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Abstract

Most organismal phenotypes have a polygenic basis, which enables adaptive phenotypic responses on ecological time scales. 
While adaptive phenotypic changes are highly parallel in replicate populations, this does not apply to the contributing loci. In 
particular for small populations, the same phenotypic shift can be fueled by different sets of alleles at alternative loci (genetic 
redundancy). Although this phenomenon is empirically well supported, the molecular basis of the genetic redundancy is not 
yet understood. To fill this gap, we compared the heterogeneity of the evolutionary transcriptomic and metabolomic re
sponse in ten Drosophila simulans populations which evolved parallel high-level phenotypic changes in a novel temperature 
environment but used different allelic combinations of alternative loci. We showed that the metabolome evolved more par
allel than the transcriptome, confirming a hierarchical organization of molecular phenotypes. Different sets of genes re
sponded in each evolved population but led to the enrichment of similar biological functions and a consistent metabolic 
profile. Since even the metabolomic response was still highly heterogeneous across evolved populations, we propose that 
selection may operate on pathways/networks.

Significance
It is now firmly established that polygenic adaptation can be heterogeneous across evolved populations at the genomic 
level but converges for high-level phenotypes (e.g., fitness). One question towards this is how the heterogeneous gen
omic responses are transmitted to the parallel changes in high-level phenotypes. To fill this gap, we studied two inter
mediate molecular phenotypes—transcriptomics and metabolomics. We demonstrated that the consistency of 
evolutionary response across replicates increases from the transcriptomic level to the metabolomic level, and similar bio
logical functions are enriched by the heterogeneous sets of genes responding in each replicate but lead to consistent 
metabolic output.

© The Author(s) 2023. Published by Oxford University Press on behalf of Society for Molecular Biology and Evolution. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, 
distribution, and reproduction in any medium, provided the original work is properly cited.

Introduction
Rapid adaptive response mediated by many loci in ecologic
ally relevant time frames is a hallmark of polygenic adapta
tion (Sella and Barton 2019). Even large phenotypic 
changes can be achieved by minor allele frequency changes 
at many loci (Mackay 2001; Barton and Keightley 2002; 
Sella and Barton 2019). Nevertheless, the same phenotypic 

shift can be obtained by several allelic combinations at differ
ent genetic loci (Csilléry et al. 2018; Barghi et al. 2019; 
Therkildsen et al. 2019). This genetic redundancy is particu
larly important to understand the adaptive response in small 
to moderately sized populations. Because genetic drift can 
either act synergistically or antagonistically to selection dri
ven allele frequency changes, genetic redundancy leads to 
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different genomic responses in replicate populations even 
when the same selection regime is applied to genetically 
identical populations (Barghi et al. 2020).

This many-to-one relationship, where alleles at many dif
ferent genes ultimately cause a convergent high-level 
phenotypic response (typically fitness), has been of interest 
to both theoreticians and empiricists. While the theory was 
mostly focused on connecting dynamics of adaptive alleles 
and phenotypes (Höllinger et al. 2019; Hayward and Sella 
2022), empirical work took advantage of pathways and 
GO categories to characterize polygenic adaptation either 
based on inconsistent sets of genes or very subtle frequency 
shifts (e.g., Conte et al. 2012; Daub et al. 2013; Natarajan 
et al. 2016; Lai and Schlötterer 2022).

Most redundant adaptive variants do not affect fitness 
directly but rather affect traits organized in a network 
(Fagny and Austerlitz 2021) or a trait hierarchy (Barghi 
et al. (2020); figure 1). Seminal work on temperature adap
tation of Escherichia coli in a highly replicated experimental 
evolution study uncovered this hierarchy by finding differ
ent extent of parallel evolution on different hierarchical le
vels: while least parallelism was seen for SNPs, the most 

parallel response was detected for annotated biological 
pathways (Tenaillon et al. 2012). Very little information is 
available on how redundant genetic variants are propa
gated through intermediate phenotypic levels into a high- 
level parallel phenotypic response. In this study, we aim 
to explicitly focus on intermediate molecular phenotypes, 
gene expression, and metabolite abundance, to character
ize phenotypic convergence in an experimental system with 
divergent phenotypic responses that converge on high- 
level phenotypes.

