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Abstract

Background Heterotrophic microbes inhabiting the dark ocean largely depend on the settling of organic mat-

ter from the sunlit ocean. However, this sinking of organic materials is insufficient to cover their demand for energy
and alternative sources such as chemoautotrophy have been proposed. Reduced sulfur compounds, such as thiosul-
fate, are a potential energy source for both auto- and heterotrophic marine prokaryotes.

Methods Seawater samples were collected from Labrador Sea Water (LSW, ~ 2000 m depth) in the North Atlantic
and incubated in the dark at in situ temperature unamended, amended with 1 uM thiosulfate, or with 1 uM thiosul-
fate plus 10 uM glucose and 10 uM acetate (thiosulfate plus dissolved organic matter, DOM). Inorganic carbon fixation
was measured in the different treatments and samples for metatranscriptomic analyses were collected after 1 h

and 72 h of incubation.

Results Amendment of LSW with thiosulfate and thiosulfate plus DOM enhanced prokaryotic inorganic carbon
fixation. The energy generated via chemoautotrophy and heterotrophy in the amended prokaryotic communi-

ties was used for the biosynthesis of glycogen and phospholipids as storage molecules. The addition of thiosulfate
stimulated unclassified bacteria, sulfur-oxidizing Deltaproteobacteria (SAR324 cluster bacteria), Epsilonproteobacteria
(Sulfurimonas sp.), and Gammaproteobacteria (SUP05 cluster bacteria), whereas, the amendment with thiosulfate
plus DOM stimulated typically copiotrophic Gammaproteobacteria (closely related to Vibrio sp. and Pseudoaltero-
monas sp.).

Conclusions The gene expression pattern of thiosulfate utilizing microbes specifically of genes involved in energy
production via sulfur oxidation and coupled to CO, fixation pathways coincided with the change in the transcrip-
tional profile of the heterotrophic prokaryotic community (genes involved in promoting energy storage), suggesting
a fine-tuned metabolic interplay between chemoautotrophic and heterotrophic microbes in the dark ocean.
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Background

The dark ocean (below 200 m depth) harbors approxi-
mately 75% and 50% of the global ocean’s prokaryotic
biomass and production, respectively [1]. Prokaryotes
inhabiting the dark ocean greatly depend for their growth
on the fluxes of particulate organic matter (POM) gen-
erated in the sunlit surface ocean [2, 3]. However, the
mismatch between current estimates of POM exported
from the sunlit surface layers and the bacterial car-
bon demand in the dark ocean suggests the presence of
alternative sources of energy and carbon for dark ocean
prokaryotes [1, 2]. Dissolved inorganic carbon (DIC)
fixation rate measurements [4], isotopic [5], and molecu-
lar approaches [6, 7] have contributed to the increasing
evidence of chemoautotrophy as a significant source of
organic matter production in the dark ocean.

However, the energy sources fuelling chemoautotrophy
remain enigmatic. Inorganic reduced nitrogen and sulfur
compounds, methane or hydrogen [6-9] are potential
inorganic energy sources. Among the numerous reduced
sulfur compounds, thiosulfate is ubiquitously present
throughout the ocean water column, albeit at low con-
centrations [10]. Thiosulfate can be generated from the
oxidation of other inorganic sulfur compounds or as a
by-product from oxidation or fermentation of organosul-
fonates like taurine and other organic sulfur compounds
by aerobic and anaerobic bacteria [11, 12].

Photoautotrophs, chemoautotrophs, and even hetero-
trophs can utilize reduced sulfur compounds as energy
source mainly through the sulfur-oxidizing (sox) enzyme
system [13, 14]. Chemolithoautotrophy based on thio-
sulfate utilization has been reported in axenic aquatic
bacterial cultures [15, 16], in marine mixotrophic sulfur-
oxidizing bacteria UBA868 [17], and in hydrothermal
vent plumes [9]. Conversely, an earlier transcriptomic
study on mesopelagic prokaryotic communities revealed
no clear effects of thiosulfate on chemoautotrophs [18].
Enhanced organic carbon assimilation coupled with oxi-
dation of thiosulfate and reduced respiration has been
reported in marine heterotrophic bacteria [19]. This lat-
ter process might be particularly relevant in nutrient-
rich microenvironments, such as marine snow, sinking
macro-organism carcasses, or fecal pellets [20, 21]. How-
ever, the potential role of thiosulfate as a source of energy
in the oxygenated bathypelagic realm and the relevant
taxa capable of reduced sulfur-based chemoautotrophy
remain largely unknown.

