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Chronic idiopathic intestinal inflammation is an increasing worldwide problem that 
affects companion animals, especially dogs, and human patients. Although these 
disease entities have been intensely investigated recently, many questions remain, 
and alternative therapeutic options are needed. Diarrhea caused by dysregulation 
of intestinal electrolyte transport and subsequent fluid and electrolyte losses often 
leads to secondary consequences for the patient. Currently, it is not exactly clear 
which mechanisms are involved in the dysregulation of intestinal fluid absorption, 
but differences in intestinal electrolyte shifts between human and canine patients 
suggest species-specific regulatory or counterregulatory mechanisms. Several 
intestinal electrolyte transporters are differentially expressed in human patients 
with inflammatory bowel disease (IBD), whereas there are virtually no studies 
on electrolyte transporters and their endocrine regulation in canine chronic 
inflammatory enteropathy. An important mechanism involved in regulating 
fluid and electrolyte homeostasis is the renin-angiotensin-aldosterone-system 
(RAAS), which may affect intestinal Na+ transport. While RAAS has previously been 
considered a systemic regulator of blood pressure, additional complex roles of 
RAAS in inflammatory processes have been unraveled. These alternative RAAS 
pathways may pose attractive therapeutic targets to address diarrhea and, thus, 
electrolyte shifts in human IBD and canine chronic inflammatory enteropathy. 
This article comparatively summarizes the current knowledge about electrolyte 
transport in human IBD and canine chronic inflammatory enteropathy and the 
role of RAAS and offers perspectives for novel therapeutic avenues.
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1. Chronic intestinal inflammation—a 
one-health perspective

Human IBD—comprising mainly Crohn’s disease (CD) and 
ulcerative colitis (UC)—has a high prevalence in industrialized 
countries, and patients often experience severe distress and 
significantly reduced quality of life. Healthcare costs to treat IBD in 
humans are immense, amounting to 15–30 billion US dollars annually 
in the United States and about 5 billion Euros in Europe (1). The exact 
prevalence of chronic inflammatory enteropathy (CIE) in dogs is 
currently unknown, but it is estimated at 1%–2% in referral settings 
(2). CIE in dogs can range in severity and is subcategorized based on 
the response to treatment (2). In contrast to canine CIE, different 
compartments of the intestines are predominantly affected in patients 
with CD and UC, likely reflecting differences in the disease 
pathogenesis. Overt inflammatory responses are a common 
characteristic, resulting from environmental factors (dietary and 
microbial antigens) combined with a genetic predisposition (3). Dogs 
have accompanied humans and shared the human lifestyle for over 
1,000 years, and it is thus not surprising that they develop similar 
civilization diseases. The prevalence of idiopathic IBD—either 
responsive (immunosuppressant-responsive enteropathy, IRE) or not 
responsive (non-responsive enteropathy, NRE) to immunosuppressive 
treatment—as a form of chronic inflammatory enteropathies (CIE) in 
dogs increased simultaneously with the rise of IBD in humans and 
both diseases share many characteristics, including pathogenesis and 
clinical signs (4–7). In dogs, CIE is characterized by chronic 
gastrointestinal signs, exclusion of other underlying diseases, and 
confirmation of gastrointestinal inflammation together with a 
response to treatment with either an elimination diet alone (food-
responsive enteropathy, FRE) or in combination with 
immunosuppressant medication (IRE or NRE) (2, 6, 7). The resulting 
diarrhea and accompanying shifts in plasma electrolytes can severely 
compromise the dogs’ and their owners’ quality of life.

A hallmark of IBD is diarrhea due to intestinal hypersecretion and 
hampered reabsorption of electrolytes and fluid, often accompanied 
by serum electrolyte changes. Although the clinical signs are similar 
and largely overlapping, reports suggest different compensatory 
mechanisms to be activated both in the intestinal epithelium and on 
the systemic level in affected humans and dogs (8–10), which might 
also call for different therapeutic approaches. While hyponatremia is 
the most common electrolyte change in human IBD (11), hypokalemia 
appears more prevalent in canine CIE (9), suggesting species-specific 
compensatory mechanisms. A better understanding of the 
pathophysiologic mechanisms in dogs with CIE is expected to help 
identify novel therapeutic targets that could ameliorate diarrhea in 
affected dogs and be valuable for treating human IBD patients. While 
IBD in people has been under investigation for decades, significantly 
less is currently known about the pathophysiology of chronic 
idiopathic intestinal inflammation (CIE) in dogs.

