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ABSTRACT

Ripening is the most crucial process step in cheese 
manufacturing and constitutes multiple biochemical 
alterations that describe the final cheese quality and 
its perceived sensory attributes. The assessment of the 
cheese-ripening process is challenging and requires the 
effective analysis of a multitude of biochemical changes 
occurring during the process. This study monitored the 
biochemical and sensory attribute changes of paraffin 
wax-covered long-ripening hard cheeses (n = 79) dur-
ing ripening by collecting samples at different stages of 
ripening. Near-infrared hyperspectral (NIR-HS) imag-
ing, together with free amino acid, chemical composi-
tion, and sensory attributes, was studied to monitor 
the biochemical changes during the ripening process. 
Orthogonal projection-based multivariate calibration 
methods were used to characterize ripening-related and 
orthogonal components as well as the distribution map 
of chemical components. The results approve the NIR-
HS imaging as a rapid tool for monitoring cheese matu-
rity during ripening. Moreover, the pixelwise evaluation 
of images shows the homogeneity of cheese maturation 
at different stages of ripening. Among the chemical 
compositions, fat content and moisture are the most 
important variables correlating to NIR-HS images dur-
ing the ripening process.
Key words: near-infrared hyperspectral imaging, 
sensory analysis, cheese maturation, free amino acids, 
homogeneity distribution

INTRODUCTION

The maturation of long-ripening cheeses is expensive 
and time consuming, and its complicated biochemical 
process is difficult to control or predict (Fox et al., 

1996; Priyashantha et al., 2021b,c; Sun et al., 2022). 
During the ripening process, the curd turns into cheese 
with a particular flavor, taste, and texture based on 
the milk quality, microflora, processing steps, and 
storage conditions (Fox et al., 1996; Robinson and 
Wilbey, 1998; Rehn et al., 2010). In the maturation 
process, different physical, microbiological, and bio-
chemical alternations, which are connected to the pH 
variation, lipid degradation, protein breakdowns, and 
accumulation of amino acids are taking place. The final 
flavor, taste, and texture of long-ripening cheeses are 
described by the end products of lipolysis, proteolysis, 
and glycolysis in the matured cheese, with proteolysis 
being the most important process (Fox, 1989). Cheese 
proteolysis involves the degradation of caseins, causing 
an increase in peptides and free amino acids during the 
ripening period (McSweeney and Fox, 1997). Glycolysis 
is mainly associated with lactose degradation (Bezerra 
et al., 2017) and lipolysis induces specific changes in 
fatty acid profile (Poveda and Cabezas, 2006; Park 
et al., 2007). The occurrence of all these biochemical 
processes is the main reason for the exclusive charac-
teristics of different cheese varieties and indicates the 
usefulness of chemical and free amino acid analysis for 
evaluating cheese ripening at the molecular level.

Ripening is one of the critical processing steps that 
has an effect on the consistency and quality of the final 
product in cheese manufacture. Cheese characteristics, 
ripeness, and readiness for the market have been main-
ly evaluated by sensory panelists using conventional 
methods and subjective assessment of organoleptic 
properties (O’Shea et al., 1996; Coker et al., 2005). 
Sensory evaluation of the product can be considered a 
destructive, time-consuming, and expensive approach. 
Process analytical technology (PAT; Balboni, 2003) as 
a system for designing, analyzing, and controlling man-
ufacturing by real-time measurements of critical quality 
and performance attributes has the ability to ensure 
the final product quality. Implementation of an online 
PAT system in the ripening stage of cheese production 
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can assist in achieving a consistently high-quality prod-
uct. The near-infrared (NIR) hyperspectral (NIR-
HS) imaging by employing data analytical methods 
has recently been used for the assessment of chemical 
composition and physical features of the sample in 
the area of food analysis (Gowen et al., 2007). The 
NIR-HS imaging is a rapid, nondestructive, low-cost, 
and chemical-free analysis that combines spectral and 
spatial information, which makes it ideal as a PAT tool.