In the present study, we performed measurements of
DIC fixation and community transcriptomic analyses in
thiosulfate amended and unamended bathypelagic waters
to elucidate the potential of thiosulfate and thiosulfate
combined with dissolved organic matter (DOM) in che-
moautotrophic and heterotrophic metabolism.
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Methods

Sample collection and DIC fixation rate measurements
Seawater was collected during the MOCA cruise with RV
Pelagia from 2000 m depth in the North Atlantic (Figure
S1) in July 2012 using 12 L Niskin bottles mounted on a
CTD rosette sampler with sensors for conductivity—tem-
perature—depth (CTD), salinity, oxygen, fluorescence,
and optical backscattering. Based on corresponding
salinity and temperature characteristics, the collected
seawater was identified as Labrador Sea Water (Table
S1). Dissolved inorganic nutrient concentrations (NO;~,
NO, ™, PO,*") were determined on 0.2 um filtered seawa-
ter in a TRAACS 800 autoanalyzer system immediately
after collecting the samples following established pro-
tocols [22]. Microbial leucine incorporation rates were
measured as previously described [4]. Briefly, 50 mL
triplicate seawater samples were inoculated with 10 nM
[®H]-leucine (final concentration) and incubated in the
dark at in situ temperature for 47 h together with tripli-
cate formaldehyde-killed controls. To terminate the incu-
bation, formaldehyde (2% final concentration) was added
to the samples, and the samples and controls were filtered
onto 0.2 um polycarbonate filters. Subsequently, the fil-
ters were rinsed with 5% ice-cold trichloroacetic acid.
The dry filters were placed in scintillation vials with 8 mL
scintillation cocktail (FilterCount, Canberra-Packard),
and after about 18 h counted on board the research vessel
in a liquid scintillation counter (LKB Wallac). The instru-
ment was calibrated with internal and external stand-
ards. The water was split in duplicate 2 L acid-cleaned
polycarbonate bottles and amended with 10 uM ammo-
nia, 1 uM sulfite (Na,SOs), 1 pM thiosulfate (Na,S,0;),
10 pM of each glucose and acetate (DOM), or 1 uM thio-
sulfate and 10 pM of each glucose and acetate (thiosul-
fate+ DOM treatment). All the treatments together with
an unamended control were incubated at in situ tempera-
ture in the dark for 1 h or 72 h. At the end of the incu-
bation, DIC fixation was measured via *C-bicarbonate
uptake as previously described [4]. Briefly, 50 mL tripli-
cate water samples and duplicate formaldehyde-killed
controls were incubated in the dark at in situ tempera-
ture after the addition of 100 uCi of *C-bicarbonate for
60-72 h [4]. Subsequently, the incubations were termi-
nated by formaldehyde addition (2% final concentration)
to the samples. Samples and killed controls were filtered
onto 0.2 pm polycarbonate filters and rinsed with filtered
seawater (<0.2 um). Subsequently, the filters were fumed
with concentrated HCI for 12 h. Filters were placed in
scintillation vials together with 8 mL of scintillation cock-
tail (FilterCount, Canberra-Packard). After about 18 h,
the samples were counted on board in the liquid scintil-
lation counter (LKB Wallac). The instrument was cali-
brated with internal and external standards. Prokaryotic
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abundance (Table S1) was measured by flow cytometry
following the protocol described by Sintes et al. [23], and
dissolved organic carbon (DOC) concentration (Table
S1) was determined in triplicate GF/F filtered water sam-
ples using a Shimadzu TOC-5000 analyzer [24, 25].

