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Abstract

The molecular consequences of the metabolic stress caused by milk production of dairy

cows in the early embryo are largely unknown. The objective was to determine the impact of

dam metabolic status or in vitro culture during embryonic genome activation (EGA) on the

transcriptomic profiles of bovine 16-cell stage embryos. Two days after synchronized oes-

trus, in vitro produced 2- to 4-cell stage embryos were endoscopically transferred in pools of

50 into the oviduct ipsilateral to the corpus luteum of lactating (LACT, n = 3) or nonlactating

(i.e. dried off immediately at calving; DRY, n = 3) dairy cows. On Day 4, the oviducts were

flushed to recover the embryos. Pools of five Day-2 embryos (n = 5) and Day-4 16-cell stage

embryos obtained in vitro (n = 3) or from LACT or DRY cows were subjected to RNAseq.

Temporally differentially expressed genes (DEG; FDR<0.05) between Day-2 and Day-4

embryos were determined considering the differences between the three conditions under

which EGA occurred. Also, DEG between Day-4 embryos derived from the three conditions

were identified. Functional analysis of the temporal DEG demonstrated that genes involved

in ribosome, translation and oxidative phosphorylation in the mitochondria were strongly

more expressed in Day-4 than Day-2 embryos. Comparison of Day-4 embryos that under-

went EGA in vitro, or in LACT or DRY cows, identified DEG enriching for mitochondrial respi-

ration and protein translation, including the mTOR pathway. In conclusion, exposure of the

embryo to an unfavourable maternal metabolic status during EGA influences its transcrip-

tome and potentially the competence for pregnancy establishment.
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Introduction

In mammals, several major developmental events occur during the first week of development

following fertilization. These events include the first mitotic division, the timing of which has

consequences for subsequent developmental competence [1], embryonic genome activation

(EGA) [2], morula formation through the establishment of tight junctions between adjacent

blastomeres in the developing embryo [3], blastocyst formation, involving the differentiation

of inner cell mass and trophectoderm cells, and the onset of X-chromosome inactivation [4, 5].

Amongst these events, the switching on of the embryonic genome, which occurs at a species-

specific stage, is arguably the most crucial for subsequent viability during development [6].

The EGA process occurs in two waves: a minor wave in the initial stage of active transcription

followed by a second, major, wave, when widespread transcriptional activity of zygotic genes

increases dramatically. This occurs between the 8- to 16-cell stage in bovine embryos [7, 8]

and involves depletion of maternal transcripts stored in oocytes by degradation and transla-

tion, and their replacement by new embryo-specific transcripts. Indeed, many embryos fail to

develop beyond this stage, due, at least in part, to insufficient expression of EGA-associated

genes [9]. The environment in which the embryo develops in the first week after fertilization

significantly affects blastocyst quality [10, 11]. In cattle, although the in vitro production (IVP)

of embryos is now routine practice, the competence of the resulting embryos is often compro-

mised [12]. Using alternative in vivo or in vitro culture (IVC) conditions before and during

EGA, Gad, Hoelker [13] highlighted the critical influence of the environment in which EGA

occurred on the blastocyst transcriptome. Culture conditions also affected the embryonic pro-

teome around the time of EGA [14].

The physiological changes associated with milk production impact on circulating metabo-

lites during the early postpartum period and have been implicated in poor reproductive effi-

ciency in high-producing dairy cows [15, 16]. For example, the oviducts of postpartum

lactating (LACT) cows, exposed to elevated concentrations of non-esterified fatty acids, beta-

hydroxybutyrate (BHB), and reduced concentrations of insulin, IGF-I and glucose, were less

capable of supporting development of early embryos to the blastocyst stage following endo-

scopic transfer of 2- to 4-cell embryos and recovery at Day 7, compared to the oviducts of heif-

ers [17] or nonlactating (DRY) cows [16]. Thus, even if the embryo undergoes EGA in a more

‘optimal’ condition i.e., in an in vivo environment versus IVC, the dam status can alter the

embryo transcriptomic profile and its developmental capacity. Therefore, we hypothesized

that both IVC and the metabolic consequences of lactation would impact the transcriptome of

the developing embryo around the time of genome activation.

Using a unique previously validated model [15, 16] involving drying off cows immediately

after calving (to avoid lactation-induced metabolic stress) or milking them twice per day as is

routine, the aims of this study were to characterize the effect of postpartum maternal metabolic

status or culture in vitro on the embryonic transcriptome following EGA. We used high-

throughput sequencing to generate comprehensive transcriptome profiles of Day 2 (pre-EGA)

and Day 4 (post-EGA) bovine embryos following culture in vitro or in the oviducts of postpar-

tum DRY or postpartum LACT dairy cows. Next, we identified clusters of differentially

expressed genes (DEG) between the Day-4 16-cell embryo and the maternal mRNA in the

Day-2 4-cell embryo, highlighting the differences between the three environmental conditions.

