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Chronicidiopathic intestinalinflammation is an increasing worldwide problem that
affects companion animals, especially dogs, and human patients. Although these
disease entities have been intensely investigated recently, many questions remain,
and alternative therapeutic options are needed. Diarrhea caused by dysregulation
of intestinal electrolyte transport and subsequent fluid and electrolyte losses often
leads to secondary consequences for the patient. Currently, it is not exactly clear
which mechanisms are involved in the dysregulation of intestinal fluid absorption,
but differences in intestinal electrolyte shifts between human and canine patients
suggest species-specific regulatory or counterregulatory mechanisms. Several
intestinal electrolyte transporters are differentially expressed in human patients
with inflammatory bowel disease (IBD), whereas there are virtually no studies
on electrolyte transporters and their endocrine regulation in canine chronic
inflammatory enteropathy. An important mechanism involved in regulating
fluid and electrolyte homeostasis is the renin-angiotensin-aldosterone-system
(RAAS), which may affect intestinal Na* transport. While RAAS has previously been
considered a systemic regulator of blood pressure, additional complex roles of
RAAS in inflammatory processes have been unraveled. These alternative RAAS
pathways may pose attractive therapeutic targets to address diarrhea and, thus,
electrolyte shifts in human IBD and canine chronic inflammatory enteropathy.
This article comparatively summarizes the current knowledge about electrolyte
transport in human IBD and canine chronic inflammatory enteropathy and the
role of RAAS and offers perspectives for novel therapeutic avenues.

alternative RAAS, chronic inflammatory enteropathy, inflammatory bowel disease,
electrolyte transport, enteroids, tight junctions
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1. Chronic intestinal inflammation—a
one-health perspective

Human IBD—comprising mainly Crohn’s disease (CD) and
ulcerative colitis (UC)—has a high prevalence in industrialized
countries, and patients often experience severe distress and
significantly reduced quality of life. Healthcare costs to treat IBD in
humans are immense, amounting to 15-30 billion US dollars annually
in the United States and about 5 billion Euros in Europe (1). The exact
prevalence of chronic inflammatory enteropathy (CIE) in dogs is
currently unknown, but it is estimated at 1%-2% in referral settings
(2). CIE in dogs can range in severity and is subcategorized based on
the response to treatment (2). In contrast to canine CIE, different
compartments of the intestines are predominantly affected in patients
with CD and UG, likely reflecting differences in the disease
pathogenesis. Overt inflammatory responses are a common
characteristic, resulting from environmental factors (dietary and
microbial antigens) combined with a genetic predisposition (3). Dogs
have accompanied humans and shared the human lifestyle for over
1,000 years, and it is thus not surprising that they develop similar
civilization diseases. The prevalence of idiopathic IBD—either
responsive (immunosuppressant-responsive enteropathy, IRE) or not
responsive (non-responsive enteropathy, NRE) to immunosuppressive
treatment—as a form of chronic inflammatory enteropathies (CIE) in
dogs increased simultaneously with the rise of IBD in humans and
both diseases share many characteristics, including pathogenesis and
clinical signs (4-7). In dogs, CIE is characterized by chronic
gastrointestinal signs, exclusion of other underlying diseases, and
confirmation of gastrointestinal inflammation together with a
response to treatment with either an elimination diet alone (food-
FRE) or in with
immunosuppressant medication (IRE or NRE) (2, 6, 7). The resulting

responsive  enteropathy, combination
diarrhea and accompanying shifts in plasma electrolytes can severely
compromise the dogs’ and their owners’ quality of life.

A hallmark of IBD is diarrhea due to intestinal hypersecretion and
hampered reabsorption of electrolytes and fluid, often accompanied
by serum electrolyte changes. Although the clinical signs are similar
and largely overlapping, reports suggest different compensatory
mechanisms to be activated both in the intestinal epithelium and on
the systemic level in affected humans and dogs (8-10), which might
also call for different therapeutic approaches. While hyponatremia is
the most common electrolyte change in human IBD (1 1), hypokalemia
appears more prevalent in canine CIE (9), suggesting species-specific
compensatory mechanisms. A better understanding of the
pathophysiologic mechanisms in dogs with CIE is expected to help
identify novel therapeutic targets that could ameliorate diarrhea in
affected dogs and be valuable for treating human IBD patients. While
IBD in people has been under investigation for decades, significantly
less is currently known about the pathophysiology of chronic
idiopathic intestinal inflammation (CIE) in dogs.