RNA extraction, cDNA library construction, and sequencing
Two liters of water from the original sample were fil-
tered immediately after collection onto 0.2 um pore-size
SUPOR filters (Pall), and stored in cryovials at—80 °C
after the addition of 1 mL RNAlater. One replicate from
the different treatments was filtered 1 h after the addition
of the different substrates (T1), while the second replicate
was filtered 72 h after the addition of substrates (T72).
The filtration took always<15 min and the filters were
stored as previously described for the original sample.
Therefore, it should be noted that only one replicate per
treatment per time point is available in this study, which
limits the possibility of statistically analyzing and disen-
tangling technical vs. true variability [26].

RNA was extracted from the original sample, the
unamended control, the thiosulfate, and the thiosul-
fate+ DOM treatments after 1 h and 72 h of incuba-
tion. The filters were thawed on ice and the RNAlater
(Ambion, USA) was pipetted and concentrated
to~40-60 uL by centrifugation using Amicon Ultracel
2 mL 10 KDa centrifugal filters (Millipore Corp., USA),
at 4000 x g for 45 min (4 °C). Thawed filters were cut into
small pieces using sterile razor blades and placed inside
clean 2 mL screwcap tubes. RNA was extracted from
the filter pieces and the concentrated RNAlater solu-
tion using the mirVana' miRNA Isolation Kit (Ambion,
USA). Approximately, 200 pL of a 1:1 zirconia/silica bead
(BioSpec Products, USA) solution was added to each
2 mL tube prior to the cell lysis step. DNA was removed
with the TURBO DNA-freeTM Kit (Ambion, USA), and
the total RNA extracted was purified and concentrated
with the RNeasy MinElute Cleanup Kit (Qiagen, USA).
The absence of DNA from extracted RNA was verified by
40 cycles of PCR amplification of partial 16S rRNA genes
using the primers 27F and 907R [27]. RNA quality was
checked using the Agilent 2200 TapeStation system.

cDNA libraries were generated using the Ovation
RNA-Seq System V2 Kit (NuGEN Technologies, USA),
purified using the RNeasy MinElute Cleanup Kit (Qia-
gen, USA), and quantified with a Qubit™ 3.0 Fluo-
rometer (ThermoFisher Scientific, USA). Sequencing
libraries were constructed using Illumina’s Truseq RNA
Sample Prep kit v2 according to the manufacturer’s
instructions and paired-end sequenced using a NextSeq
500 (Illumina) in 2Xx 150 bp mode using v.1 reagents at
the Bigelow Laboratory Single Cell Genomics Center
(https://scgc.bigelow.org).
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Bioinformatic analyses

Adapter sequences were removed with Trimmomatic
[28] and paired-end sequences were merged with PEAR
using default settings [29]. The resulting paired-end
sequence quality was assessed using PRINSEQ lite 0.20.3
[30], and all sequences with these characteristics were
removed: sequences < 100 bp in length and a mean qual-
ity score<30, sequences containing any ambiguities
(Ns), sequences with poly-A and poly-T runs of at least
5 bp, all forms of replicate and duplicate sequences, and
sequences with a minimum entropy value of 70. Riboso-
mal RNA sequences were removed prior to downstream
analysis with riboPicker [31]. To estimate taxon and tran-
script abundances, the reads from the seven samples
were used to query against KEGG GENES protein data-
base using the DIAMOND BLASTX [32] with an e-value
cutoff of 10> and a minimum alignment length cutoff of
30 amino acids. The resulting reads were subsequently
screened for taxonomic classification against the NCBI
non-redundant protein database using KAIJU [33] with
MEM mode. Taxonomic classification and functional
annotation were analyzed in R. However, it should be
mentioned that the lack of corresponding metagenomes
from the same sample might hinder taxonomic identifi-
cation due to the limitations of publicly available genome
reference databases. The transcript abundance was nor-
malized by the total read abundance (transcript per mil-
lion reads) for each sample. Subsequently, Z-score scaling
was applied to show the number of standard deviations
above and below the mean transcript expression sig-
nal in each sample. Z-score scaling was calculated as
Z-score=(value—mean (transcript)/standard deviation
(transcript).