Finally, we focused on the 16-cell stage to unravel the overall effects of the environment in

which EGA occurred (in vitro or in vivo in the oviducts of dry or lactating cows) on the

transcriptome.
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Materials and methods

Animals

All experimental procedures involving animals were sanctioned by the Animal Research Ethics

Committee of University College Dublin and were licensed by by the Department of Health

and Children, Ireland, in accordance with the Cruelty to Animals Act, 1876, and the European

Community Directive 86/609/EC. The study was part of a larger study examining the influence

of lactation-induced metabolic status on various aspects of the reproductive axis, including the

follicular fluid metabolomic profile [15], the oviduct epithelial transcriptome [18], the oviduct

fluid proteome [19], the uterine endometrial transcriptome [20] and the conceptus transcrip-

tome and amino acid composition of uterine fluid [21]. The animal model used has been previ-

ously described in detail [15]. Briefly, 40 in-calf primiparous Holstein–Friesian heifers with a

similar economic breeding index were enrolled into the study. At calving, cows were randomly

assigned to one of two groups: (1) lactating (n = 20) or (2) non-lactating (n = 20). From calving,

animals in the lactating group (LACT) were milked twice per day (07:00 and 16:00 h), while

those in the non-lactating group were dried off immediately after calving (DRY; i.e. never

milked). This model results in cows with very divergent metabolic status with LACT cows hav-

ing higher serum concentrations of non-esterified fatty acids and beta-hydroxybutyrate, and

lower glucose, insulin and insulin-like growth factor 1 (IGF1) compared with DRY cows [15,

16]. At approximately 50 days postpartum, oestrous cycles of DRY (n = 8) and LACT (n = 10)

cows were synchronised by administration of a prostaglandin F2α analogue (PG; Estrumate,

Intervet, Dublin, Ireland; equivalent to 0.5 mg Cloprostenol). Cows were observed for standing

heat from 48 h following PG injection every 4 h (heat = Day 0). On the morning of Day 0 all ani-

mals received a 2.5 ml injection of Receptal (equivalent to 0.01 mg buserelin; Intervet, Dublin,

Ireland) to ensure ovulation of the dominant follicle. On Day 2, IVP embryos were transferred

in pools of 50 2- to 4-cell stage embryos into the oviduct ipsilateral to the CL via transvaginal

endoscopic transfer as previously described [17]. On Day 4, the contents of the oviducts were

flushed into the uterus using the same transvaginal endoscopic procedure and subsequently

recovered by routine transcervical flushing of the uterus. The number and developmental stage

of the structures recovered were recorded (Table 1). Embryos recovered from each individual

cow at the 16-cell stage of development were snap frozen in pools of five in 1–2 μl of PBS and

stored at -80˚C prior to RNA sequencing. The experimental design is illustrated in Fig 1.

In vitro embryo production

Embryos were produced in vitro as previously described [11]. Briefly, immature cumulus–oocyte

complexes (COCs) were recovered by aspirating follicles from the ovaries of heifers and cows

slaughtered at a local abattoir, pooled, washed in PBS, and matured for 24 h in groups of 50 in

500 μL TCM-199 supplemented with 10% fetal calf serum and 10 ng/mL epidermal growth factor

at 39˚C under an atmosphere of 5% CO2 in air with maximum humidity. Matured COCs were

inseminated with frozen-thawed sperm from one bull of proven fertility at a concentration of

Table 1. Embryo recovery from postpartum nonlactating (DRY) or lactating (LACT) cows on Day 4 following oestrus.

Group No. of structures recovered/No. transferred (%) 16-cell

No. structures (%)

8- to 10-cell

No. structures (%)

4-cell

No. structures (%)

Degenerate

No. structures (%)

DRY (n = 8) 252/400 (63.0%) 95 (37.7%) 58 (23.0%) 22 (8.7%) 80 (31.7%)

LACT (n = 10) 275/500 (55%) 102 (37.1%) 68 (24.7%) 46 (16.7%) 58 (21.1%)

All cows received 50 in vitro produced 2- to 4-cell stage embryos on Day 2 of the oestrous cycle via endoscopic oviduct transfer.

https://doi.org/10.1371/journal.pone.0290689.t001
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1 × 106 sperm/mL. Gametes were co-incubated for 20 h at 39˚C in an atmosphere of 5% CO2 in

air with maximum humidity. Presumptive zygotes were denuded by gentle vortexing and cul-

tured in synthetic oviduct fluid droplets supplemented with 3 mg/ml of BSA (25 μL; 25 embryos

per droplet) at 39˚C in a humidified atmosphere with 5% CO2 and 5% O2 under mineral oil.

