.167830e-02 3.19256 Pr(>|z|) (Intercept) < 2.22e-16 *** Sexm 0.9279022 Bodymass 0.5380247 Starttime 1.5469e-11 *** TrainingsdayFirst Training < 2.22e-16 *** TrainingsdayLast Training 0.1008748 Trial 0.0272269 * Age 0.0653892 . TrainingsdayFirst Training:Trial 7.0787e-11 *** TrainingsdayLast Training:Trial 0.0014102 ** --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Correlation of Fixed Effects: (Intr) Sexm Bdymss Strttm TrnnFT TrnnLT Trial Age TrFT:T Sexm -0.224 Bodymass -0.339 -0.119 Starttime -0.348 0.002 -0.001 TrnngsdyFrT -0.497 0.063 0.058 0.019 TrnngsdyLsT -0.553 0.084 -0.102 0.006 0.455 Trial -0.250 0.032 0.068 0.005 0.318 0.510 Age -0.576 0.173 -0.474 0.053 0.388 0.530 -0.021 TrnngsdFT:T 0.081 0.006 -0.113 -0.002 -0.802 -0.093 -0.218 0.059 TrnngsdLT:T 0.198 -0.018 -0.060 0.000 -0.245 -0.730 -0.783 0.016 0.165 fit warnings: Some predictor variables are on very different scales: consider rescaling optimizer (Nelder_Mead) convergence code: 0 (OK) Model is nearly unidentifiable: very large eigenvalue - Rescale variables? Model is nearly unidentifiable: large eigenvalue ratio - Rescale variables?