Results and discussion

Potential energy sources supporting chemoautotrophy

in the deep ocean

Chemoautotrophy represents a fresh source of organic
carbon for dark ocean prokaryotes [2], and potentially
contributes between 12 and 72% to the heterotrophic
prokaryotic carbon demand in mesopelagic waters [34].
Although the energy sources necessary for chemolitho-
autotrophy, i.e., reduced inorganic compounds, are tech-
nically difficult to measure in the well-oxygenated deep
ocean, growing evidence based on —omics and other
molecular techniques points to the potential use of nitrite
[7], ammonia [8], hydrogen [9], and reduced sulfur com-
pounds [6] by dark ocean prokaryotes.

A natural prokaryotic community collected from
2000 m depth in the North Atlantic (Figure S1), repre-
senting Labrador Sea Water (Table S1), was amended
with various potential substrates for heterotrophic and
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chemoautotrophic prokaryotes (see Material and Meth-
ods for details). Ammonium and sulfite did not result in
significant stimulation of prokaryotic dissolved inorganic
carbon (DIC) fixation (Fig. 1) as compared to a control
community without any amendments (¢ test, p>0.49 and
p>0.63, respectively). However, the thiosulfate amend-
ment resulted in an approximately fourfold (2.2 pmol C
m~2 d7!) increase in DIC fixation compared to the una-
mended control treatment (0.6 pmol C m~3 d™!) (Fig. 1)
(see “Material and methods” section for a detailed
description of the experimental set-up). Thus, the
response of bathypelagic prokaryotes to potential energy
sources for chemoautotrophy seems to differ from that of
mesopelagic communities, which did not respond with
elevated activity upon thiosulfate amendment [18]. DIC
fixation also increased in response to dissolved organic
matter (DOM) amendment by ~tenfold, as was previ-
ously shown for mesopelagic prokaryotes [18], whereas a
12-fold (7.6 pmol C m~2 d™*) DIC fixation was observed
in the thiosulfate plus DOM amendment compared to
the control treatment (Fig. 1). Thiosulfate is one of the
most ubiquitously distributed inorganic reduced sulfur
compounds in the ocean [10], and can potentially be used
as sulfur [9] or energy source for autotrophic [35] and
heterotrophic [36] processes. The rates measured in the
different treatments were within the range of rates pre-
viously reported for the dark ocean [4] and indicate the
potential of thiosulfate as an energy source for chemo-
autotrophy. However, the larger increase in DIC fixation
rates in the thiosulfate plus DOM addition as compared
to the addition of each compound separately suggests a

10
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synergy and interconnectivity between autotrophic and
heterotrophic metabolic processes and/or increased ana-
plerotic reactions under energy-replete conditions.

Transcriptional response of bathypelagic prokaryotes

to thiosulfate

Thiosulfate can be used as a source of energy or sulfur
for prokaryotes, which can oxidize, reduce, or dispropor-
tionate it [37]. Thiosulfate oxidation can generate up to
eight electrons that may participate in the electron trans-
port chain for energy generation. Prokaryotic thiosulfate
oxidation to sulfate, and further reduction to sulfide, is
modulated by the sulfur-oxidizing (Sox) enzymes, ATP-
sulfurylase (SAT), APS reductase (APR), and dissimila-
tory sulfite reductase (DSR) [38, 39]. We observed that
the thiosulfate amendment stimulated microbial sox
genes expression up to twofold after 72 h in compari-
son to the unamended community (Fig. 2, Table S2). sox
genes (soxABCXYZ) were taxonomically mainly assigned
to Gammaproteobacteria (17-65%), Deltaproteobacte-
ria (4-55%), Alphaproteobacteria (14—30%), Epsilonpro-
teobacteria (7-24%), and unclassified (5-19%) members
(Fig. 2, Table S3). Transcripts of dissimilatory sulfite
reductase (dsr) subunits responsible for sulfite reduction
were 2- to threefold upregulated in thiosulfate-amended
prokaryotic communities (Fig. 2, Table S2). Another
interesting observation was the increase by up to 3.6-
fold of oxygen-tolerant hydrogenase subunit transcripts
(hyaA and hyaB) in the thiosulfate-amended samples
as compared to the control, indicating that oxidation of
hydrogen may also contribute to the energy generation