2. Pathophysiology of diarrhea—
gastrointestinal electrolyte transport 
and barrier formation

Central functions of the intestinal epithelium are the formation of 
a tight barrier to shield the host from luminal microbiota and other 

noxae and the vectorial transport of nutrients, electrolytes, and water. 
Uptake and secretion of nutrients and electrolytes are the major 
driving force for the (mostly paracellular) absorption and secretion of 
water. The gastrointestinal tract faces large fluid and electrolyte shifts, 
and the healthy intestinal mucosa absorbs about 98% of that fluid (12, 
13). The (passive) movement of water is driven by the (active) uptake 
or secretion of electrolytes, primarily Cl− and Na+. Due to its high 
absorptive capacity, the colonic epithelium can compensate for an 
increased secretion and/or defective absorptive capacity in the small 
intestine (14). Diarrhea develops if the compensatory capacity of the 
colon is exceeded and is often accompanied by serum electrolyte 
changes. The highest fecal water output is thus seen with disease 
involving the colon (12). Not surprisingly, diarrhea is invariably seen 
in humans with IBD, particularly in UC (15). In dogs, the lesions are 
typically more heterogeneously distributed in the gastrointestinal 
tract, and about 80% of affected animals show diarrhea (9). This lower 
prevalence of diarrhea [80% in dogs vs. 100% in people (9, 15)] might 
indicate a slightly more efficient compensation of intestinal 
malabsorption in dogs than in people.

Both increased secretion and reduced absorption of electrolytes 
cause diarrhea in human IBD patients (16). However, colonic 
absorption could still compensate for this if the colonic absorptive and 
re-absorptive transport mechanisms remain intact (17, 18). The main 
mechanisms for the uptake of luminal electrolytes—and thus the 
absorption of water—in the mammalian intestine is Na+-coupled 
cotransporters, particularly the Na+/H+-exchanger family (NHE) and 
the epithelial Na+ channel (ENaC). Both are downregulated in human 
IBD (19, 20) and rodent models of dextran-sulfate-sodium-induced 
colitis, along with the Na+/K+-ATPase that generates the gradient for 
the effective uptake of Na+ from the intestinal lumen (11, 20, 21), 
causing a decreased (re-)absorption of water. A knockout of NHE3, 
but not of NHE2, leads to diarrhea in a mouse model (22), and NHE3 
was demonstrated to be the major isoform for Na+ absorption across 
the canine ileum epithelium (23).

This finding is especially interesting in conjunction with reports 
of increased serum aldosterone levels in human IBD patients (11, 24), 
suggesting a systemic attempt at a counter-regulation mediated by the 
renin-angiotensin-aldosterone system (RAAS) as ENaC, NHE3 and 
Na+/K+-ATPase are upregulated by aldosterone (25–27). Other 
transport proteins might also be  involved in the dysregulation of 
intestinal fluid absorption, such as the anion exchangers putative 
anion transporter 1 (PAT1), down-regulated in adenoma (DRA), the 
Cl− channel cystic fibrosis transmembrane conductance regulator 
(CFTR) (16, 28), monocarboxylate transporter 1 (MCT1) (11, 21), and 
anion exchanger 2 (AE2). The Na+/K+/2Cl− cotransporter (NKCC) on 
the basolateral side of the epithelium might have a pivotal role in 
regulating the driving force for intestinal secretion [e.g., by CFTR and 
chloride channel 2 (CLC2)]. Similarly, basolateral K+ channels might 
be important in driving colonic secretion. The K+ channel KCNN4 is 
specifically upregulated in human IBD patients (29), and additional 
K+ channels or pumps may be located in the intestinal epithelial brush 
border membrane (16), but their role in human IBD (and canine CIE) 
is poorly understood. The effect of CIE on intestinal electrolyte 
transport in dogs has not been investigated to date.

Following established electrolyte gradients, the secretion and 
reabsorption of water mainly take the paracellular route. Therefore, 
the epithelial barrier formed by tight junction proteins is an 
important factor in the pathogenesis of diarrhea. Tight junctions and 
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other cell–cell contacts are essential components located between 
adjacent epithelial and endothelial cells throughout the mammalian 
organism. In human IBD, the barrier-forming claudins 3, 4, 5, 7, and 
8 are downregulated and disoriented from the plasma membrane, as 
are occludin and ZO-1, whereas the pore-forming claudin 2 is 
upregulated (30) along with increased paracellular permeability (20). 
In dogs with CIE, the expression of claudins or occludin is not altered 
in the duodenum, but colonic occludin mRNA levels are decreased 
(31). Apart from these findings, the regulation of tight junction 
proteins has yet to be  investigated in dogs with CIE (32), but a 
thorough understanding of their role would be a major premise for 
further studying the pathomechanisms of CIE-related diarrhea in 
dogs. The colonic expression of occludin and claudin 8 is regulated 
(along with ENaC) by aldosterone (33), which may imply an 
additional therapeutic potential for RAAS in IBD and potentially also 
CIE in dogs.