We take advantage of a recently described experimental 
evolution study, where ten replicated populations starting 
from the same founders were adapting independently to 
a novel temperature regime (18 °C night/28 °C day) over 
100 generations (Barghi et al. 2019; Hsu et al. 2020; 
Jakšić et al. 2020). On the genomic level, heterogeneous re
sponses were observed across the ten evolved populations, 
but for high-level phenotypes, such as female fecundity, 
CO2 production, and neuronal signaling, a convergent re
sponse has been detected (Barghi et al. 2019; Jakšić et al. 
2020). We explored whether the concept of trait hierarch
ies can be applied to gene expression and metabolite 

FIG. 1.—Illustration of trait hierarchy and redundancy in adaptive trait evolution. Traits are hierarchically organized. Different layers indicate different trait 
hierarchies. An adaptive trait may be mediated by the metabolomic output of several pathways each with different sets of involved genes. Genes with the 
same colors are assumed functionally redundant. In a population, coding sequence variation and/or regulatory variants in the genome are the raw material for 
adaptation to any environmental shift. The hierarchical nature of trait organization provides the possibility of redundancy among genomic variants/genes and 
hence the heterogeneous evolutionary response at genomic/molecular phenotypic levels (arrows indicate all potential adaptive paths across trait hierarchy in 
the populations: black arrows denote the path taken in each population while gray ones are not taken). Nevertheless, such redundancy and heterogeneity 
would decline at higher levels such as metabolomes and organismal phenotypes.
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abundancies, by asking if gene expression evolution is more 
redundant than metabolite abundance. We confirm 
the presence of trait hierarchies by demonstrating more 
phenotypic convergence for metabolites than for gene 
expression.

Results

Heterogeneity in Gene Expression across Ten Replicated 
Evolved Populations

Reanalyzing RNA sequencing (RNA-Seq) data from previous 
studies (Hsu et al. 2020; Jakšić et al. 2020), we investigated 
gene expression changes in each of the ten Drosophila po
pulations which independently evolved for more than 100 
generations in a high-temperature (18 °C night/28 °C 
day) regime. We contrasted three samples from each 
evolved population which independently experienced the 
same common garden environment with five reconstituted 
ancestral population samples, to identify those genes, 
which evolved a gene expression change. We identified be
tween 904 and 2,423 genes showing significant evolution
ary responses in different populations (adjusted P < 0.05; 
supplementary table S1, Supplementary Material online). 
The similarity of gene expression evolution across popula
tions can be quantified by the Jaccard index of genes 
with a significant gene expression change in at least one 
evolved population. Low to intermediate Jaccard similarity 
indices of all pairwise combination among the ten evolved 
populations (0.19–0.45) reveal a heterogeneous evolution
ary response (fig. 2a and b). Since the calculation of the 
Jaccard index depends on a fixed significance cutoff to 
identify genes with an evolved expression change, we 
also evaluated the correlation in evolutionary gene expres
sion changes (Log2FC; see Materials and Methods) in pair
wise comparisons of independently evolved populations. A 
moderate Pearson’s correlation coefficient (0.55–0.83) pro
vided additional evidence of heterogeneous evolutionary 
response at the gene expression level (fig. 2c and d). Both 
measures, Jaccard Index and Pearson’s correlation coeffi
cient, were significantly smaller than the null expectation 
(considering no population-specific effect) (permutation 
test P < 0.01; supplementary fig. S1, Supplementary 
Material online), suggesting that the observed heteroge
neous evolutionary response cannot be explained by sto
chasticity only. This population-specific signature of gene 
expression change in combination with the previously de
scribed convergence for high-level phenotypes (Barghi 
et al. 2019) suggests that independently evolved popula
tions may take alternative paths of expression change to 
mediate the adaptation to the new environment. This indi
cates that redundancy is not only observed at the level of 
genomic response (Barghi et al. 2019) but also detected 
for gene expression changes.

