Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) [glmerMod] Family: Negative Binomial(6.2333) ( log ) Formula: Distance ~ Sex + Bodymass + Starttime + Trainingsday * Trial + Age + (1 | ID) Data: data AIC BIC logLik deviance df.resid 10265.9 10321.7 -5121.0 10241.9 757 Scaled residuals: Min 1Q Median 3Q Max -2.1021515 -0.6549725 -0.3731431 0.3501915 6.4189257 Random effects: Groups Name Variance Std.Dev. ID (Intercept) 0.01569363 0.1252742 Number of obs: 769, groups: ID, 52 Fixed effects: Estimate Std. Error z value (Intercept) 6.196300223 0.182790656 33.89834 Sexm -0.079065890 0.046570494 -1.69777 Bodymass 0.001505655 0.001514500 0.99416 Starttime -17.260492523 13.063021504 -1.32132 TrainingsdayFirst Training 2.353076234 0.138572373 16.98085 TrainingsdayLast Training -0.172423077 0.082707249 -2.08474 Trial 0.007383253 0.015204861 0.48559 Age -0.003918170 0.002105723 -1.86072 TrainingsdayFirst Training:Trial -0.579948591 0.070084802 -8.27496 TrainingsdayLast Training:Trial 0.050477753 0.019062671 2.64799 Pr(>|z|) (Intercept) < 2.22e-16 *** Sexm 0.0895516 . Bodymass 0.3201450 Starttime 0.1863931 TrainingsdayFirst Training < 2.22e-16 *** TrainingsdayLast Training 0.0370929 * Trial 0.6272614 Age 0.0627831 . TrainingsdayFirst Training:Trial < 2.22e-16 *** TrainingsdayLast Training:Trial 0.0080972 ** --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Correlation of Fixed Effects: (Intr) Sexm Bdymss Strttm TrnnFT TrnnLT Trial Age TrFT:T Sexm -0.205 Bodymass -0.332 -0.117 Starttime -0.347 0.004 0.000 TrnngsdyFrT -0.472 0.060 0.043 0.020 TrnngsdyLsT -0.525 0.072 -0.150 0.005 0.429 Trial -0.258 0.015 0.018 0.004 0.329 0.545 Age -0.534 0.170 -0.526 0.049 0.339 0.501 -0.008 TrnngsdFT:T 0.084 0.002 -0.108 -0.005 -0.820 -0.098 -0.220 0.068 TrnngsdLT:T 0.199 -0.003 -0.012 -0.001 -0.258 -0.753 -0.798 0.010 0.173 fit warnings: Some predictor variables are on very different scales: consider rescaling optimizer (Nelder_Mead) convergence code: 0 (OK) Model is nearly unidentifiable: very large eigenvalue - Rescale variables? Model is nearly unidentifiable: large eigenvalue ratio - Rescale variables?