RNA sequencing of embryos

RNA extraction was carried out on pools of five Day-2 embryos (n = 5) or pools of five Day-4

embryos following culture in vitro (IVP; n = 3) or recovery from DRY (n = 3) or LACT (n = 3)

cows. For the in vivo conditions, the five embryos in each pool were collected from the same

cow. Extracted RNA was used to construct sequencing libraries using the Encore Complete

RNASeq library system of NuGEN. A minimum of 100 ng of total RNA was used and samples

were enriched for non- rRNA during cDNA synthesis. No ribosomal depletion or polyA-RNA

enrichment steps were carried out while all non-rRNA were captured. This also allowed us to

retain RNA strand information. All libraries were sequenced on the Illumina HiSeq 1500 as

100 bp single end reads. After demultiplexing, adaptor sequences and poly A tails were

removed and an additional number of sequencing runs was performed to ensure sufficient

coverage, generating ~45 million raw reads per sample in FASQ format.

Bioinformatic analyses

The read qualities for each FASTQ file were accessed with FastQC https://www.

bioinformatics.babraham.ac.uk/projects/fastqc/), and low-quality bases and adapters were

removed with Trimmomatic (V 0.39) [22]. The sequenced reads were mapped to the bovine

reference genome (bosTau 9) with the STAR aligner (V 2.7.0b) [23]. On average, 81.7% of the

reads were uniquely mapped to the genome, ranging from 71% to 86.8%. Read counts were

Fig 1. Experimental design employed in this study. Two days after synchronized oestrus, in vitro-produced embryos were

transferred in pools of 50 Day-2 (IVF = Day 0) 2- to 4-cell stage embryos into the oviduct ipsilateral to the corpus luteum of

postpartum dairy cows that were either milked (i.e. lactating) post-calving (LACT) or were dried off immediately at calving (i.e.

nonlactating; DRY) via transvaginal endoscopic transfer. On Day 4, the oviducts were flushed and 16-cell stage embryos were snap-

frozen in pools of 5 on an individual cow basis before mRNA extraction for RNAseq. A control group was maintained under in

vitro culture (IVC) and processed in the same way for RNA Seq. Pools of five Day-2 embryos (n = 5) were also subjected to mRNA

extraction for RNAseq.

https://doi.org/10.1371/journal.pone.0290689.g001
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estimated at the gene level, and the counting was done with featureCounts [24], which is part

of the Subread software (V 2.0.3). Relatedness of all samples according to the whole transcrip-

tome was assessed with a principal component analysis (PCA) using internal packages of R.

Read counts were normalized through variance stabilizing transformation implemented with

the DESeq2 package [25] before running the PCA.

Data were deposited in NCBI’s Gene Expression Omnibus and are accessible through GEO

accession number GSE226844.

Differential expression analysis

Differences between Day-2 and Day-4 embryos which underwent EGA in three different con-

ditions, were estimated with the maSigPro package [26]. Briefly, this method fits a regression

model to the data, modelled by a negative binomial distribution, to identify DEG between

time points, corrected by false discovery rate (FDR) at FDR<0.05. Next, DEG between experi-

mental groups are identified through a stepwise regression. Coefficients derived from this

regression step were employed to cluster DEG with similar expression patterns.

Differences between the three groups only for Day-4 embryos were determined with the

edgeR package [27]. Genes with less than one count per million in three or more samples

(smaller class) were filtered out before normalization [28]. Filtered data was normalized

through weighted trimmed mean of M-values [29]. Next, observation weights were used for

robust estimate of the negative binomial dispersion parameter for each gene and for estimating

regression parameters. Finally, a negative binomial generalized log-linear model was fit to read

counts for each transcript and conduct genewise likelihood ratio tests for the coefficient con-

trast [30]. The matrix of contrast was built based on the comparisons between the groups. Dif-

ferentially expressed genes were defined as those with an FDR<0.05. Functional analysis of the

DEG was carried out using Database for Annotation, Visualization and Integrated Discovery

(DAVID; [31], to determine enriched terms (FDR<0.05).

Identified DEG between Day-2 and Day-4 embryos, and between groups in Day-4 embryos,

were subjected to hierarchical clustering according to their expression profile, using Spearman

Rank Correlation as similarity metric and centroid linkage as clustering method, implemented

with the Cluster 3.0 software [32]. The resulting dendrogram and the heat map were visualized

with Java TreeView [33].