Thiosulfate

Thiosulfate and DOM DOM

Fig. 1 Dissolved inorganic carbon (DIC) fixation in the bathypelagic prokaryotic community amended with ammonia (10 pM), sulfite
(1 uM), thiosulfate (1 uM), thiosulfate + DOM (1 puM thiosulfate + 10 uM glucose + 10 uM acetate), DOM (10 uM glucose + 10 uM acetate),
and the unamended control (control) after 72 h incubation. The bars represent the average + standard error of three replicate bottles
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Fig. 2 Heatmap representing normalized transcript abundance (transcript per million reads) of selected genes from bathypelagic prokaryotic
communities in the different treatments and the original community (A). Light yellow to dark brown color range represents the increment

in transcript abundance. Prokaryotic taxa affiliation of different gene transcripts (B). White bars indicate the absence of the corresponding gene.
Natural sample stands for natural communities from Labrador Sea Water. Control T1 and Control T72 indicate prokaryotic communities filtered
after 1 h and 72 h incubation, respectively. Thiosulfate T1 and Thiosulfate T72 indicate thiosulfate treated prokaryotic communities filtered

after 1 h and 72 h incubation, respectively. Thiosulfate+ DOM T1 and Thiosulfate + DOM T72 indicate thiosulfate + DOM (1 uM thiosulfate + 10 uM
glucose+10 uM acetate) treated prokaryotic communities filtered after 1 h and 72 h incubation, respectively

in the deep ocean (Table S2). Sulfur-oxidizing SUP05
bacteria perform hydrogen oxidation in hydrothermal
vent plumes [9], and hydrogenase genes are widespread
in diverse marine bacterial clades [40, 41]. In our treat-
ments, hydrogenase gene transcripts were putatively
affiliated with the SUPO5 clade of marine Gammapro-
teobacteria Candidatus Thioglobus sp. (Fig. 2, Table S3).
This finding points to a widespread plasticity of the che-
moautotrophs in the dark ocean, which may utilize dif-
ferent electron donors and acceptors depending on the
environmental availability.

Thiosulfate amendment resulted in the stimu-
lation of transcription of genes involved in the
reductive citric acid cycle (ATP citrate lyase (acl),
2-oxoglutarate:ferredoxin ~ oxidoreductase  (ogor),
fumarate reductase (frd)) as a possible pathway for
chemoautotrophy (up to sixfold compared to the con-
trol treatment), whereas transcript abundance related
to anaplerotic carbon-fixation pathways (phospho-
enolpyruvate carboxylase (pepc)) was slightly lower

(0.7-fold) than in the unamended control (Fig. 2,
Table S2). Members of the Epsilonproteobacteria have
previously been shown to utilize thiosulfate and fix
DIC by using the reductive TCA cycle [42, 43]. The frd
complex is located in the cytoplasmic membrane and,
to maintain the lipid-to-protein ratio, the cell synthe-
sizes phospholipid cardiolipin [44, 45]. Cardiolipin
has a conical structure that relaxes or stabilizes the
negative curvature regions of membrane structures
[46]. Overexpressed fumarate reductase complex is
located at the cytoplasmic membrane along with other
membrane-associated proteins. Consequently, lipids
must also increase to maintain a constant lipid/pro-
tein ratio of the membrane, resulting in higher expres-
sion of cardiolipin [44, 45]. These findings support the
upregulation of cardiolipin synthase-encoding genes
in the thiosulfate amended treatment by up to 2.5-fold
compared to the control treatment (Fig. 2, Table S2).
Thiosulfate amendment did not stimulate anaplerotic
carboxylation pathways, e.g., pyruvate carboxylase (pc)
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and phosphoenolpyruvate carboxylase (pepc) transcript
abundances were similar in the amended and una-
mended treatments (Fig. 2).