2. Pathophysiology of diarrhea—
gastrointestinal electrolyte transport
and barrier formation

Central functions of the intestinal epithelium are the formation of
a tight barrier to shield the host from luminal microbiota and other
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noxae and the vectorial transport of nutrients, electrolytes, and water.
Uptake and secretion of nutrients and electrolytes are the major
driving force for the (mostly paracellular) absorption and secretion of
water. The gastrointestinal tract faces large fluid and electrolyte shifts,
and the healthy intestinal mucosa absorbs about 98% of that fluid (12,
13). The (passive) movement of water is driven by the (active) uptake
or secretion of electrolytes, primarily CI~ and Na*. Due to its high
absorptive capacity, the colonic epithelium can compensate for an
increased secretion and/or defective absorptive capacity in the small
intestine (14). Diarrhea develops if the compensatory capacity of the
colon is exceeded and is often accompanied by serum electrolyte
changes. The highest fecal water output is thus seen with disease
involving the colon (12). Not surprisingly, diarrhea is invariably seen
in humans with IBD, particularly in UC (15). In dogs, the lesions are
typically more heterogeneously distributed in the gastrointestinal
tract, and about 80% of affected animals show diarrhea (9). This lower
prevalence of diarrhea [80% in dogs vs. 100% in people (9, 15)] might
indicate a slightly more efficient compensation of intestinal
malabsorption in dogs than in people.

Both increased secretion and reduced absorption of electrolytes
cause diarrhea in human IBD patients (16). However, colonic
absorption could still compensate for this if the colonic absorptive and
re-absorptive transport mechanisms remain intact (17, 18). The main
mechanisms for the uptake of luminal electrolytes—and thus the
absorption of water—in the mammalian intestine is Na*-coupled
cotransporters, particularly the Na*/H*-exchanger family (NHE) and
the epithelial Na* channel (ENaC). Both are downregulated in human
IBD (19, 20) and rodent models of dextran-sulfate-sodium-induced
colitis, along with the Na*/K*-ATPase that generates the gradient for
the effective uptake of Na* from the intestinal lumen (11, 20, 21),
causing a decreased (re-)absorption of water. A knockout of NHE3,
but not of NHE2, leads to diarrhea in a mouse model (22), and NHE3
was demonstrated to be the major isoform for Na* absorption across
the canine ileum epithelium (23).

This finding is especially interesting in conjunction with reports
of increased serum aldosterone levels in human IBD patients (11, 24),
suggesting a systemic attempt at a counter-regulation mediated by the
renin-angiotensin-aldosterone system (RAAS) as ENaC, NHE3 and
Na*/K*-ATPase are upregulated by aldosterone (25-27). Other
transport proteins might also be involved in the dysregulation of
intestinal fluid absorption, such as the anion exchangers putative
anion transporter 1 (PAT1), down-regulated in adenoma (DRA), the
Cl™ channel cystic fibrosis transmembrane conductance regulator
(CFTR) (16, 28), monocarboxylate transporter 1 (MCT1) (11, 21), and
anion exchanger 2 (AE2). The Na*/K*/2Cl" cotransporter (NKCC) on
the basolateral side of the epithelium might have a pivotal role in
regulating the driving force for intestinal secretion [e.g., by CFTR and
chloride channel 2 (CLC2)]. Similarly, basolateral K* channels might
be important in driving colonic secretion. The K* channel KCNN4 is
specifically upregulated in human IBD patients (29), and additional
K* channels or pumps may be located in the intestinal epithelial brush
border membrane (16), but their role in human IBD (and canine CIE)
is poorly understood. The effect of CIE on intestinal electrolyte
transport in dogs has not been investigated to date.

Following established electrolyte gradients, the secretion and
reabsorption of water mainly take the paracellular route. Therefore,
the epithelial barrier formed by tight junction proteins is an
important factor in the pathogenesis of diarrhea. Tight junctions and
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other cell-cell contacts are essential components located between
adjacent epithelial and endothelial cells throughout the mammalian
organism. In human IBD, the barrier-forming claudins 3, 4, 5, 7, and
8 are downregulated and disoriented from the plasma membrane, as
are occludin and ZO-1, whereas the pore-forming claudin 2 is
upregulated (30) along with increased paracellular permeability (20).
In dogs with CIE, the expression of claudins or occludin is not altered
in the duodenum, but colonic occludin mRNA levels are decreased
(31). Apart from these findings, the regulation of tight junction
proteins has yet to be investigated in dogs with CIE (32), but a
thorough understanding of their role would be a major premise for
further studying the pathomechanisms of CIE-related diarrhea in
dogs. The colonic expression of occludin and claudin 8 is regulated
(along with ENaC) by aldosterone (33), which may imply an
additional therapeutic potential for RAAS in IBD and potentially also
CIE in dogs.