Results from the differential expression analysis were explored to identify enriched ontolog-

ical terms of biological relevance, and the expressions of the related DEG for each sample

across all conditions were depicted in line plots. Data were normalized through variance stabi-

lizing transformation [34] and standardized before plotting. Finally, relevant ontological terms

de-regulated between IVC, DRY and LACT conditions were employed for network analysis

with the Cytoscape software [35]. The entire list of genes involved in the enriched term was

downloaded from the corresponding database (KEGG pahway or AmiGO 2) and a unique net-

work was inferred using the GeneMania plugin for Cytoscape [36]. The topological parameters

of the resulting network were estimated with NetwokAnalyzer [37]. Next, the nodes corre-

sponding to DEG enriching the ontological terms were isolated and colored according to the

normalized expression in Day-2 embryos and each condition of Day-4 embryos.

Results

Differences between the Day-2 and Day-4 embryonic transcriptome

The PCA plot demonstrates a strong separation between the transcriptomes of Day-2 and

Day-4 embryos. Additionally, for Day-4 embryos, the transcriptomes of LACT and IVC were

more similar to each other than to that of DRY embryos (S1 Fig).
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There were 6940 DEG between Day-2 and Day-4 embryos and among the three conditions

on Day 4. These DEG were classified into five groups according to the condition driving the

gene expression profile (Fig 2). The groups were:

• DEG centrally involved in EGA: genes changing in expression from Day 2 to Day 4, but not

differentially expressed between the Day-4 groups (IVP, DRY and LACT).

• DEG affected by in vivo conditions: genes changing in expression at Day 4 in both DRY and

LACT embryos compared to Day-2 and IVC embryos.

• DEG affected by IVC: genes changing in expression at Day 4 in IVC embryos compared to

Day-2 and both DRY and LACT embryos.

• DEG influenced by the maternal metabolic status (DRY or LACT): genes changing in

expression at Day 4 in DRY embryos compared to Day 2 and IVC and LACT embryos, or in

LACT embryos compared to Day-2 and IVC and DRY embryos.

Additionally, DEG in each group could be separated into two clusters (for DEG in “EGA”,

“in vivo” and “IVC” groups) or four clusters (for DEG in “DRY” and “LACT” groups) accord-

ing to the direction of the gene expression, making 14 clusters in total. Fig 2 summarizes the

number of genes per cluster in each group and depicts the gene direction in heat maps and

box plots. Associated genes are listed in S1 Table.

Fig 2. Differentially expressed genes (DEG) between Day-2 and Day-4 embryos undergoing embryonic genome activation in three environmental conditions. The

identified DEG were organized into five groups according to the condition that was driving the gene expression. Additionally, DEG in each group could be separated into

clusters according to the direction of the gene expression. The boxplots represent the average expression for genes in each cluster for each condition. IVC: in vitro culture;

DRY: nonlactating dairy cows, LACT: lactating dairy cows.

https://doi.org/10.1371/journal.pone.0290689.g002
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Functional analysis of DEG in each cluster revealed that 1413 Day 2 genes (i.e., maternally

expressed), that were not expressed by Day-4 embryos (Cluster 1), enriched ontological terms

related to cell cycle, while those 2320 genes expressed by Day-4 embryos, but not at Day 2

(Cluster 2), were strongly involved in ribosome, translation and oxidative phosphorylation in

the mitochondria. The 211 genes more expressed by Day-4 embryos that underwent EGA in

vivo compared to in vitro (Cluster 4) enriched terms related to epigenetic modifications, such

as methylation, histones, and chromatin silencing. On the other hand, several of the 259 genes

more expressed by Day-4 embryos that underwent EGA during IVC compared to in vivo

(Cluster 6) were involved in formation of extracellular vesicles (exosomes) and endosomes.

Regarding genes affected by the maternal metabolic status, embryos that underwent EGA in

DRY exhibited higher expression of 287 genes than in IVC and LACT embryos, although with

lower expression levels than the maternal mRNA at Day 2 (Cluster 7); these genes enriched for

epigenetic modification terms, such as methylation and histones, and DNA repair. In addition,

538 genes less expressed than in IVC and LACT embryos, but with higher expression levels

than the maternal mRNA at Day 2 (Cluster 10), enriched terms involved in protein synthesis

(ribosome and translation). Finally, embryos that underwent EGA in LACT showed 241 genes

less expressed than in IVC and DRY embryos, although more expressed than in Day-2

embryos (Cluster 14). These genes enriched terms related to energy regulation, such as oxido-

reductase and TCA cycle. The full lists of enriched terms for each cluster are detailed in

S2 Table.