Heterogeneity in Metabolite Abundance across Six 
Replicated Evolved Populations

Metabolites are the precursors, intermediate, or end pro
ducts in enzymatic pathways, and their abundance is the 
outcome of the activities of gene products (Fiehn 2002). 
Using samples from the same common garden experiment 
that was used for the RNA-Seq analysis, we investigated the 
metabolome of five reconstituted ancestral and six random
ly chosen evolved populations (each with three samples) 
using high-performance liquid chromatography and mass 
spectrum (HPLC-MS). In total, we identified and quantified 
940 compounds (supplementary table S2, Supplementary 
Material online). Contrasting three samples from each 
evolved population to five reconstituted ancestral popula
tion samples, we identified metabolites with significant dif
ferences in metabolite abundance in each evolved 
population. 133 to 162 metabolites per evolved population 
changed significantly in abundance after 100 generations 
of adaptation to a novel environment (adjusted P < 0.05; 
supplementary table S2, Supplementary Material online). 
The pairwise Jaccard similarity indices and Pearson’s correl
ation coefficients were not high (Jaccard similarity indices 
[0.22–0.48] and Pearson’s correlation coefficient [0.62– 
0.82]), indicating heterogeneity for metabolites (fig. 3). 
Importantly, both the Jaccard similarity index and the cor
relation coefficient were significantly smaller than the null 
expectation of no population-specific evolutionary effects 
(permutation test [P < 0.05, supplementary fig. S2, 
Supplementary Material online]), evidencing a significant 
level of heterogeneity between evolved populations at 
the metabolomic level as well. However, the heterogeneity 
of the transcriptome is considerably more pronounced than 
for the metabolome (supplementary figs. S1 and S2, 
Supplementary Material online).

Heterogeneous Gene Expression Evolution Is Translated 
into Consistent Metabolite Evolution

Metabolites are regulated by complex interactions at the le
vel of the genome and transcriptome and are considered 
closest to the organismal (high-level) phenotype (Zhou 
et al. 2020). Given the convergent evolution of high-level 
phenotypes of the focal populations (Barghi et al. 2019), 
we were interested whether the evolution of the metabo
lome is more consistent across evolved populations than 
the transcriptome. Pairwise Pearson’s correlation coeffi
cients of evolved changes in gene expression (log2FC) be
tween evolved populations were significantly higher for 
metabolome based on six evolved populations (pop4, 
pop5, pop6, pop7, pop8, and pop9) than the transcrip
tome (t-test, P < 0.001; see Materials and Methods) 
(fig. 4a). The same significant difference was observed for 
the Jaccard index, which is based on genes with significant 
changes in the evolved populations (supplementary fig. 
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S3a, Supplementary Material online). To rule out that a lar
ger number of observations for gene expression affected 
the results, we randomly sampled the same number of ex
pressed genes as the number of tested metabolites for cal
culating the Jaccard Index and Pearson’s correlation 
coefficient (see Materials and Methods). The results re
mained unaffected by the downsampling process 
(Supplementary fig. 4a and b).

To characterize the pathways that are affected both 
transcriptionally and metabolically during thermal adapta
tion, we performed a joint pathway analysis which inte
grates the information from both gene expression and 

metabolites (see Materials and Methods). We identified be
tween 49 and 83 significantly enriched KEGG pathways in 
each evolved population, 29 of them were shared across all 
six evolved populations for which both metabolomics and 
transcriptomic data were available (table 1 and 
supplementary fig. S5, Supplementary Material online). 
These enriched pathways are related to the sugar, lipid me
tabolism, synthesis of neural transmitter precursors, and 
energy metabolism (table 1 and supplementary table S3, 
Supplementary Material online).

