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Fishes are not only the largest, but also the most diverse group of vertebrates. Fishes
inhabit a wide range of habitats and exhibit remarkable diversity in life history, morphology,
physiology, behaviour, and ecology [1]. Differences in life history, ecology, and social
systems have likely shaped cognition in fishes, but our understanding of fish cognition is
still limited relative to that of other taxa [2]. Understanding how and why cognition varies
within and between species will ultimately help us to understand the selective pressures
shaping cognitive phenotypes in fishes and how they have adapted to their environments.
This Special Issue—a collection of the most recent articles from experts in the field of fish
cognition—aims to further our understanding of the evolutionary drivers of cognitive
variation in fishes. Fish cognition is a rapidly developing research area [3,4], and with this
Special Issue, we wish to particularly highlight four considerations for future studies of
fish cognition.

First, more studies investigating the causes and consequences of individual varia-
tion in fish cognition are needed. Studies investigating the drivers of cognitive evolution
have traditionally taken a comparative approach, typically contrasting measures of neu-
roanatomy across multiple species [5]. More recently, an increasing number of studies
are taking an intraspecific approach to the study of cognition, focusing on the causes and
consequences of individual variation in cognition [6]. In this vein, recent studies have
found relationships between individual cognitive performance and the social environment
(e.g., group size [7,8] and social network position [9]), the physical environment (e.g.,
elevation [10]), and predation pressure [11]. Such findings, coupled with studies linking in-
dividual variation in cognition to measures of fitness, have the potential to reveal profound
insights into cognitive evolution and further our understanding of selection acting on
cognitive phenotypes. Whilst an increasing number of studies are investigating the causes
of individual variation in cognition, comparatively few have looked at the consequences of
cognitive variation [5], and of those that do exist, there is a considerable taxonomic bias.
A recent meta-analysis [12] identified 91 studies that have investigated the relationship
between cognition and fitness, and of these, 21 studies investigated the relationship in
fishes. While this is a reasonable proportion, within these 21 studies, only 7 species have
been studied, with one species (guppy, Poecilia reticulata) making up >60% of studies. In
order to truly understand the factors governing cognitive variation, such taxonomic biases
need to be addressed, both across and within classes. Furthermore, the majority of studies
investigating the relationship between cognition and fitness were carried out in captivity
(58%, [12]). This pattern translates to 53% of studies across all non-fish taxa, but up to
76% within fishes [12]. Such a pattern is understandable, particularly within fishes, as the
logistical challenges associated with quantifying cognitive performance in the wild, and
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subsequently tracking reproductive success, are substantial. However, it cannot be over-
looked that studies examining the relationship between reproductive success and cognition
in the wild are more ecologically relevant than laboratory-based studies. It is therefore
imperative that tractable study systems, where cognitive testing in the wild is possible, are
identified and/or utilised to advance our understanding of the selection pressures driving
cognitive phenotypes in fishes.

Second, we believe that the use of mesocosm setups will increase the ecological va-
lidity of fish cognition studies where conducting studies in the field would be unfeasible.
Mesocosms—enclosed or semi-enclosed controlled outdoor experimental units that sim-
ulate aquatic environments—are widely used in marine and freshwater ecology to study
ecosystem responses to, for instance, changes in nutrient or light availability [13,14]. Such
setups allow researchers to bridge the gap in ecological realism that exists between labo-
ratory and wild environments by exposing organisms to natural variations in light and
temperature, potential aerial predators, and more complex social and physical environ-
ments while retaining the ability to monitor subjects for prolonged periods of time [15].
Although less common, mesocosm studies have also been used successfully to study fish
behaviour [16,17]. Ongoing advances in video tracking and in automated operant con-
ditioning systems for fish [18-20] continue to expand the scope of studies that can be
performed as well as the breadth of taxa that can be studied. Moreover, outdoor facilities
available at many marine research stations (e.g., see the Association of European Marine
Biological Laboratories Expanded (ASSEMBLE")) can provide ideal infrastructure for meso-
cosm cognition studies that many universities likely lack. Incidentally, the distribution of
such facilities worldwide should further promote the study of a wider range of species
with varying life histories, social systems, and ecologies.

Third, more studies are needed to test whether general intelligence (g) exists in fishes.
This is important to better understand the evolution of cognition in general and to resolve
the long-standing debate about whether cognition is organised in a domain-specific or
domain-general way (e.g., [20,21]). We are aware of only one study conducting a series
of cognitive tests to assess the presence of g in an ectothermic vertebrate [22]. This study
compared the performance of wild-caught cleaner wrasses (Labroides dimidatus) in four
cognitive tasks that have also been used to assess g in mammals. The study did not find
significant correlations between the performance of cleaner wrasses between the tasks and
concluded that there is no evidence of g in fishes—this is in stark contrast to endotherms
such as mammals. Conversely, La Loggia and colleagues [23] found that Neolamprologus
pulcher, a highly social cichlid from Lake Tanganyika, uses transitive inference (TT), which
is the ability to infer relationships between stimuli, in a non-social context. Although
the authors only used one cognitive task in this study, the result might show evidence
for g in this fish species because other social cichlids from Lake Tanganyika use TI in
social contexts [24,25] and N. pulcher are able to track the relative rank of other group
members [26]. Along the same line, Reyes-Contreras et al. [27] found that an early-life
cortisol treatment reduced non-social flexibility in N. pulcher later in life. This result is in
line with other studies showing that an early-life cortisol treatment reduces social flexibility
in the same species [28]. Collectively, the studies using N. pulcher could be used as evidence
for g in a fish species. Nevertheless, confirmatory work that assesses cognitive performance
in the same individuals across different cognitive domains is needed. Cichlids from Lake
Tanganyika are an ideal study system to further investigate g in fishes because many closely
related species that differ in their ecology and sociality can be studied in the same habitat.

Fourth, fishes are also ideal to probe the validity of classic cognitive tasks that are
used to test higher cognitive abilities in other species. This is important if we seek to better
understand the evolution of cognitive abilities and intelligence in general. For example,
in a series of experiments, Kohda and colleagues [29-31] conclusively confirmed that
cleaner wrasses pass the “mirror test”. This classic test paradigm was designed to show
self-recognition in animals by applying colour dots to body parts that are not visible to
the individual. It is thought that the individual has a form of self-recognition if it starts
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to investigate the body part with the colour dot in front of a mirror. This assumed high
level of cognition has thus far been attributed only to a handful of species (chimpanzees,
Pan troglodytes; bottlenose dolphins, Tursiops truncatus; Asian elephants, Elephas maximus;
and Eurasian magpies, Pica pica; see [32]). The species passing this test are considered
cognitively advanced because they also have a particularly large brain relative to their body
size. The controversial studies using cleaner wrasses challenge this simplistic view and
show that even a species without a particularly enlarged brain relative to body size [33]
can pass the mirror test. It is open for debate whether this shows that cleaner wrasses
are also cognitively advanced, or that self-recognition does not require superior cognitive
abilities, but this issue has further highlighted the importance of testing classic cognitive
test paradigms in fishes. Investigation of the neuronal mechanisms that underlie cognitive
abilities in fishes and other taxa should help to clarify whether similar brain areas are
activated during engagement with the same cognitive task.

In summary, studying the causes and consequences of individual variation in fish
cognition has the potential to provide novel insights into the evolution of animal cognition.
Our list of future research priorities related to fish cognition is not exhaustive, but we hope
to inspire and encourage researchers to study these highly promising research questions.
In the following Special Issue, we collected articles within but also outside these four
considerations to highlight the breadth of research on fish cognition.
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