Differences between maternal conditions and in vitro culture in the Day 4

embryos transcriptome

Comparisons between the transcriptomes of Day 4 embryos only (without considering Day 2

embryos) revealed 3451 DEG between the three conditions (DRY, LACT, and IVC) that were

distributed in six clusters, named A to F (Fig 3 and S3 Table). Genes in Clusters A and B (more

Fig 3. Differentially expressed genes (DEG) in Day-4 embryos undergoing embryonic genome activation in three environmental conditions. The identified

DEG were classified into six clusters according to the direction of the gene expression. The boxplots represent the average expression for genes in each cluster for

each condition. IVC: in vitro culture; DRY: nonlactating dairy cows, LACT: lactating dairy cows.

https://doi.org/10.1371/journal.pone.0290689.g003

PLOS ONE Environmental conditions impact embryonic genome activation in the bovine embryo

PLOS ONE | https://doi.org/10.1371/journal.pone.0290689 August 25, 2023 7 / 17

https://doi.org/10.1371/journal.pone.0290689.g003
https://doi.org/10.1371/journal.pone.0290689


expressed in the in vivo condition than in IVC) enriched terms related to epigenetic modifica-

tions. In addition, the 645 DEG more expressed in DRY than LACT and IVC (Cluster B) also

enriched for the mechanistic target of rapamycin kinase (mTOR) signalling pathway. Several

of the 736 DEG more expressed in IVC, followed by LACT and DRY (Cluster D) were

involved in protein synthesis terms, specifically translation initiation, while the 413 DEG, also

highly expressed in IVC but followed by DRY and LACT (Cluster F), enriched for exosomes

and endosomes. Finally, the 362 DEG strongly expressed in DRY, followed by IVC, and with

low expression levels in LACT (Cluster E), were enriching terms related to energy generation

(oxidative phosphorylation and TCA cycle). All the enriched terms by genes in each cluster are

listed in S4 Table. For all clusters, DEG identified by both analyses (considering or not the

Day-2 embryos) enriched, as expected, terms related to the cellular regions such as nucleus,

nucleoplasm, nucleolus, cytoplasm, cytosol, etc.

Exploration of selected ontological terms

Results from the functional analysis described above suggested that processes related to mito-

chondrial function and protein synthesis occur in Day-4 but not in Day-2 embryos. In other

words, genes involved in these processes are being expressed by the embryonic genome after

activation but not by the maternal mRNA. However, expression levels for several of these

genes depend on the environment where EGA takes place. That is, some genes involved in oxi-

dative phosphorylation were more expressed when EGA occurred in DRY than in IVC, and

less expressed in LACT. On the other hand, genes involved in translation initiation, in particu-

lar in the formation of the 48S and 43S preinitiation complex, were more expressed if EGA

occurred in IVC than in DRY or LACT. Interestingly, several genes involved in the mTOR

pathway, a key regulator of energy-sensing pathways, were more expressed in embryos that

underwent EGA in DRY compared to LACT, and less expressed in IVC. Fig 4 depicts the

expression levels for genes involved in the aforementioned ontological terms. This figure also

shows the expression levels for genes enriching for methylation and chromatin silencing,

which were more expressed in Day-4 embryos undergoing EGA in vivo, and for genes

involved in vesicle formation, which had higher expression in embryos cultured in vitro than

in the other conditions.

Network analysis of selected ontological terms

Given the crucial role of energy regulatory mechanisms in embryo development, all the genes

(in addition to the DEG) involved in the mTOR pathway, oxidative phosphorylation, and

translation initiation were subjected to network analysis. The whole inferred network exhib-

ited, as expected, high connectivity among all of the genes, including the DEG, involved in

these processes (S2 Fig).

Topological parameters for the network indicated that the average degrees (related to the

number of edges linked to a node) for all genes in the mTOR pathway, oxidative phosphoryla-

tion, and translation initiation were 73.5, 177, and 139. The average degrees for DEG on each

pathway were 86.1, 192, and 163.3, evidencing high connectivity for these DEG with the rest of

the genes in the pathway. Fig 5 shows the contrasts in expression levels of these DEG for Day-2

embryos and Day-4 embryos undergoing EGA in different environments, while Table 2 speci-

fies the fold change (FC) for each gene between the three conditions for Day-4 embryos.

Briefly, if the embryo undergoes EGA in a favourable environment (DRY in this study) certain

genes in the mTOR pathway are more expressed, potentially de-regulating the other genes in

the pathway, leading to up-regulation of key genes in the oxidative phosphorylation pathway

and possibly to the whole pathway (S3 Fig), and down-regulating genes involved in translation
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initiation. These genes, part of the maternal mTOR pathway, are not up-regulated in more

stressful conditions for the embryo, such as in IVC or in a cow with an adverse metabolic sta-

tus (LACT).