To demonstrate that the heterogeneous response in 
gene expression evolution can result in similar changes in 

FIG. 2.—Parallelism of adaptive gene expression changes across ten evolved populations. (a) Jaccard similarity indices of pairwise comparisons among 
differentially expressed genes (orange; upper triangle) and Pearson’s correlation coefficients of pairwise comparisons among all genes (blue; lower triangle) 
in each population. (b) Distribution of correlation coefficients for 45 pairwise comparisons between populations from a (lower triangle). (c) Distribution of 
Jaccard Indices in 45 comparisons between ten evolved populations from a (upper triangle).
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metabolite abundance in the potentially selected pathways, 
we focused our subsequent analysis on pathways that are 
consistently detected across all six populations and have 
at least five annotated metabolites. We compared the cor
relation of evolved changes in gene expression and changes 
metabolite abundance that are annotated in these path
ways. Consistent with the full data set, we found that 
both correlation coefficients and Jaccard Indices were sig
nificantly lower for gene expression than for metabolites 
(t-test, P < 0.05 for correlation coefficient (fig. 4b); t-test, P  
< 3.26e−06 for the Jaccard Index (Supplementary fig. 3b)). 
This observation suggests that the heterogeneity at the 

gene expression level is transmitted to similar metabolomic 
profiles through shared biological functions or features 
across evolved populations.

Discussion
This study benefitted from a common garden experiment, 
which provided sufficient samples to enable the compari
son of evolutionary response of replicated populations for 
the transcriptome and metabolome from the same experi
ment. In the same common garden experiment of this 
population, a convergent evolutionary response has been 

FIG. 3.—Parallelism of adaptive metabolite abundance change across six evolved populations. (a) Jaccard similarity indices of pairwise comparisons be
tween the DE metabolites identified in each population (orange; upper triangle) and Pearson’s correlation coefficients of pairwise comparisons among all 
metabolites (blue; lower triangle). (b) Distribution of correlation coefficient of 15 comparisons among populations from a (lower triangle). (c) Distribution 
of Jaccard indices of 15 pairwise DE metabolite comparison between six populations from a (upper triangle).
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seen for high-level phenotypes (e.g., fecundity, metabolic 
rate, and neuronal signaling (Barghi et al. 2019; Hsu et al. 
2020; Jakšić et al. 2020)). To understand how heteroge
neous genomic responses converge to similar changes of 
organismal phenotypes, we measured the evolutionary het
erogeneity at two intermediate molecular levels—transcrip
tome and metabolome. One interesting observation in this 
study was the high level of heterogeneity among the 
evolved populations at both levels. This implicates the pres
ence of redundancy and alternative molecular paths to 
achieve organismal adaptation.

We expected more consistent signals across evolved po
pulations for the metabolome than for the transcriptome, 
reasoning different hierarchy levels for these two classes 
of molecular phenotypes (fig. 1). This expectation is consist
ent with the results of Zhou et al. (2020). The authors built a 
network incorporating polymorphic markers, transcrip
tome, and metabolome that are associated with the vari
ation in higher organismal traits. This integrated network 
suggested that metabolites are regulated by complex inter
actions of genomic variation and transcriptomic differ
ences. Consistent with these expectations, we found that 
the evolutionary response was more parallel for the meta
bolome than for the transcriptome not only on a genome- 
wide scale (fig. 4a and Supplementary fig. 3a) but also for 
putative adaptive pathways that are consistently enriched 
in six evolved populations (fig. 4b and Supplementary fig. 
3b). Heterogeneous sets of genes of the same pathway 
may respond to selection in different evolved populations, 
but a similar metabolic output is reached. For example, in 
the purine metabolism, some of the enzyme-coding genes 

with heterogeneous expression changes across evolved po
pulations are connected to metabolites that show more 
parallel changes among populations (e.g., GMP, guano
sine, deoxyguanosine, and their connected enzyme-coding 
genes) (supplementary fig. S6, Supplementary Material on
line). This higher level of convergence for the metabolome 
than transcriptome may result from the hierarchical organ
ization of the two phenotype classes as previously proposed 
by Zhou et al. (2020).