Reports on chemoautotrophy by members of the
SUPO5 cluster and UBA868 in marine environments sug-
gest the coupling of the Calvin-Benson cycle and thiosul-
fate oxidation to fix DIC [9, 17, 47]. However, although
Calvin cycle genes were detected, they were not upregu-
lated in the amended treatment during this study (Fig. 2,
Table S2). Up to 35% of all rubisco transcripts were
assigned to unclassified bacteria followed by Gammapro-
teobacteria (~25%) and unclassified Actinobacteria (14%)
(Table S3). Several of these taxa have been previously
reported to harbor rubisco and sox genes and conduct
dark DIC fixation in the deep Atlantic Ocean [6]. The
Calvin cycle and sox gene expression were possibly har-
bored within the same microorganism in an uncultured
SUPO5 cluster bacterium, whereas reductive TCA genes
were possibly coupled to sox gene expression in Epsilon-
proteobacteria, such as Sulfurimonas sp. (Table S3).

Synergy between thiosulfate and DOM on prokaryotic
activity

The effect of the addition of thiosulfate plus DOM on the
DIC fixation was larger than either thiosulfate or DOM
separately (Fig. 1). The combined effect of reduced sul-
fur compounds and DOM might be particularly relevant
in nutrient-enriched pelagic microenvironments such
as marine snow or microenvironments associated to
organisms such as zooplankton [21, 48]. DOM has been
shown to stimulate anaplerotic DIC fixation in natural
mesopelagic communities [18]. Thiosulfate can pro-
vide additional energy to different marine heterotrophic
prokaryotes as an auxiliary electron donor to tetrathi-
onate, promoting the use of available organic matter for
biosynthesis rather than respiration [19, 49]. Changes in
bacterial abundance especially in the prokaryotic activity
after sulfur and/or carbon amendment possibly have con-
tributed to the overexpression of the pathways involved
in their metabolism and the energy funneled in the bacte-
rial communities studied here.

The combined addition of thiosulfate plus DOM (glu-
cose +acetate) to bathypelagic communities resulted in
a 3.5-fold increase of phosphoenolpyruvate carboxylase
(pepc)-transcripts as compared to the unamended com-
munity, suggesting a significant contribution of ana-
plerotic reactions to dark DIC fixation by bathypelagic
prokaryotes when organic carbon is available (Fig. 2,
Table S2). The majority of pepc transcripts were phyloge-
netically associated with members of the Gammaproteo-
bacteria (~88%) (Table S3). Heterotrophic prokaryotic
DIC assimilation via anaplerotic reactions can range
between 1 and 15% of the carbon incorporation by
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heterotrophic prokaryotes [50-52] and has been sug-
gested as a strategy to compensate for metabolic imbal-
ances under oligotrophic [53] and nutrient-depleted
conditions [54]. However, heterotrophic DIC fixation
also increases with increasing heterotrophic activity [18,
55] and organic matter availability [50-52] in agreement
with our findings.

Gene expression of sox enzymes slightly increased
(by ~1.3-fold) in the community amended with thiosul-
fate+ DOM as compared to the unamended microbial
community after 72 h (Fig. 2, Table S2). Transcripts of
dissimilatory sulfite reductase (dsr) subunits were ~ two-
fold upregulated in thiosulfate+DOM as compared to
the control treatment (Fig. 2, Table S2). Thus, sox and
dsr showed a higher stimulation of gene expression in
the thiosulfate than in the thiosulfate + DOM treatment
(Fig. 2, Table S2).

Sulfur-oxidizing Epsilonbacteria (such as Sulfurimonas
gotlandica) was reported to yield higher cell abundances
when amended with reduced inorganic sulfur com-
pounds as compared to organic matter (acetate, pyruvate,
or peptone) [56] supporting our finding of higher relative
abundances of sox gene transcripts in the thiosulfate than
in the thiosulfate+ DOM treatment (see above). This
indicates that sulfur oxidizers may not be key players in
the DOM catabolism in the deep ocean. However, such
labile DOM is not available in the deep ocean and thus,
this interpretation requires further investigation as sul-
fur oxidizers might play a role in catabolizing recalcitrant
compounds, as it has been shown with hydrocarbons
[57]. Glucose-specific phospho-transferase system/trans-
porter-encoding genes were upregulated (more than 130-
fold) and down-regulated in the thiosulfate+DOM and
thiosulfate amended communities, respectively (Fig. 2,
Table S2). The phospho-transferase system is responsible
for the import of glucose and for phosphorylation of glu-
cose molecules [58]. Taken together, the down-regulation
of glk (glucokinase, KO0845) and upregulation of sexR
gene (K19337), encoding for a glk gene repressor (Fig. 2,
Table S2), suggests a genetic mechanism to regulate glu-
cose utilization within the cell [59] when excess substrate
is available, such as in the thiosulfate+DOM amended
community. This glucose transporter was putatively
assigned to Vibrio sp. and Moritella sp. (Table S3) based
on amino acid homology identity (BLAST-P)), and the
HexR was assigned to Vibrionales and Alteromonadales
(Table S3). Additionally, glucose and maltose transporter-
encoding genes (gtsABC and malEFGK) and amino acid
transporter-encoding genes (aap/QMP and aotJMQP)
were also upregulated in the thiosulfate+DOM treat-
ment (Fig. 2, Table S2).