Discussion

The window of time during which EGA occurs is one of the most critical periods during early

embryogenesis, since a proper activation of the gene expression machinery determines the

developmental fate of the embryo [38, 39]. Thus, the environment in which the embryo under-

goes EGA can influence this phenomenon and potentially have long-term consequences for

the embryo and later for the foetus. Several studies have characterized the transcriptomic

events occurring during the period of development from the oocyte to the blastocyst, including

to the 8- to 16-cell stage, that is, covering the period of EGA [40–44]. Others have compared

the effect of IVC at different stages on the embryonic transcriptome [13] and methylome [45].

Here, we have expanded our knowledge of this key embryonic event by comparing the tran-

scriptome of 16-cell embryos undergoing EGA not only in in vitro vs in vivo but also, charac-

terizing the impact of lactation on this key event. While the impact of IVP on the embryo

transcriptome during this period has been described, as mentioned below, the potential effects

of the maternal metabolic status on the process are less understood. In a previous study [16],

approximately 65 Day-2 IVP embryos (2- to 4-cell stage) were endoscopically transferred to

the oviducts of 60 days post-partum dry or lactating dairy cows two days after being observed

in heat. Systematic blood collection from 15 d before calving to approximately 100 d

Fig 4. Expression levels for genes involved in selected enriched ontological terms by the differentially expressed genes. Gene

expression was measured in Day-2 embryos or Day-4 embryos undergoing embryonic genome activation (EGA) in one of three

conditions (IVC, DRY, or LACT). IVC: in vitro culture; DRY: nonlactating dairy cows, LACT: lactating dairy cows.

https://doi.org/10.1371/journal.pone.0290689.g004
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postpartum confirmed the altered metabolism of lactating cows, as they had divergent concen-

trations of non-esterified fatty acids, β-hydroxybutyrate, glucose, insulin, and insulin-like

growth factor-I. Fewer embryos had developed to the blastocyst stage in the lactating cows

compared with the dry cows (33% vs 49%, respectively) when recovered five days after transfer.

Interestingly, no differences were observed in the Day-15 conceptus developmental rate when

Day-7 blastocysts were transferred to the same animals 30 days later [16]. Thus, the oviductal

environment of lactating cows was adverse for early embryo development before the blastocyst

stage when compared to dry cows. Here, we complement and reinforce this previous study by

characterizing the molecular consequences of the metabolic status induced by lactation on the

early embryo immediately after undergoing EGA. A limitation of this study resides in the sam-

ple size per group (n = 3) for the Day-4 embryos. Each experimental unit was constituted by a

pool of five embryos and thus, embryos that underwent EGA in the oviduct of the same DRY

or LACT cow would exhibit less variability. However, a PCA of the whole transcriptome

showed that samples from each group clustered together in the plot, supporting the treatment

effect on the embryo transcriptome.

Results show that genes that could be influencing the epigenome, such as those encoding

for histones H2A, H3, and H4 and the methylation process, exhibited similar expression

between IVP embryos at the 2- to 4-cell (pre-EGA) and 8 to 16-cell (post-EGA) stage but

switched to increased expression in the Day-4 embryos that underwent EGA in vivo, with no

differences between DRY and LACT. Genes involved in epigenetic modifications are present

in both maternal and embryonic transcripts, as determined by analysing the transcriptome of

8- to 16-cell embryos that developed in the presence or absence of alpha-amanitin, an inhibitor

Fig 5. Network representation for differentially expressed genes enriching ontological terms involved in energy regulation. The nodes are coloured

according to the expression levels on Day-2 embryos or Day-4 embryos undergoing embryonic genome activation (EGA) in one of three conditions

(IVC, DRY, or LACT). IVC: in vitro culture; DRY: nonlactating dairy cows, LACT: lactating dairy cows.

https://doi.org/10.1371/journal.pone.0290689.g005
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of eukaryotic RNA polymerase [41, 42]. While we cannot know if these differences in the tran-

scriptome were associated with changes in DNA methylation levels in the embryos from this

study, a previous report showed that embryos produced in vivo but subjected to IVC before or

during EGA exhibited strong changes in DNA methylation [46].

Another result from our study demonstrates the strong expression of genes related to mito-

chondrial function and translation in Day-4 compared to Day-2 embryos. Accordingly, other

authors have identified genes enriching for oxidative phosphorylation and citrate cycle [40,

44] and translation [42–44] in Day-4 embryos compared to earlier stages. Nonetheless, the

experimental design employed in this study allowed us to discern how these vital biological

processes might be triggered in the embryo according to the environment undergoing EGA.