3. Classical and alternative RAAS 
pathways—great complexity and 
far-reaching effects

RAAS has been extensively studied in cardiovascular and renal 
pathophysiology, and it appears to have much greater non-linear 
complexity than previously known (34). It acts on intestinal transport 
and barrier function, as described above. In addition, RAAS is 
involved in other intestinal functions, including the absorption of 
glucose and peptides, gastrointestinal motility, and the regulation of 
mesenteric blood flow (35, 36). Given the differences in electrolyte 
imbalances between canine CIE and human IBD patients, RAAS 
pathways might be differentially activated in these conditions.

Classically, renin cleaves angiotensinogen to angiotensin I (Ang 
I), which is then processed by angiotensin-converting enzyme (ACE) 
to the vasoconstrictor Ang II that activates aldosterone. This 
“traditional RAAS” has been well characterized as a circulatory blood 
pressure regulator (Figure  1A) and has presented a 
pharmacotherapeutic target for decades. In contrast, the existence of 
additional peptides derived from Ang I  and II that constitute the 
“alternative RAAS” and their role in cardiovascular physiology and 
disease pathogenesis has long been neglected. The involvement of 
these recently discovered factors (Figure 1B) challenges the former 
simple concept of RAAS but also lends itself to potential novel 
therapeutic avenues beyond managing cardiovascular pathologies. 
Recent evidence also supports the coexistence of localized “tissue 
RAAS” mediating local (paracrine) effects.

Renin, a peptidase, represents the rate-limiting step in the RAAS 
cascade. After release from epithelioid cells of the renal 
juxtaglomerular apparatus into the circulation, renin cleaves an 
N-terminal decapeptide from angiotensinogen, a glycoprotein of the 
globulin superfamily synthesized in the liver and (though 
controversial) adipose tissue (37, 38), resulting in Ang I. The 
biologically active octapeptide Ang II results from the cleavage of Ang 
I  by ACE, which is expressed primarily by pulmonary and renal 
endothelial cells and has also been detected in other tissues, including 
the myocardium and intestines (39). ACE is most active when bound 
to cell membranes. Together with the short half-life of Ang I and II, 
this indicates localized actions of RAAS (40). Similarly, an effect of 

renin and/or Ang II at the tissue level, rather than in the circulation, 
is supported by detecting (pro-)renin receptors in several tissues, such 
as the heart, brain, placenta, kidney, and liver (41).

The main effect of Ang II is an increase in systemic blood pressure 
by regulating vasoconstriction and cardiac output (42). As an 
intermediate effect, increased Na+ reabsorption in the proximal renal 
tubules (via NHE3) and induction of thirst and salt appetite, 
subsequently increasing extracellular volume and, thus, blood 
pressure, are induced (43–45). As a longer-term effect, Ang II 
stimulates (a) the expression and secretion of aldosterone, thus 
increasing the reabsorption of Na+ in the renal collecting ducts via 
ENaC on the gene expression level and (b) hypothalamic antidiuretic 
hormone (ADH, vasopressin) secretion leading to the insertion of 
aquaporins in the renal collecting ducts (25). Together, these 
mechanisms increase water reabsorption and thus blood volume and 
systemic blood pressure (Figure  1). It is important to recognize, 
however, that the enhanced reabsorption of Na+ in the collecting ducts 
causes a concurrent loss of K+ due to the extrusion of K+ via apical 
channels into the lumen of the renal collecting ducts, which is driven 
by the electrochemical gradient that increases with the reabsorption 
of Na+ (46).

Beyond these direct and indirect effects on systemic blood 
pressure, Ang II also elicits immunomodulatory effects by inducing 
proinflammatory cytokines and chemokines (e.g., TNFα, IL-6, and 
TGF-β1) in renal tubular cells and cells of the immune system (47–
49). Ang II is also involved in hypertrophic remodeling (e.g., of the 
myocardium) by inducing cell proliferation and growth, but a direct 
effect of Ang II on extracellular matrix synthesis has also been 
observed (24, 47, 50). Thus, Ang II is presumed to be involved in the 
pathologic process of fibrogenesis (e.g., cardiac, renal, and hepatic 
fibrosis) (51, 52), which is also a major factor in the pathogenesis of 
human IBD (53). The binding of prorenin to its tissue receptor further 
contributes to myocardial fibrosis via the activation of intracellular 
signaling pathways (54, 55).