3. Classical and alternative RAAS
pathways—great complexity and
far-reaching effects

RAAS has been extensively studied in cardiovascular and renal
pathophysiology, and it appears to have much greater non-linear
complexity than previously known (34). It acts on intestinal transport
and barrier function, as described above. In addition, RAAS is
involved in other intestinal functions, including the absorption of
glucose and peptides, gastrointestinal motility, and the regulation of
mesenteric blood flow (35, 36). Given the differences in electrolyte
imbalances between canine CIE and human IBD patients, RAAS
pathways might be differentially activated in these conditions.

Classically, renin cleaves angiotensinogen to angiotensin I (Ang
I), which is then processed by angiotensin-converting enzyme (ACE)
to the vasoconstrictor Ang II that activates aldosterone. This
“traditional RAAS” has been well characterized as a circulatory blood
(Figure 1A)
pharmacotherapeutic target for decades. In contrast, the existence of

pressure  regulator and has presented a
additional peptides derived from Ang I and II that constitute the
“alternative RAAS” and their role in cardiovascular physiology and
disease pathogenesis has long been neglected. The involvement of
these recently discovered factors (Figure 1B) challenges the former
simple concept of RAAS but also lends itself to potential novel
therapeutic avenues beyond managing cardiovascular pathologies.
Recent evidence also supports the coexistence of localized “tissue
RAAS” mediating local (paracrine) effects.

Renin, a peptidase, represents the rate-limiting step in the RAAS
cascade. After release from epithelioid cells of the renal
juxtaglomerular apparatus into the circulation, renin cleaves an
N-terminal decapeptide from angiotensinogen, a glycoprotein of the
globulin superfamily synthesized in the liver and (though
controversial) adipose tissue (37, 38), resulting in Ang I. The
biologically active octapeptide Ang II results from the cleavage of Ang
I by ACE, which is expressed primarily by pulmonary and renal
endothelial cells and has also been detected in other tissues, including
the myocardium and intestines (39). ACE is most active when bound
to cell membranes. Together with the short half-life of Ang I and II,
this indicates localized actions of RAAS (40). Similarly, an effect of
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renin and/or Ang II at the tissue level, rather than in the circulation,
is supported by detecting (pro-)renin receptors in several tissues, such
as the heart, brain, placenta, kidney, and liver (41).

The main effect of Ang II is an increase in systemic blood pressure
by regulating vasoconstriction and cardiac output (42). As an
intermediate effect, increased Na* reabsorption in the proximal renal
tubules (via NHE3) and induction of thirst and salt appetite,
subsequently increasing extracellular volume and, thus, blood
pressure, are induced (43-45). As a longer-term effect, Ang II
stimulates (a) the expression and secretion of aldosterone, thus
increasing the reabsorption of Na* in the renal collecting ducts via
ENaC on the gene expression level and (b) hypothalamic antidiuretic
hormone (ADH, vasopressin) secretion leading to the insertion of
aquaporins in the renal collecting ducts (25). Together, these
mechanisms increase water reabsorption and thus blood volume and
systemic blood pressure (Figure 1). It is important to recognize,
however, that the enhanced reabsorption of Na* in the collecting ducts
causes a concurrent loss of K* due to the extrusion of K* via apical
channels into the lumen of the renal collecting ducts, which is driven
by the electrochemical gradient that increases with the reabsorption
of Na* (46).

Beyond these direct and indirect effects on systemic blood
pressure, Ang II also elicits immunomodulatory effects by inducing
proinflammatory cytokines and chemokines (e.g., TNFa, IL-6, and
TGEF-B1) in renal tubular cells and cells of the immune system (47—
49). Ang II is also involved in hypertrophic remodeling (e.g., of the
myocardium) by inducing cell proliferation and growth, but a direct
effect of Ang II on extracellular matrix synthesis has also been
observed (24, 47, 50). Thus, Ang II is presumed to be involved in the
pathologic process of fibrogenesis (e.g., cardiac, renal, and hepatic
fibrosis) (51, 52), which is also a major factor in the pathogenesis of
human IBD (53). The binding of prorenin to its tissue receptor further
contributes to myocardial fibrosis via the activation of intracellular
signaling pathways (54, 55).