Although consistent with a hierarchical organization of 
traits, we caution that different levels of convergence be
tween the metabolome and transcriptome may have other 
causes. First, metabolomics and transcriptomics may have 
different levels of measurement errors. Larger measure
ment errors can lower the correlation of the evolutionary 
response across populations. We observed significantly lar
ger measurement errors for metabolite abundance 
(supplementary fig. S7, Supplementary Material online), 
suggesting that we underestimated the convergence for 
the metabolome. Because we found more convergence at 
the metabolomic level than for the transcriptome, the dif
ferent levels of technical noise for the two methods are con
servative and do not affect our conclusion. Second, the 
identification of metabolites and transcripts differs. While 
we used untargeted metabolomics, the identification of 
metabolites is limited by the available reference metabo
lites. Transcriptomic analysis, on the other hand, relies on 
the quality of the annotation. Furthermore, the annotation 
of all reaction steps in various of biological pathways with 
involved genes and metabolites is even more challenging. 
Third, the relationship between genes and metabolites in 

FIG. 4.—Similarity of the evolutionary response in ten evolved populations for gene expression and metabolite abundance. (a) Pairwise log2FC correlation 
coefficient between six populations (pop4, pop5, pop6, pop7, pop8, and pop9) for all expressed genes (n = 10,780) and metabolites (n = 940). A significantly 
higher similarity is observed at the metabolite level (t-test, P < 0.001). (b) Pairwise log2FC correlation coefficients between six populations are shown for the 
genes (n = 239) and metabolites (n = 48) from pathways that are enriched in all six evolved populations. Metabolites were more similar between populations 
than gene expression (t-test, P < 0.05).
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a pathway is most likely much more complex than the linear 
relationship assumed in this study. Rather, complex net
work structures with feedback loops, substrates competi
tion, etc. are biologically more realistic (Sontag et al. 
2004; Lempp et al. 2019). Lastly, we studied pools of indi
viduals, which average across heterogeneities among indi
viduals and tissues. It is possible that accounting for these 

heterogeneities may uncover different trends than those 
seen in this study, but the scale of such experiments is 
out of scope for this study. We anticipate this study to 
spearhead future investigations when more mature and 
cost-effective techniques come into place.

Here, we present not only a systematic study on the mo
lecular mechanisms underlying phenotypic adaptation, but 
we also identified the pathways that evolved in response to 
the hot environment. Many of them have been associated 
with important roles in temperature adaptation. For ex
ample, the regulation of purine metabolism has been re
ported to reduce the heat-induced oxidative stress (Tian 
et al. 2022) and is involved in the adaptation to high tem
perature in several species (Paget et al. 2014; Chen et al. 
2021; Jahan et al. 2022). The pentose phosphate pathway 
contributes to thermal adaptation in Thermus filiformis: 
under heat conditions, glucose was predominantly meta
bolized via the pentose phosphate pathway instead of the 
glycolysis pathway (Mandelli et al. 2017). The lysosome 
was also found to be involved in adaptation and tolerance 
to temperature stress in various organisms (Camus et al. 
2000; Wang et al. 2018). Furthermore, several of the 
enriched pathways can be connected to previously identi
fied selected traits in this experimental evolution study 
using a polymorphic D. simulans population from Florida. 
Tyrosine metabolism and phenylalanine metabolism are 
the pathways related to the synthesis of dopamine, one 
important neural transmitter. Evolution in dopaminergic 
neuronal activities is one of the evolved phenotypes 
documented for the populations (Jakšić et al. 2020). 
Neuroactive ligand–receptor interaction, a pathway related 
to signaling molecules and interaction, is also identified in 