Four angiotensin-receptor (ATR) isoforms have been described, 
AT1R–AT4R. The ATRs are G-protein coupled transmembrane 
receptors (40) that might dictate the effects of Ang II by spatial 
differences in tissue abundance. AT1R is the primary receptor 
mediating the effects of Ang II and is expressed in most tissues, 
particularly the liver, adipose tissue, and placenta (39, 56). While 
AT1R is well characterized, the exact functions of the remaining three 
isoforms of ATR remain currently unknown. AT2R is found primarily 
during fetal development but may be upregulated under pathological 
conditions in adulthood (43), especially those affecting the lungs or 
smooth muscle (56). A vasodilatory effect of AT2R (i.e., opposing 
AT1R-mediated effects) has also been reported (40, 57, 58) and may 
provide a “safety net” preventing exaggerated and counterproductive 
effects of Ang II via AT1R.

Besides these traditional RAAS components, additional enzymes 
are described to act on Ang I and Ang II, representing the “alternative 
RAAS” (Figure 1B). To date, the best characterized is ACE2, which can 
cleave a nonapeptide, Ang (1–9), from Ang I or a heptapeptide, Ang 
(1–7), from Ang II (59, 60). Interestingly, one of the first observations 
of an alternative route of Ang I breakdown to Ang (1–7), independent 
from ACE, was in dogs (61). Ang (1–9) can also be converted to Ang 
(1–7) by ACE. Ang (1–7) responses can counteract those of Ang II 
[i.e., vasorelaxant, anti-proliferative, anti-inflammatory, anti-fibrotic, 
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and thus likely (cardio-)protective] (59, 62, 63), presumably via 
binding to AT2R (54, 59). In hypertensive rats, Ang (1–7) reduced the 
heart rate but not systemic blood pressure (63). Simultaneously, the 
formation of Ang (1–7) from Ang II is inherent in decreased Ang II 
concentrations. With the discovery of Mas, an additional RAAS 
receptor was identified that might act as the main receptor for Ang 
(1–7) and thus the “alternative arm” of RAAS (59, 62, 64). The 

pathophysiologic role and effects of Ang (1–7) have raised hopes for 
a therapeutic application to address the adverse effects of Ang II in 
various pathologies. However, the pathways and effects of Ang II are 
currently still controversial and remain first to be  clarified (63). 
Formation of Ang (2–8) (also referred to as Ang III) and Ang (3–8) 
(also known as Ang IV) has also been described (40). These peptides 
bind to AT1R and elicit similar effects as Ang II (54).

FIGURE 1

Evolution of the complexity of the renin-angiotensin-aldosterone system (RAAS). (A) Traditional simple view of the RAAS involving mostly 
cardiovascular and renal effects. (B) More recent complex view on classical and alternative RAAS pathways that might play a role in human 
inflammatory bowel disease (IBD) and/or canine chronic inflammatory enteropathy (CIE). Whereas the activation of the classical arm leads to 
vasoconstrictive, proinflammatory, profibrotic, and prothrombotic effects (green dashed box), components of the alternative RAAS pathways result in 
vasodilatory, anti-inflammatory, antifibrotic, and antithrombotic responses (blue dashed box). ACE, angiotensin-converting enzyme; ATR, angiotensin 
receptor; MR, mineralocorticoid receptor; PRR, prorenin receptor. Images created with BioRender.com.
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4. RAAS crossroads between 
adaptation, disease, and novel 
therapeutic targets

Components of the RAAS have paracrine and/or autocrine 
cytokine-like effects and regulate inflammation, tissue repair, and 
fibrosis (21, 65, 66), all important factors in the pathogenesis of canine 
CIE and human IBD. In addition to upregulating adhesion molecules, 
Ang II is chemotactic for inflammatory cells, particularly of the 
mononuclear lineage. These cells produce RAAS components 
following activation (mediated by IL-1, TNF-α, NF-κB, and/or 
PPARγ), resulting in a positive-feedback loop with the potential to 
perpetuate chronic inflammatory responses (66–68). Ang II also has 
profibrotic effects via TGF-β, connective tissue growth factor 
stimulation, and inhibition of matrix metalloproteinase (MMP)-
mediated extracellular matrix degradation (69). While conflicting data 
exist on TGF-β expression in canine CIE depending on the 
gastrointestinal segment affected (4, 70–73), and unlike in humans 
stricturing behavior is not observed in affected dogs, intestinal 
mucosal MMP-2 and -9 activities are increased in canine CIE (74). 
Toll-like receptor (TLR) and RAGE (receptor for advanced glycation 
end products) expression are dysregulated in canine CIE (5, 75, 76), 
and RAAS blockade has anti-inflammatory effects by suppression of 
TLR2 and TLR4 in humans (77).