Four angiotensin-receptor (ATR) isoforms have been described,
AT1R-AT4R. The ATRs are G-protein coupled transmembrane
receptors (40) that might dictate the effects of Ang II by spatial
differences in tissue abundance. ATIR is the primary receptor
mediating the effects of Ang II and is expressed in most tissues,
particularly the liver, adipose tissue, and placenta (39, 56). While
AT1R is well characterized, the exact functions of the remaining three
isoforms of ATR remain currently unknown. AT2R is found primarily
during fetal development but may be upregulated under pathological
conditions in adulthood (43), especially those affecting the lungs or
smooth muscle (56). A vasodilatory effect of AT2R (i.e., opposing
AT1R-mediated effects) has also been reported (40, 57, 58) and may
provide a “safety net” preventing exaggerated and counterproductive
effects of Ang IT via AT1R.

Besides these traditional RAAS components, additional enzymes
are described to act on Ang I and Ang I, representing the “alternative
RAAS” (Figure 1B). To date, the best characterized is ACE2, which can
cleave a nonapeptide, Ang (1-9), from Ang I or a heptapeptide, Ang
(1-7), from AngII (59, 60). Interestingly, one of the first observations
of an alternative route of Ang I breakdown to Ang (1-7), independent
from ACE, was in dogs (61). Ang (1-9) can also be converted to Ang
(1-7) by ACE. Ang (1-7) responses can counteract those of Ang II
[i.e., vasorelaxant, anti-proliferative, anti-inflammatory, anti-fibrotic,
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FIGURE 1

Evolution of the complexity of the renin-angiotensin-aldosterone system (RAAS). (A) Traditional simple view of the RAAS involving mostly
cardiovascular and renal effects. (B) More recent complex view on classical and alternative RAAS pathways that might play a role in human
inflammatory bowel disease (IBD) and/or canine chronic inflammatory enteropathy (CIE). Whereas the activation of the classical arm leads to
vasoconstrictive, proinflammatory, profibrotic, and prothrombotic effects (green dashed box), components of the alternative RAAS pathways result in
vasodilatory, anti-inflammatory, antifibrotic, and antithrombotic responses (blue dashed box). ACE, angiotensin-converting enzyme; ATR, angiotensin
receptor; MR, mineralocorticoid receptor; PRR, prorenin receptor. Images created with BioRender.com.

and thus likely (cardio-)protective] (59, 62, 63), presumably via
binding to AT2R (54, 59). In hypertensive rats, Ang (1-7) reduced the
heart rate but not systemic blood pressure (63). Simultaneously, the
formation of Ang (1-7) from Ang II is inherent in decreased Ang II
concentrations. With the discovery of Mas, an additional RAAS
receptor was identified that might act as the main receptor for Ang
(1-7) and thus the “alternative arm” of RAAS (59, 62, 64). The

Frontiers in Veterinary Science

pathophysiologic role and effects of Ang (1-7) have raised hopes for
a therapeutic application to address the adverse effects of Ang IT in
various pathologies. However, the pathways and effects of Ang II are
currently still controversial and remain first to be clarified (63).
Formation of Ang (2-8) (also referred to as Ang IIT) and Ang (3-8)
(also known as Ang I'V) has also been described (40). These peptides
bind to AT1R and elicit similar effects as Ang II (54).
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4. RAAS crossroads between
adaptation, disease, and novel
therapeutic targets

Components of the RAAS have paracrine and/or autocrine
cytokine-like effects and regulate inflammation, tissue repair, and
fibrosis (21, 65, 66), all important factors in the pathogenesis of canine
CIE and human IBD. In addition to upregulating adhesion molecules,
Ang II is chemotactic for inflammatory cells, particularly of the
mononuclear lineage. These cells produce RAAS components
following activation (mediated by IL-1, TNF-a, NF-xB, and/or
PPARY), resulting in a positive-feedback loop with the potential to
perpetuate chronic inflammatory responses (66-68). Ang II also has
profibrotic effects via TGF-p, connective tissue growth factor
stimulation, and inhibition of matrix metalloproteinase (MMP)-
mediated extracellular matrix degradation (69). While conflicting data
exist on TGF-p expression in canine CIE depending on the
gastrointestinal segment affected (4, 70-73), and unlike in humans
stricturing behavior is not observed in affected dogs, intestinal
mucosal MMP-2 and -9 activities are increased in canine CIE (74).
Toll-like receptor (TLR) and RAGE (receptor for advanced glycation
end products) expression are dysregulated in canine CIE (5, 75, 76),
and RAAS blockade has anti-inflammatory effects by suppression of
TLR2 and TLR4 in humans (77).