Table 1 
Significantly Enriched Pathways in All Six Evolved Populations

KEGG 
ID

KEGG pathway FDR 
valuea

Pathway category

00020 Citrate cycle (TCA cycle) 0.031 Carbohydrate 
metabolism00051 Fructose and mannose 

metabolism
0.033

00052 Galactose metabolism 0.033
00500 Starch and sucrose 

metabolism
0.043

00520 Amino sugar and 
nucleotide sugar 

metabolism

0.024

00190 Oxidative phosphorylation 0.021 Energy metabolism
00561 Glycerophospholipid 

metabolism
0.021 Lipid metabolism

00600 Sphingolipid metabolism 0.021
00230 Purine metabolism 0.031 Nucleotide 

metabolism00240 Pyrimidine metabolism 0.031
00270 Cysteine and methionine 

metabolism
0.021 Amino acid 

metabolism
00290 Valine, leucine, and 

isoleucine biosynthesis
0.021

00330 Arginine and proline 
metabolism

0.043

00350 Tyrosine metabolism 0.021
00360 Phenylalanine metabolism 0.021
00400 Phenylalanine, tyrosine, 

and tryptophan 
biosynthesis

0.029

00450 Selenocompound 
metabolism

0.021

00130 Ubiquinone and other 
terpenoid-quinone 

biosynthesis

0.024 Metabolism of 
cofactors and 

vitamins
00740 Riboflavin metabolism 0.024
00790 Folate biosynthesis 0.021
00903 Limonene and pinene 

degradation
0.021 Metabolism of 

terpenoids and 
polyketides

00980 Drug metabolism— 
cytochrome 450

0.021 Xenobiotics 
biodegradation and 

metabolism00982 Metabolism of xenobiotics 
by cytochrome P450

0.024

04142 Lysosome 0.021 Transport and 
catabolism04145 Phagosome 0.021

04080 Neuroactive 
ligand-receptor interaction

0.024 Signaling molecules 
and interaction

aThe mean FDR values among six populations are reported.

Table 2 
Metabolites That Are Significantly Evolved in at Least 3 Evolved 
Populations

Metabolite KEGG 
ID

Belonging pathway Xevo − Xanc
a

GDP-mannose C00096 Amino sugar and 
nucleotide sugar 
metabolism; fructose 
and mannose 
metabolism

−0.278

Deoxyguanosine C00330 Purine metabolism 0.235
Orotate C00295 Pyrimidine metabolism 0.211
Uridine C00299 Pyrimidine metabolism −0.326
D-Glucosamine C00329 Amino sugar and 

nucleotide sugar 
metabolism

−0.297

N-Acetylputrescine C02714 Arginine and proline 
metabolism

−0.300

Guanosine C00387 Purine metabolism 0.222
FAICAR C04734 Purine metabolism 0.316

aXevo − Xanc indicates the difference in abundance between the average of 
evolved samples (n = 18) and ancestral samples (n = 5).
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all six populations. Furthermore, several evolved metabo
lites within the enriched pathways may be involved in tem
perature adaptation (table 2). For example, guanosine 
diphosphate (GDP)-mannose (consistently detected in 
all six evolved populations) is part of the amino sugar and 
nucleotide sugar metabolism has been reported to be 
involved in the acclimatization to heat-induced abiotic 
stress in several species (Bizri et al. 1984; Hoeberichts 
et al. 2008) as well as thermal adaptation (Gu and Hilser 
2009). Deoxyguanosine, which is significantly changing in 
all six evolved populations, participates in oxidative 
damage-related processes (Greenberg 2004). Further func
tional validation experiments on these metabolites may 
help us to better understand the molecular mechanism 
underlying temperature adaptation.