Acetate permease (actP) and acetate kinase (ackA)
transcripts were upregulated (1.2- and sevenfold,
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respectively) in the thiosulfate+ DOM amended com-
munities compared to the control (Fig. 2, Table S2). The
upregulation of actP and ackA coincided with the upreg-
ulation of cysteine synthase (cysK) by approximately
threefold (Fig. 2, Table S2). cysK is responsible for the
biosynthesis of cysteine and results in the intracellular
production of acetate as a by-product [60]. Interestingly,
ackA transcripts were similar or slightly down-regulated
(0.8-fold) in the thiosulfate amended treatment com-
pared to the control (Fig. 2, Table S2). Thus, the higher
transcript abundances of the ackA gene in the thiosul-
fate+ DOM than in the thiosulfate treatment suggest a
control of the utilization of excess acetate via phospho-
rylation that could otherwise lead to an accumulation of
intracellular acetate. An excess of glucose together with
the inability to metabolize glycolytic products and ace-
tate may lead to a carbon overflow and even cell death
associated with intracellular acidification [61].
Thiosulfate amendment, alone or combined with
DOM, stimulated the transcription of phospholipid bio-
synthesis pathways genes up to twofold (Fig. 2, Table S2),
while the availability of DOM additionally stimulated the
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synthesis of glycogen as an energy reserve (Figs. 2 and 3,
Table S2). Additionally, the gene encoding the enzyme
responsible for the biosynthesis of the sulfur-containing
amino acid cysteine (cysteine synthase-encoding gene
cysK) was threefold upregulated in the thiosulfate + DOM
treatment compared to the unamended communi-
ties after 72 h (Fig. 2, Table S2). The assimilation of sul-
fate and thiosulfate generally leads to the biosynthesis
of sulfur-containing amino acid [62]. Genes involved in
glutathione (sulfur-containing antioxidant) biosynthe-
sis were weakly upregulated (1.5-fold) in the thiosulfate
amended treatment and up to 5.5-fold in the thiosul-
fate+ DOM amendment (Fig. 2, Table S2). The respira-
tory chain can contribute up to 87% of the total intrinsic
H,0, production in aerobic bacteria [63]. Oxidation of
glucose [64] and acetate [65] can contribute to the H,O,
production in bacteria [66]. Thus, elevated glutathione
biosynthesis in the DOM-amended communities may
help the cells to adapt to oxidative stress scenarios [67].
Additionally, superoxide dismutase-Fe (sod) and glu-
tathione reductase (gr) transcripts were 1.5-fold and 2.4-
fold upregulated, respectively, in the thiosulfate + DOM
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treatment as compared to unamended communities
(Fig. 2A, Table S2). A 2, 3, and ninefold enrichment of
cysteine-based peroxidase encoding ahpC and tpx genes
and cysteine exporter (cydC), respectively, were observed
in the thiosulfate+ DOM treatment compared to the
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unamended control, suggesting an important role of this
amino acid in the detoxification of H,O, as previously
reported [68]. Cyclopropanate membrane lipids can also
participate in the cell’s response against oxidative stress
and extremely acidic pH conditions [69]. The prokaryotic
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community amended with thiosulfate+ DOM was 1.3-
fold enriched in cyclopropane-fatty-acyl-phospholipid
synthase (cfas) transcripts compared to the unamended
community (Fig. 2, Table S2). Acetate is not only used
to synthesize acetyl-coA in the central metabolism, but
it can also dissociate, generating protons or disturb the
cellular osmolarity, and causing an acidic environment
[70]. Consequently, during acetate-induced stress, cells
may change the membrane permeability by stimulating
the synthesis of specific fatty acids, such as the above-
mentioned cyclopropane fatty acids. Moreover, the ¢
transcription factor that controls cfas gene transcrip-
tion during stress [71] was also up-regulated in the thio-
sulfate+ DOM amended community (Table S2). Thus,
anti-stress factor-related genes were up-regulated in the
thiosulfate + DOM treatment (the z-score value of the
‘stress and virulence’ category was twofold the z-score of
the other samples, Fig. 3).