Inhibition of RAAS pathways [e.g., Ang II production by ACE
inhibitors (ACEIs) or its effects by ATR blockers (ARBs)] could
downregulate inflammatory mediators and the innate immune
receptors TLR2, TLR4, and RAGE. This concept presents a novel
therapeutic strategy that targets the inflammatory response in
canine CIE and warrants further study. Classical and alternative
RAAS pathways (Figure 1B) are complementary systems with the
potential to oppose or compensate for the actions of the
contralateral arm (60, 77, 78), and their balance (or imbalance)
might play an important role in the pathogenesis of intestinal
inflammation. Thus, a (receptor) specific approach is most
promising for therapeutically targeting the RAAS. The alternative
RAAS has anti-inflammatory properties (59, 60). Ang (1-7) is a
that
inflammation in a rodent model of IBD (78). Components of

promising therapeutic target attenuated intestinal
classical and alternative RAAS are expressed in the intestinal
mucosa in humans (34, 78, 79), with disparate ACE2 imbalances
in the small intestine (downregulation) and colon (upregulation)
in IBD patients (59, 62, 79). ACE2, as the main enzyme for cleavage
of Ang II to Ang (1-7) which neutralizes the pro-inflammatory
and pro-fibrotic effects of Ang II, might be critical for mounting
pro- vs. anti-inflammatory responses (80). It is expressed in the
gastrointestinal tract in cats (81) but has not been investigated in
dogs. Circulating ACE and ACE2 act as decoy receptors, and the
plasma ACE2/ACE ratio is increased in people with IBD. Cleavage
of ACE2 is controlled by the metalloprotease ADAM17 (34), and
ACE2 induction by cardiovascular pathology—shifting the balance
between Ang peptides in plasma—is more pronounced in dogs
than people (82). MasR is expressed in the canine ileum (83) but
remains to be investigated in canine CIE. Likewise, tissue prorenin
receptor (PRR) and mineralocorticoid receptor (MR) expression

(e.g., by macrophages), as well as chymase activation (e.g., by mast
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cells), can modulate local RAAS effects (Figure 1B) and
inflammatory responses (43) but remain to be studied in canine
CIE. ACEISs (decreasing the production of Ang II), Ang II blockade
(antagonizing ATIR signaling), MR or PRR antagonists, and/or
chymase inhibitors could be useful and inexpensive alternative or
adjunct therapeutic options for chronic intestinal inflammation
(39, 84, 85) and potentially other autoinflammatory diseases (e.g.,
autoimmune hepatitis) in dogs.

5. Discussion and conclusions

Humans and dogs are close companions and share several
civilization diseases, including idiopathic IBD and CIE. Although
the shared Western lifestyle is proposed as a common denominator
in the etiology of both conditions, there appear to be some species-
specific differences in the disease characteristics, including the
primary disease localization and distribution, resulting electrolyte
changes, and potentially corresponding (counter-)regulatory
mechanisms. While the current body of knowledge and research is
more extensive for human IBD than canine CIE, a complete
understanding of the underlying pathophysiology and possible
mechanistic approach to therapy needs to be improved in both
species. Exploration of alternative treatment options for dogs with
CIE is
corticosteroids—carry significant side effects and biologicals (e.g.,

needed as currently available drugs—particularly
monoclonal antibodies against receptors or inflammatory cytokines)
are not currently available (and very unlikely available soon) as a
treatment option for canine CIE (86). Understanding commonalities
and species-specific differences can be expected to result in the
development of improved treatment strategies, and targeting RAAS
might be one of these options. A thorough understanding of the role
of RAAS pathways in the pathophysiology of canine CIE is needed
to assess the therapeutic potential and potential side effects. Novel
research methods, particularly canine intestinal organoids (Figure 2)
that provide a reproducible and stable in vitro system for disease
modeling and drug development (87-90), will be vital to further
evaluate the effects of RAAS modifiers on epithelial ion transport,
inflammatory responses, and intestinal barrier function
comparatively. Organoids will allow to implement the 3R principles
(6) and pave the way for urgently needed novel disease-specific

treatment strategies in canine CIE and human IBD.
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FIGURE 2

3D intestinal organoids for drug discovery. (A) Canine enteroids (shown in culture, phase contrast microscopy) pose an advanced in vitro model to
investigate the pathophysiology of canine CIE further. These organoids allow the study of epithelial transport, inflammation, and barrier function:
immunofluorescent staining (green) for (B) occludin, (C) claudin-1, and (D) claudin-7 indicates the formation of a functional polarized epithelium
expressing tight junction proteins. Cell nuclei are counterstained with DAPI (blue). Scale bars: 100um (A,B) and 50um (C,D).
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