In a 3-dimensional NIR-HS image, each pixel cor-
responds to spatialized spectral information combining 
chemical composition information with the analyte 
spatial distribution (Dorrepaal et al., 2016). The NIR-
HS imaging has been previously used for the prediction 
of macronutrients such as carbohydrates, fat, and pro-
teins as well as the moisture content of products (Soto-
Barajas et al., 2013; Currò et al., 2017). Predictive 
models on the NIR-HS images of long-ripening cheeses 
indicated the ability of NIR-HS image analysis to pro-
vide information on the alterations taking place during 
ripening, potentially allowing the end-date prediction 
of cheese maturation (Priyashantha et al., 2020, 2021a).

Advances in hyperspectral imaging techniques pres-
ent remarkable opportunities for the analysis and 
characterization of spatial and spectral information in 
different types of samples (Gowen et al., 2007). How-
ever, the implementation of multivariate analysis is a 
necessity for extracting the whole spatial and struc-
tural information, especially in the complex matrix 
of food (Amigo et al., 2008; Amigo, 2010). Methods 
such as principal component analysis (PCA; Jolliffe, 
2005; Grahn and Geladi, 2007), partial least squares 
(PLS; Wold et al., 2001), orthogonal projections to 
latent structures (OPLS; Trygg and Wold, 2002), and 
multivariate curve resolution–alternating least squares 
(MCR-ALS; de Juan and Tauler, 2006; Chang, 2007) 
enable the visualization of multiple biochemical constit-
uents and their distribution in a complex surface. All 
these multivariate data analysis models are based on 
the analysis of combined spectral patterns from many 
wavelengths simultaneously, which has the advantage 
of dimension reduction and handling a high degree of 
noise.

Due to the incidence of different chemical processes 
during cheese ripening, understanding the evolution 
of chemical profiles and identifying the most remark-
able changes throughout the ripening process would 
be crucial. There is potential for adaptation of PAT 
processing in the ripening stage of cheese production to 
improve the environmental sustainability and efficiency 
of the cheese-ripening process. The aim of this study is 
the development of a prediction model from hyperspec-
tral imaging (HSI) to be applied online for monitoring 
cheese ripening to be able to evaluate maturity without 

the destruction of cheese. In this paper, orthogonal 
projection-based multivariate calibration methods were 
used to develop and evaluate predictive models on 
the NIR-HS imaging data and the maturity values by 
trained sensory panelists for monitoring the ripening 
of long-ripening cheeses. Other parameters such as free 
amino acids and chemical compositions together with 
other sensory attributes such as taste, flavor, texture, 
and mouth feel were also evaluated during the ripening 
process.

MATERIALS AND METHODS

No human or animal subjects were used, so this 
analysis did not require approval by an Institutional 
Animal Care and Use Committee or Institutional Re-
view Board.

Cheese Material and Experimental Design

This study was performed in the cheese manufactur-
ing process at Norrmejerier, Sweden. Each cheese com-
prised an 18-kg cylinder (42 cm in diameter, 16 cm in 
height) which was brine-salted to a content of around 
1.2% NaCl, coated with paraffin wax, and ripened un-
der conditions explained by Rehn et al. (2010). Various 
cheese batches from different stages of ripening at 7 to 
25 mo were evaluated for maturity quality by trained 
sensory panelists. However, the same cheese batches 
were not evaluated several times during ripening and 
therefore time-series data are not available. Six sensory 
panelists from the dairy company assessed each cheese 
against a standardized protocol reflecting on toughness, 
hardness, mouth feeling, crystals, bitterness, balance, 
aftertaste, and finally, overall cheese maturity on a 
scale from 1 to 9. The trained sensory panelists had a 
high level of sensitivity and consistency in the evalua-
tion of the cheese sensory attributes. The performance 
of the panels was evaluated by standard deviations. 
The NIR-HS images and the chemical composition of 
cheeses such as fat content, protein, moisture, and pH 
were captured in parallel with the sensorial evaluation 
of the cheeses.

The procedure resulted in 79 images obtained from 
individual cheeses varying in ripeness (Supplemen-
tal Table S1, https: / / figshare .com/ articles/ online 
_resource/ Near -infrared _hyperspectral _NIR -HS 
_image _analysis _for _monitoring _the _cheese _ripening 
_process _Supplementary _docx/ 24080802; Alinaghi, 
2023). The free amino acid was analyzed by So-
ciété Générale de Surveillance SA through a so-called 
method of Amtliche Untersuchungsverfahren nach § 
64 LFGB documented by the Federal Office of Con-
sumer Protection and Food Safety (https: / / www .bvl 
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.bund .de/ DE/ Arbeitsbereiche/ 01 _Lebensmittel/ 01 
_Aufgaben/ 02 _AmtlicheLebensmittelueberwachung/ 
08 _AmtlicheSammlung/ lm _AmtlicheSammlung _node 
.html).