Overall, an episodic availability of energy sources not
only promotes and temporarily sustains microbial com-
munities but also supports energy storage (Fig. 4). Fig-
ure 4 summarises our observations where thiosulfate
amendment resulted in an up-regulation of the elec-
trogenic multi-enzyme Sox pathway and hydrogenase
complex system. A stimulation of sulfur oxidation also
promoted sulfur-containing amino acid biosynthesis.
Autotrophic CO, fixation pathway genes of the reductive
TCA and Calvin cycle were detected, the latter pathway
was not up-regulated. however. Whether acetyl-CoA
resulting from the reductive TCA cycle can fuel fatty acid
biosynthetic pathway requires detailed experiments that
were not conducted in this study.

Acetate and glucose as carbon sources were imported
by respective transporters, i.e., the ActP and PTS sys-
tem (Fig. 4). Major outer membrane protein (Omp) and
maltoporin (LamB) genes were upregulated in the thio-
sulfate+ DOM treatment. Glucose may get imported
into the periplasmic space via Omp or LamB, however,
it is the phosphoenolpyruvate (PEP)-sugar phospho-
transferase (PTS) system that controls the preferential
transport of glucose over other carbon sources. Thiosul-
fate+ DOM amendment stimulated glycogen biosynthe-
sis transcripts (Fig. 2A). Thiosulfate + DOM amendment
also promoted the enrichment of pepc transcripts. Phos-
phoenolpyruvate carboxylase enrichment points to the
importance of the anaplerotic reactions of DIC fixation,
which can also replenish Krebs cycle intermediates in the
thiosulfate + DOM treatment as compared to the thiosul-
fate amendment.

Acetate utilization is controlled by the PTA-ACK
(phosphotransacetylase—acetate kinase) pathway
(Fig. 4). The protonated form of acetate can easily diffuse
across the cell membrane; however, the inner membrane
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contains cation/acetate symporter ActP selectively trans-
porting acetate into the cell. Acetyl-CoA originating from
glucose or acetate not only generates energy by operat-
ing the oxidative TCA cycle but also participates in fatty
acid biosynthesis (that also produces energy by releasing
ATP upon catabolism). In fact, phospholipid biosynthetic
pathways were stimulated in both amendments, suggest-
ing that this type of carbon/energy storage is common in
chemoautotrophs and heterotrophs. Thiosulfate + DOM-
amendment additionally promoted overexpression of
the cyclopropane fatty acid-encoding gene. Calvin cycle
genes that were less represented in our experiments com-
pared to the control samples should produce 3-phos-
phoglycerate that can be channeled into the glycolytic
pathway.

Conclusions

Bathypelagic prokaryotic communities responded to
thiosulfate addition by increased metabolic activity and
expression of genes supporting energy production. How-
ever, the response varied based on whether DOM was
also added. While chemoautotrophic DIC fixation was
stimulated after the addition of thiosulfate, the avail-
ability of DOM stimulated anaplerotic DIC fixation.
Taken together, our results point to the potential not
only for chemoautotrophy but also for anaplerotic DIC
fixation in deep-sea prokaryotes, particularly in nutrient-
rich microenvironments such as marine snow, where
thiosulfate, as well as organic matter, might be readily
available. Additionally, the results suggest the intercon-
nectivity between auto- and heterotrophic cells through
the release of organic and inorganic metabolites.
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