Clearly, certain genes involved in oxidative phosphorylation were up-regulated in DRY com-

pared to IVC and LACT (average FC: 1.50 and 2.09, respectively). Interestingly, several genes

Table 2. Differentially expressed genes among embryos that underwent embryonic gene activation in different conditions enriching for ontological terms involved

in energy regulation.

Ontological term Ensembl ID Name Symbol FC DRY vs

LACT

FC LACT vs

IVC

FC DRY vs

IVC

Oxidative

Phosphorylation

ENSBTAG00000002094 ATP synthase membrane subunit f ATP5MF 2.55 -2.24 1.13

ENSBTAG00000007015 cytochrome c oxidase copper chaperone COX11 COX11 3.30 -1.47 2.24

ENSBTAG00000007272 ATPase H+ transporting V0 subunit a2 ATP6V0A2 2.66 -1.74 1.53

ENSBTAG00000016266 succinate dehydrogenase complex subunit D SDHD 2.45 -1.59 1.54

ENSBTAG00000043546 NADH dehydrogenase subunit 6 ND6 1.48 -1.08 1.37

ENSBTAG00000043550 cytochrome b CYTB 1.58 -1.09 1.45

ENSBTAG00000043559 NADH dehydrogenase subunit 4L ND4L 1.47 -1.20 1.22

ENSBTAG00000043560 cytochrome c oxidase subunit III COX3 1.69 -1.15 1.48

ENSBTAG00000043564 ATP synthase F0 subunit 8 ATP8 1.64 -1.08 1.52

mTOR pathway ENSBTAG00000002363 sestrin 2 SESN2 2.72 3.29 8.95

ENSBTAG00000004100 TELO2 interacting protein 1 TTI1 1.18 1.65 1.94

ENSBTAG00000005763 AKT1 substrate 1 AKT1S1 2.09 2.21 4.62

ENSBTAG00000006697 RPTOR independent companion of MTOR

complex 2

RICTOR 1.27 1.25 1.58

ENSBTAG00000010312 mitogen-activated protein kinase 1 MAPK1 1.35 1.53 2.06

ENSBTAG00000012980 Ras related GTP binding B RRAGB 2.53 4.45 11.25

ENSBTAG00000013781 meiosis regulator for oocyte development MIOS 1.30 1.99 2.58

ENSBTAG00000015009 late endosomal/lysosomal adaptor, MAPK and

MTOR activator 4

LAMTOR4 19.95 181.95 3629.44

ENSBTAG00000017160 TBC1 domain family member 7 TBC1D7 1.37 4.07 5.58

ENSBTAG00000018438 Ras related GTP binding D RRAGD 4.17 1.68 7.01

ENSBTAG00000033313 solute carrier family 38 member 9 SLC38A9 2.14 1.53 3.27

Translation initiation ENSBTAG00000000359 eukaryotic translation initiation factor 3 subunit J EIF3J -1.21 -1.65 -2.01

ENSBTAG00000004861 eukaryotic translation initiation factor 3 subunit F EIF3F -1.07 -1.93 -2.07

ENSBTAG00000006543 eukaryotic translation initiation factor 3, subunit

C-like

EIF3CL -1.24 -1.69 -2.09

ENSBTAG00000006702 eukaryotic translation initiation factor 3 subunit E EIF3E -1.39 -1.27 -1.77

ENSBTAG00000007474 eukaryotic translation initiation factor 3 subunit B EIF3B -1.45 -1.46 -2.12

ENSBTAG00000016311 eukaryotic translation initiation factor 2 subunit

alpha

EIF2S1 -1.61 -1.17 -1.89

IVC: in vitro culture; DRY: nonlactating dairy cows, LACT: lactating dairy cows.

FC: fold change.

https://doi.org/10.1371/journal.pone.0290689.t002
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involved in the mTOR pathway, a key regulator of energy sensing in the cell, were also strongly

more expressed in DRY than LACT (average FC: 3.64) and even more when compared to IVC

(average FC: 334.40). In contrast, six of the 17 genes compromising the eukaryotic 48S preini-

tiation complex were down-regulated in DRY compared to both LACT and IVC (average FC:

-1.33 and -2.00, respectively).