Hyperspectral Imaging Acquisition

An Umbio Inspector device (Umbio AB, Umeå, Swe-
den) was used for acquiring NIR-HS images (Hetta et 
al., 2017). All NIR-HS images were taken from cheeses 
covered with a 1-mm layer of paraffin wax (Priyashan-
tha et al., 2020). The spectral range recorded was 937 
to 2,542 nm, resulting in a NIR-HS image (378 pixels 
length × 320 pixels width) in 256 wavelength channels. 
The scanning speed was set to acquire square pixels. 
Each image had roughly 121,000 pixels, of which ap-
proximately 63% were cheese pixels and 37% repre-
sented background pixels. A schematic illustration of 
the hyperspectral imaging process and hypercube data 
structure are represented in Figure 1.

Image Transformation and Cleaning

Reflectance images (Iraw) were recorded using the 
dark (Idark) and white (Iwhite) reference data and were 
transformed into absorbance (A) by using Equation 1 
(Grahn and Geladi, 2007):

 A  =  −log10 [(Iraw−Idark)/(Iwhite−Idark)]. [1]

The NIR-HS imaging captured a square-shaped image. 
Therefore, the area surrounding the circular cheeses 
was considered background information, giving rise to 
a noisy spectrum that required to be eliminated be-
fore any further analysis. The background pixels were 
eliminated by removing reflectance over 1.5 at band 55 
(1,279 nm), to provide the highest difference between 
samples and the background (Priyashantha et al., 
2021a). The average spectra of the image pixels were 
calculated for further analysis using in-house MatLab 
Script (version R2020b, MathWorks Inc.). Noisy wave-
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Figure 1. Illustration of hyperspectral imaging, hypercube data structure comprising wavelength (λ) and spatial (x and y) dimensions, 
and the model development. The near infrared hyperspectral (NIR-HS) images with some other techniques can be used to monitor the cheese-
ripening process. The image planes at a few wavelengths as well as the spectrum of 1 selected pixel are schematically shown here. The average 
spectra of the image pixels are used for further multivariate data analysis techniques such as principal component analysis (PCA) and orthogonal 
projections to latent structures (OPLS) models as well as the heterogeneity analysis.
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lengths were removed by excluding wavelengths below 
1,018 nm and above 2,250 nm. Therefore, 196 spectral 
wavelengths were included for further analysis.

Multivariate Data Analysis

Multivariate data analysis techniques such as PCA 
and OPLS were used in different parts of this study 
(Figure 1). Principal component analysis can reduce 
multivariate data to a smaller number of uncorrelated 
variables and provide an overview of the data. Al-
though PLS regression represents a projection method 
to model the relationship between the X data and Y 
response, OPLS is an extension of the PLS method, 
which divides the systematic variation in the X data 
matrix into 2 parts to provide an easier interpretation. 
One part models the correlation between X and Y, 
while the other part expresses the systematic variation 
in X orthogonal to Y.

To validate OPLS models against overfitting, the 
performance of the models was evaluated by the 7-fold 
cross-validation parameters Q2 (goodness of predic-
tion), R2X, and R2Y (goodness of fit). Multivariate data 
analysis such as PCA and OPLS was carried out using 
SIMCA (Sartorius Stedim Data Analytics, vs. 16.0.2, 
Umeå, Sweden) software. Other analyses including data 
visualization, unfolding, and reassembly after modeling 
were performed using MatLab (version R2020b, Math-
Works Inc.).

The OPLS regression was used to study the rela-
tionship between NIR-HS images and the maturity of 
paraffin wax-covered, long-ripened hard cheeses. Both 
PCA and OPLS models, together with the D-optimal 
design (Mitchell, 2000), were performed to choose a se-
lected number of samples for free amino acid analysis. 
An OPLS model was also built between the NIR-HS 
images and all sensory parameters, free amino acids of 
selected samples, and chemical composition as Y vari-
ables to evaluate the importance of different variables 
in the prediction model.