Inhibition of RAAS pathways [e.g., Ang II production by ACE 
inhibitors (ACEIs) or its effects by ATR blockers (ARBs)] could 
downregulate inflammatory mediators and the innate immune 
receptors TLR2, TLR4, and RAGE. This concept presents a novel 
therapeutic strategy that targets the inflammatory response in 
canine CIE and warrants further study. Classical and alternative 
RAAS pathways (Figure 1B) are complementary systems with the 
potential to oppose or compensate for the actions of the 
contralateral arm (60, 77, 78), and their balance (or imbalance) 
might play an important role in the pathogenesis of intestinal 
inflammation. Thus, a (receptor) specific approach is most 
promising for therapeutically targeting the RAAS. The alternative 
RAAS has anti-inflammatory properties (59, 60). Ang (1–7) is a 
promising therapeutic target that attenuated intestinal 
inflammation in a rodent model of IBD (78). Components of 
classical and alternative RAAS are expressed in the intestinal 
mucosa in humans (34, 78, 79), with disparate ACE2 imbalances 
in the small intestine (downregulation) and colon (upregulation) 
in IBD patients (59, 62, 79). ACE2, as the main enzyme for cleavage 
of Ang II to Ang (1–7) which neutralizes the pro-inflammatory 
and pro-fibrotic effects of Ang II, might be critical for mounting 
pro- vs. anti-inflammatory responses (80). It is expressed in the 
gastrointestinal tract in cats (81) but has not been investigated in 
dogs. Circulating ACE and ACE2 act as decoy receptors, and the 
plasma ACE2/ACE ratio is increased in people with IBD. Cleavage 
of ACE2 is controlled by the metalloprotease ADAM17 (34), and 
ACE2 induction by cardiovascular pathology—shifting the balance 
between Ang peptides in plasma—is more pronounced in dogs 
than people (82). MasR is expressed in the canine ileum (83) but 
remains to be investigated in canine CIE. Likewise, tissue prorenin 
receptor (PRR) and mineralocorticoid receptor (MR) expression 
(e.g., by macrophages), as well as chymase activation (e.g., by mast 

cells), can modulate local RAAS effects (Figure  1B) and 
inflammatory responses (43) but remain to be studied in canine 
CIE. ACEIs (decreasing the production of Ang II), Ang II blockade 
(antagonizing AT1R signaling), MR or PRR antagonists, and/or 
chymase inhibitors could be useful and inexpensive alternative or 
adjunct therapeutic options for chronic intestinal inflammation 
(39, 84, 85) and potentially other autoinflammatory diseases (e.g., 
autoimmune hepatitis) in dogs.

5. Discussion and conclusions

Humans and dogs are close companions and share several 
civilization diseases, including idiopathic IBD and CIE. Although 
the shared Western lifestyle is proposed as a common denominator 
in the etiology of both conditions, there appear to be some species-
specific differences in the disease characteristics, including the 
primary disease localization and distribution, resulting electrolyte 
changes, and potentially corresponding (counter-)regulatory 
mechanisms. While the current body of knowledge and research is 
more extensive for human IBD than canine CIE, a complete 
understanding of the underlying pathophysiology and possible 
mechanistic approach to therapy needs to be  improved in both 
species. Exploration of alternative treatment options for dogs with 
CIE is needed as currently available drugs—particularly 
corticosteroids—carry significant side effects and biologicals (e.g., 
monoclonal antibodies against receptors or inflammatory cytokines) 
are not currently available (and very unlikely available soon) as a 
treatment option for canine CIE (86). Understanding commonalities 
and species-specific differences can be  expected to result in the 
development of improved treatment strategies, and targeting RAAS 
might be one of these options. A thorough understanding of the role 
of RAAS pathways in the pathophysiology of canine CIE is needed 
to assess the therapeutic potential and potential side effects. Novel 
research methods, particularly canine intestinal organoids (Figure 2) 
that provide a reproducible and stable in vitro system for disease 
modeling and drug development (87–90), will be vital to further 
evaluate the effects of RAAS modifiers on epithelial ion transport, 
inflammatory responses, and intestinal barrier function 
comparatively. Organoids will allow to implement the 3R principles 
(6) and pave the way for urgently needed novel disease-specific 
treatment strategies in canine CIE and human IBD.
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