One important challenge for understanding adapta
tion is the identification and characterization of an adap
tive trait. Genetic redundancy in combination with trait 
hierarchies provides the potential to characterize selected 
phenotypes: heterogeneous responses across evolved 
populations indicate that these phenotypes cannot re
present the direct target of selection, for which a conver
gent response across evolved populations is expected 
(Barghi et al. 2020). Thus, in theory, the phenotype at 
the lowest hierarchical level which shows convergent 
adaptive response is a good candidate for the selected 
traits. Higher trait levels integrate too many subpheno
types to identify the actual selection target. A good ex
ample is fitness, which will converge, but is determined 
by so many traits that a convergent increase in fitness 
does not allow many conclusions about the selected phe
notype(s). Here, our results show to what extent molecu
lar phenotypes allow for a better characterization of the 
selected trait. Transcriptomic and metabolomic data of
fer the advantage of high-throughput analyses, but we 
also demonstrated the limitations of theses phenotypes 
to identify the selected phenotypes. Our analysis of 
some putatively selected pathways misses many metabo
lites. This may reflect the unbiased nontargeted metabo
lomics approach and the limited reference metabolite 
annotation. Targeted metabolomic profiling for all meta
bolites of a pathway, if possible, could be complemen
tary. More refined expression and metabolomics 
profiling with single-cell analysis may provide reliable mo
lecular networks and help characterizing a more resolved 
picture of the responses to selection. Nevertheless, it is 
not yet clear whether selection targets can be broken 
down to individual molecular entities, such as a metabol
ite. One approach to address this question empirically is 
to perform experimental evolution with a well-defined 
selection target and explore the ability to identify it 
from molecular phenotypes. Furthermore, crosses be
tween evolved populations may also be a promising ap
proach for future work.

Materials and Methods

Experimental Evolution and Common Garden 
Experiment

The experimental evolution and common garden experi
ments are described in Barghi et al. (2019); Hsu et al. 
(2020); Jakšić et al. (2020). Briefly, ten outbred populations 
seeded from 202 isofemale lines were exposed to a labora
tory experiment at 28/18 °C with 12 hr light/12 hr dark 
photoperiod for more than 100 generations. Each evolving 
population consisted of 1,000 to 1,250 adults at each gen
eration. The collection of samples from the evolution ex
periment for RNA-Seq and metabolite profiles was 
preceded by two generations of common garden. The com
mon garden experiment (CGE) was performed at gener
ation 103 in the hot environment (Barghi et al. 2019; Hsu 
et al. 2020; Jakšić et al. 2020). In brief, an ancestral popu
lation was reconstituted by pooling five mated females 
from 184 founder iso-female lines. No significant allele fre
quency differences are expected between the reconstituted 
ancestral populations and the original ancestral popula
tions initiating the experiment (Nouhaud et al. 2016). 
Furthermore, we do not anticipate that deleterious alleles 
acquired during the maintenance of the iso-female lines 
had a major impact on the phenotypic variance in the re
constituted ancestral population. The reason is that novel 
deleterious mutations occurring during the maintenance 
of the iso-female lines are present in a single iso-female 
line only. Given the large number of iso-female lines 
(184), such deleterious alleles occur in a low frequency in 
the reconstituted population with a small influence on 
the phenotypic variance (Walsh and Lynch 2018). 
Furthermore, most of these deleterious alleles are present 
in heterozygous individuals and masked because deleteri
ous alleles tend to be recessive (Charlesworth and 
Charlesworth 2010).

Five replicates of the reconstituted ancestral population 
and ten independently evolved populations at generation 
103 were reared for two generations with egg-density con
trol (400 eggs/bottle) at the same temperature regime as in 
the evolution experiment. Each independently evolved 
population has three biological replicates of 50 5-day-old 
adult males, which were kept separately for the two gen
erations of common garden. Five biological replicates 
from the ancestral populations and three biological repli
cates from all evolved populations (pop1, pop2, …, 
pop10) were subjected to RNA Sequencing. For a more de
tailed description of the RNA extraction and library prepar
ation, see Hsu et al. (2020); Jakšić et al. (2020).