Because the maturity criteria, sensory parameters, 
free amino acids, and chemical composition values were 
only available for whole cheeses, the images were re-
placed by average NIR spectra for regression analysis. 
The spectra were used in the standard normal variate-
corrected and mean-centered form. The PCA was first 
performed on the average spectra to identify variations 
among the cheese samples.

The maturity values, as well as the orthogonal com-
ponent to the cheese maturity, were predicted for all 
pixels using the OPLS calibration model with cheese 
maturity as y-variable. The distribution maps and his-
tograms (i.e., distribution plots) of the predicted values 
were developed for each image. In addition, PCA was 

performed on the histograms to identify variations 
among image distributions. The histogram data were 
aligned by shifting histogram plots using the interval-
correlation-shifting algorithm (Savorani et al., 2010) 
and also mean-centered before PCA.

RESULTS AND DISCUSSION

PCA Model on Average Spectra

The PCA was performed on the average spectral data 
(n = 77, after removing 2 outliers) calculated from each 
image to identify variations among the samples (Figure 
2). The PCA results revealed that the average images 
are changing by cheese maturity along the second prin-
cipal component, with t[1] and t[2] explaining 59 and 
33% variance of the average spectral data, respectively. 
This showed that a larger percentage of data variance 
(59%) is not correlated with the cheese maturity evo-
lution. The third principal component explains 4% of 
the variation in the data and its loading plot does not 
show a meaningful spectral profile. Therefore, it can be 
concluded that the first 2 principal components explain 
the structured variation of the data. Elucidation of the 
first loading plot showed the NIR peaks related to the 
potentially wax content of the cheese (Priyashantha et 
al., 2021a). However, overlapping of the peaks in wax 
peaks with protein structure could be expected in this 
region (i.e., wavelengths 1,645–1,815 nm).

OPLS Model on Average Spectra

An OPLS model was developed between the aver-
age spectral data (X, n  =  64 NIR-HS images) and 
cheese maturity evaluated by sensory panelists (y) 
(Figure 3). In OPLS analysis, 13 images were evalu-
ated as overripened and therefore removed from fur-
ther analysis. The overripened samples do not show 
a linear relationship with cheese maturity (Supple-
mental Figure S1, https: / / figshare .com/ articles/ 
online _resource/ Near -infrared _hyperspectral _NIR -HS 
_image _analysis _for _monitoring _the _cheese _ripening 
_process _Supplementary _docx/ 24080802; Alinaghi, 
2023). Nonlinear models of feedforward neural net-
works and support vector machines were also evaluated 
(but not shown) and no improvements were observed 
in the modeling results. Cross-validation for the OPLS 
model indicated the significance of one predictive 
and 2 orthogonal components corresponding to the  
Q2 = 0.78 and root mean square error from cross-
validation (RMSECV) = 0.62. The plot of predicted 
versus measured cheese maturity in Figure 3A and B 
illustrates that there was a strong correlation between 
the HSI data and the sensory maturity values. There-
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fore, NIR-HS image data can be used for the prediction 
of the maturity in paraffin wax-covered, long-ripening 
hard cheeses during the ripening process in a cheese 
manufacturing setting. However, the sensory analysis 
still needed to be performed before final approval to 
detect any sensory defects. The size of data points 
in Figure 3A and B is based on the fat content and 
moisture, respectively, illustrating the correlation of fat 
content and moisture with cheese maturity. This shows 
that cheese ripening causes an increase in fat content 
and a decrease in moisture over the process time. The 
plots of predicted versus measured cheese maturity 