One of the up-regulated genes in the mTOR pathway was the solute carrier family 38 mem-

ber 9 (SLC38A9), which binds and transports amino acids in the lysosome and controls

mTORC1 activity in response to amino acids [47]. The protein encoded by this gene interacts

with the Ragulator subunit late endosomal/lysosomal adaptor, MAPK and MTOR activator 4

(LAMTOR4), which was markedly up-regulated in DRY compared to IVC (more than 3000

FC). The Ragulator complex regulates the Ras related GTP binding (RRAG) proteins, which

form a heterodimeric complex between RRAGB and RRAGD, promoting MTORC1 recruit-

ment to the lysosome and activation [48]. Both RRAGB and RRAGD were strongly up-regu-

lated in DRY compared to IVC (FC: 11.25 and 7.01, respectively). Paradoxically, the gene

encoding for AKT1 substrate 1 (AKT1S1) was also upregulated, which binds the regulatory-

associated protein of mTOR (raptor) and suppresses mTORC1 [49], while the gene encoding

for mTOR was not de-regulated. This is not surprising as the sequencing technique takes a

snapshot of a specific time point in the cell, and activation of the mTORC1 complex could

have occurred at another time, or the sample size limited identifying deregulated expression of

this gene. It has been shown that MTORC1 stimulates the expression of genes in all the mito-

chondrial complexes, inducing oxidative phosphorylation in human trophoblastic cells [50].

Here, key genes in all the complexes of the respiratory chain (I through V) were strongly up-

regulated in DRY when compared to LACT, which in turn were downregulated when com-

pared to IVC. Finally, another vital function of the mTOR signalling pathway is to promote

the assembly of the eukaryotic translation initiation factor 4F (eIF4F) complex [51] which

interacts with the large multi-subunit protein eIF3 within the 43S pre-initiation complex for

cap-dependent translation initiation [52]. Genes encoding for these proteins were lowly

expressed in DRY compared to both IVC and LACT which in turn were also downregulated

when compared to IVC.

These main molecular changes observed between the three Day-4 embryo groups reflect

the adaption mechanisms carried out by the embryo in response to the environment. Embryos

that underwent EGA in the oviduct of LACT cows experienced lower energetic availability, as

these animals were under negative energy balance, manifested by lower circulating concentra-

tions of glucose and higher concentrations of BHB [15]. The low glucose environment can

lead to depletion of ATP and an increase in AMP concentration, which activates the AMPK

and MAPK kinases, resulting in an inhibition of the mTOR pathway [53, 54]. As mentioned

above, the mTOR pathway regulates mitochondrial function (oxidative phosphorylation) and

translation initiation. This latter mechanism takes place under conditions of cell stress to

induce the translation of specific mRNA and diminish the cell damage or induce apoptosis

otherwise [55]. Therefore, the “nutrient-poor” condition faced by the Day-2 embryos in the

LACT cows resulted in an inhibition of the mTOR pathway and activation of translation initia-

tion as early as the 16-cell stage when compared to Day-4 embryos collected from the DRY

cows. These modifications can persist in later stages. Indeed, de-regulation of the mTOR path-

way, including oxidative phosphorylation and protein translation, was also observed in blasto-

cysts obtained from dairy cows with high circulating concentrations of beta-hydroxybutyrate

at 60 days postpartum when compared to embryos obtained from cows with low concentra-

tions [56]. This study also demonstrated altered methylation patterns consistent with the tran-

scriptomic results.
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Similarities between the transcriptomic profile of LACT and IVP embryos might arise from

the fact that embryos are exposed to suboptimal conditions in both scenarios, forcing the

embryo to adopt a metabolic signature described as “economy mode”, characterized by mito-

chondrial disfunction [57]. The in vitro process is still associated with a suboptimal stressful

environment for the embryo, despite all the advancements done in this area, which impact

both the embryo epigenome and transcriptome, as described by several investigators [11, 58–

62]. Most of these studies demonstrated that the main consequence of the in vitro process is

de-regulation of the mTOR pathway and changes in the DNA methylation levels of energy-

sensing genes, potentially leading to permanent consequences. Indeed, genes involved in

energy homeostasis were affected in the muscle and liver of IVP postnatal dairy calves when

compared to calves derived from and in vivo embryo [63]. Given the similarities between

bovine and human embryos in regulatory mechanisms and developmental transcriptomic

dynamics [64], results from the present study can also have implications for women’s repro-

ductive health.

In conclusion, results from this study demonstrate that EGA involves the expression of

genes involved in mitochondrial function and translation, as previously observed by other

authors. Furthermore, the environment in which EGA takes place strongly influences these

mechanisms, likely through regulation of the mTOR signalling pathway. The expression of key

genes involved in this pathway are stimulated in the embryo if EGA occurs in the oviduct but

not when EGA occurs in vitro. Furthermore, for the in vivo conditions, the level of gene

expression is strongly influenced by the dam’s metabolic status, with the most robust expres-

sion occurring in the most optimal condition, i.e., in DRY cows compared to LACT cows in

this study. Deregulation of this critical energy-regulatory mechanism affects, as a consequence,

other essential cellular processes in the embryo, such as oxidative phosphorylation and protein

translation.
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