by protein and pH as data points’ size are illustrated 
in Supplemental Figure S2 (https: / / figshare .com/ 
articles/ online _resource/ Near -infrared _hyperspectral 
_NIR -HS _image _analysis _for _monitoring _the _cheese 
_ripening _process _Supplementary _docx/ 24080802; 
Alinaghi, 2023), which shows that the changes in pro-
tein and pH are not correlated with cheese maturity. 
The OPLS predictive component, which shows the cor-
relation of the maturity variable to the data explains 
29% of the data variation, causing 71% of the data 
variation unexplained by the maturity. Thus, the or-
thogonal components could be inspected to understand 
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Figure 2. Principal component analysis score and loading plots of the average spectral data of cheese images by near-infrared hyperspectral 
imaging. Score plot colored according to cheese maturity (A). First (p[1]) and second (p[2]) loading plots (B). The t[1] and t[2] explain 59% and 
33% variance of the average spectral data, respectively.
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the unexplained variation in the data. Figure 3C and D 
illustrate the orthogonal score plot (i.e., to[2] vs. to[1]) 
and are colored by protein and pH values, respectively, 
suggesting that the orthogonal variation in the data 
can also be explained by factors other than the wax 
content of the cheese (Figure 3E).

Further regression model between the NIR-HS data 
and all sensory parameters, free amino acids, and 
chemical composition was also considered. However, 
as there was not possibility to perform the free amino 
acid analysis for all samples, a selection of samples was 
chosen. Samples were selected based on the variation 
observed in the NIR-HS images. Therefore, all images 
were averaged into mean spectra and an OPLS model 
(R2X = 0.72, R2Y = 0.98, 4 predictive + 1 orthogonal 
component) was constructed between the mean spectra 
and 6 key response parameters (cheese maturity, fat, 
moisture, protein, DM, and pH). In addition, a 3-com-
ponent PCA model (R2X = 0.96) was generated. The 
scores of 4 predictive components of the OPLS model, 
together with the 3 scores of the PCA model, were 
assembled as a candidate set, or 7 factors in total. A D-
optimal design (Mitchell, 2000), using the G-efficiency 
criterion, was used for selecting 44 samples for further 
amino acid analysis.

Finally, a 3-component OPLS model (i.e., one predic-
tive and 2 orthogonal components) between the average 
spectra (X, n  =  64 NIR-HS images) and all sensory 
parameters, free amino acids for selected samples, and 
chemical composition as Y variables (30 Y variables) 
was also built (Figure 4). The cross-validation resulted 
in the significance of one predictive component, indi-
cating a high level of correlation between the variables 
as well as Q2 = 0.58 and RMSECV = 0.78. The X/Y 
overview plot (Figure 4A) displays the individual R2 
and Q2 for every y-variable with an OPLS model. All 
sensory attributes and most of the free amino acids 
have quite similar results. Among the chemical compo-
sition variables, the fat content and afterward moisture 
have the highest Q2 and R2 values. The protein content 
does not show good results, and its calculated standard 
error is also higher. Even though the variation in fat 
content might be originated from the batch differences, 
a high Q2 value represents the correlation of fat content 
to NIR-HS image data. Finally, the results of Figure 4A 
highlight the potential of NIR-HS imaging for monitor-
ing the cheese composition during maturation. The plot 
in Figure 4B also shows that the fat content is higher 
in cheeses with a higher level of maturity, whereas the 
moisture and protein are showing decreased value. The 
pH of cheeses remained unchanged during ripening. For 
the free amino acids, all except glutamic acid show an 
increasing pattern with an enhanced level of maturity. 
This could be explained due the degradation of proteins 

to free amino acids (McSweeney and Fox, 1997), where-
as the conversion of glutamic acid to glutamate leads 
to its decrease during the maturation process. The per-
formance of this OPLS model (Figure 4) is comparable 
with the OPLS model with only cheese maturity as a 
y-variable (Figure 3), as the model resulted in similar 
Q2 and R2 values for cheese maturity. However, the 
model with cheese maturity as a y-variable has better 
potential for implementation in the industrial setting 
for online monitoring due to less number of variables 
needed for the calibration model and thus simplicity of 
the model.

Image Visualization and Distribution Map

Even though analyzing the average images could 
provide valuable information about the maturity pro-
cess, the full potential of the 3-dimensional data is not 
revealed yet. Therefore, comparing component-wise 
image distributions at different cheese maturity stages 
might be informative. Quantitative estimates of differ-
ent components’ concentration in each pixel were pre-
dicted by using the OPLS model with cheese maturity 
as a y-variable from section 3.2. To provide compa-
rability, the images were normalized to the maximum 
value of each cheese. Figure 5A visualizes the maturity 
distribution maps of all individual cheeses sorted by the 
cheese maturity from low to high level.

As NIR-HS image analysis can provide physicochemi-
cal and spatial information about samples, NIR-HS 
imaging is an ideal analytical technique for performing 
heterogeneity analysis. Heterogeneity, described as the 
variability of predicted component across the image 
space, were studied by histograms to observe the scat-
ter around a central value of image pixels. Histograms 
provide information on the intrinsic (constitutional) 
variability of the pixel measurements in the sample 
(Petersen et al., 2005; de Moura França et al., 2017). 
Histograms of the predicted image pixels (Figures 5B, 
D, and E) suggest that cheese maturation is homoge-
neous compared with the histogram of the orthogonal 
distribution (i.e., the maturity-related distribution map 
within each cheese has less scattering in concentration 
values within an image). The maturity-related distri-
bution maps also reveal a shift in the mean with the 
maturity level, which is also illustrated by PCA score 
plot of the histograms (Figures 5B and C). However, 
the orthogonal component shows nonhomogeneous con-
stitutional distribution (Figures 5E). These results il-
lustrate that the nonhomogeneity in the original images 
can be explained by the components orthogonal to the 
cheese maturity. Conversely, distributional heterogene-
ity (de Moura França et al., 2017), which can be stud-
ied by a homogeneity curve, evaluates how uniformly 
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Figure 3. Orthogonal projections to latent structures (OPLS) model with 3 components on the average spectra (X, n = 64 near-infrared 
hyperspectral images after removing the overripened samples) with 196 spectral wavelengths and cheese maturity as Y variable. The OPLS 
model parameters are as follows: R2X for the predictive component = 0.29, R2X for the first orthogonal component = 0.1, R2X for the second 
orthogonal component = 0.55, R2 for the predictive component = 0.8, and Q2 = 0.78. Predicted versus measured cheese maturity colored by the 
cheese maturity and size by fat content (A), predicted versus measured cheese maturity colored by the cheese maturity and size by moisture (B), 
OPLS score plots of to[2] versus to[1], colored based on the protein content (C), OPLS score plots of to[2] versus to[1], colored based on the pH 
(D), and OPLS loading of the predictive and orthogonal components (E).
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the different constituents are distributed in the image 
by taking the properties of the pixel neighborhood 
into account. Homogeneity curves (Figures 5D and E) 
show a higher level of distributional homogeneity in 
the maturity-related distribution maps compared with 
the distribution maps of the orthogonal component. 
Thus, heterogeneity analysis might be a valuable tool 
for defining the quality of end products, describing the 
evolution of processes and detecting possible abnor-
mal behaviors. However, application of heterogeneity 
analysis for better decision-making and quality control 
in monitoring cheese ripening in the industrial setting 
needs further investigations.

Metabolic processes and the progress of the bio-
chemical reactions are mainly responsible for the flavor 

and texture change during the maturation, indicating 
the effect of the storage time. However, the ripening 
rate of the cheese might be different even by excluding 
the maturation condition and variation in the cheese 
composition (Muir et al., 1995). Therefore, modeling 
the HSI data with the time as a y-variable could cause 
different results, due to differences in the maturation 
rate. Skeie et al. (2006) reported different modeling 
results for free amino acid prediction when the age of 
the cheese was used as a predictor compared with NIR. 
Priyashantha et al. (2020) have previously shown a PLS 
model between the cheese age and the HSI data, con-
sidering that the maturity index and cheese age show 
a linear relationship until 18 mo (~550 d). Analyzing 
time-series data should be with careful consideration 
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Figure 4. Orthogonal projections to latent structures (OPLS) model with one predictive and 2 orthogonal components on the average spectra 
(X, n = 58 NIR-HS images after removing the overripened samples and the samples with missing Y variables) with 196 spectral wavelengths 
and all sensory parameters, free amino acids, and chemical composition (30 Y variables). The OPLS model parameters are as follows: R2X 
for predictive component = 0.3, R2X for first orthogonal component = 0.54, R2X for second orthogonal component = 0.11, R2 for predictive 
component = 0.59, Q2 = 0.58. The X/Y overview plot presents R2 and Q2 values for different Y variables (A), and Y matrix loading plot (B).
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as some degree of the correlation between time-related 
changes and maturity-related changes might be ob-
served (Alinaghi et al., 2022). However, the time-series 
data evaluating the same cheese batches over matu-
ration time is not available in this study. Therefore, 
analysis of the present data set does not struggle with 
the time effect because the cheese maturity values from 
the sensory panelist were used as the y-variable. This 
experimental design has also the benefit that the drift 
in the sensory evaluation sessions is small due to the 

avoidance of the time effect. Therefore, evaluation of 
the attribute and variables describing the maturity 
stages of cheese is possible. However, the time-series 
analysis and tracking of the chemical changes of the 
cheese over maturation time cannot be feasible in this 
experimental setting.

For the evaluation of the prediction models, the 
importance of a panel’s performance in the sensory 
data cannot also be underestimated. Lack of consis-
tency among the panelists can cause a higher value 
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Figure 5. Heterogeneity information obtained from pixelwise prediction of the orthogonal projections to latent structures (OPLS) model with 
cheese maturity as Y variable. The distribution maps of the predicted component are labeled by cheese maturity (CM) values (A). Constitutional 
heterogeneity is represented by histograms obtained from map concentration values, colored according to the cheese maturity value with a color 
range of blue for low maturity and red for high maturity (B), the results of principal component analysis on the histograms, t[1] and t[2] explain 
58% and 28% variance of the data (C), Distribution maps, histograms, and homogeneity curves for the maturity-related (D) and orthogonal 
component (E) of a selected image with cheese maturity value of 2.0 (top left image in panel A).
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Figure 5 (Continued). Heterogeneity information obtained from pixelwise prediction of the orthogonal projections to latent structures 
(OPLS) model with cheese maturity as Y variable. The distribution maps of the predicted component are labeled by cheese maturity (CM) 
values (A). Constitutional heterogeneity is represented by histograms obtained from map concentration values, colored according to the cheese 
maturity value with a color range of blue for low maturity and red for high maturity (B), the results of principal component analysis on the 
histograms, t[1] and t[2] explain 58% and 28% variance of the data (C), Distribution maps, histograms, and homogeneity curves for the maturity-
related (D) and orthogonal component (E) of a selected image with cheese maturity value of 2.0 (top left image in panel A).
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of RMSECV in the modeling and difficulty in the in-
terpretation of data. The reproducibility as the ability 
to score cheeses samples averagely the same as other 
panelists can be used as a measure for outlier detection, 
detecting patterns in the measures as well as the overall 
panel’s performance (Rossi, 2001). The performance 
can be tracked for different attributes over time to de-
termine whether a panelist can perform properly. The 
performance of the sensory panelist was evaluated by 
calculating the standard deviation of panel scores. The 
results (Supplemental Figure S3, https: / / figshare .com/ 
articles/ online _resource/ Near -infrared _hyperspectral 
_NIR -HS _image _analysis _for _monitoring _the _cheese 
_ripening _process _Supplementary _docx/ 24080802; 
Alinaghi, 2023) showed that the panel had a similar 
standard deviation throughout all sessions, and no 
outlier was detected. However, individual differences 
in sensory perceptions will remain even after through 
training of panelists. Therefore, a level of uncertainty 
can be expected in the OPLS modeling results causing 
prediction errors in the model.

CONCLUSIONS

Monitoring cheese ripening is challenging and re-
quires analysis of multiple biochemical alterations oc-
curring during the process. Cheese ripening has been 
mainly assessed by conventional methods of sensory 
analysis which are destructive, time consuming, and 
expensive. However, final flavor, taste, and texture 
of long-ripening cheeses will be characterized by end 
products of biochemical processes. The analysis results 
highlight the potential of NIR-HS image analysis for 
monitoring the cheese composition and free amino 
acids during maturation. Therefore, NIR-HS imaging 
together with data analytical methods can be employed 
online as a rapid tool for monitoring cheese maturity. 
Moreover, the pixelwise evaluation of NIR-HS images 
can reveal the homogeneity of cheese maturation at 
different stages of ripening. This improved understand-
ing of undergoing biochemical processes will facilitate 
further adoption of monitoring approaches and PAT 
tools in cheese manufacture. However, this leads to the 
question that how heterogeneity analysis may provide 
a tool for better decision-making and quality control in 
cheese production.
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