Metabolomic Profiling

For an unbiased metabolomic profiling, we did not focus on 
an a priori determined set of metabolites but rather used an 
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untargeted approach. We used samples from the same 
CGE (Barghi et al. 2019; Hsu et al. 2020; Jakšić et al. 
2020), to quantify metabolites from the reconstituted an
cestral population with five biological replicates and six ran
domly picked, independently evolved populations (pop4, 
pop5, pop6, pop7, pop8, and pop9) with three biological 
replicates each. Samples of 50 male flies from each bio
logical replicate were used for metabolite extraction. 
Metabolite extraction was performed in MeOH:ACN:H20 
(2:2:1 v/v) using a bead mill, followed by one freezing/ 
thawing cycle and a sonication step. Homogenized samples 
were then put at −20 °C for 1 h for the proteins to precipi
tate. After protein removal, samples were dried in a speed
vac and reconstituted in ACN:H2O 1:1 (v/v). All samples 
were stored at −80 °C until measurement. Metabolomic 
measurements were performed by Vienna Bio-Center 
(VBC). Samples were diluted 1:1 with 80% ACN, assigned 
randomly into the autosampler, and measured randomly in 
full MS mode on a ZIC-pHILIC. A blank containing the dilu
tion solvent and a pooled FlyQC (5 µl of each sample) were 
measured before and after 6 samples and used for back
ground correction and normalization, respectively. QC 
samples were also measured in discovery and confirmation 
mode to obtain additional MS2 spectra for identification. 
Raw data were extracted and passed through quality con
trol processes. Peak identification was performed using 
Compound Disocoverer 3.1 based on the annotation in 
mzCloud database.

RNA-Seq Data Analysis

RNA-Seq data were retrieved from European Nucleotide 
Archive (ENA) with the study accession number 
PREJEB35504 and PRJEB35506 and reanalyzed following 
the standard analytical pipeline (Hsu et al. 2020; Jakšić 
et al. 2020). Only genes with at least 0.1 normalized counts 
per million bases (CPM) across all samples were considered 
expressed for further analysis. Because we were interested 
in the evolutionary response of each independent evolution 
population, we therefore contrasted the three biological 
samples from each evolved population to the five biological 
samples from the ancestral population. The differential ex
pression (DE) analysis was done separately in each of the 
ten evolved populations. We utilized the generalized linear 
modeling function implemented in edgeR (Robinson et al. 
2010) to fit the expression to the model (y = evo + ε) in 
which y stands for the gene expression, evo is the effect 
of evolution, and ε is the random error. A likelihood 
ratio test was performed to test the effect of evolution. 
P value adjustment was performed using the Benjamini– 
Hochberg false discovery rate (FDR) correction (Benjamini 
and Hochberg 1995). After identifying DE genes (adjusted 
P < 0.05) in each population, we calculated Jaccard similar
ity indices (Real and Vargas 1996) of the DE gene sets for all 

pairwise combinations of the ten evolved populations (45 
combinations in total). Jaccard index was calculated as fol
lows:

JI =
n (A ∩ B)
n (A ∪ B)

, 

where A and B referred to the DE gene sets of any two 
evolved populations. The Jaccard index ranges from 0 to 1. 
Higher values indicated higher consistency between any pair- 
wise combination of evolved populations.

For a second measure for similarity between evolved po
pulations based on the quantitative estimates for gene ex
pression in our analysis, we calculated Pearson’s correlation 
coefficient for the expression changes (log2FC) of all genes 
(n = 10,780) for all pairwise combinations of evolved popu
lations. The log2FC was calculated as follows:

log2FC = log2
yevo

yanc

􏼒 􏼓

, 

where yevo is the mean expression value (CPM) per gene 
across three evolved samples and yanc is the overall mean 
expression value (CPM) per gene across five ancestral 
samples.

Finally, we applied a permutation test to investigate 
whether the observed Jaccard Index/Pearson’s correlation 
coefficient detected in the evolved populations could be 
caused by random processes (i.e., experimental noise or 
the sampling process) (Anderson 2001). We randomly per
muted the expression values per gene across all 30 biologic
al samples from the evolved populations. With the 
permuted expression values, we compared them to the 
five ancestral samples to reidentify the DE genes/recalculate 
the log2FC for all genes and calculated the pairwise Jaccard 
Index/Pearson’s correlation coefficient in each evolved 
population under null expectation considering no 
population-specific effects. The procedure was repeated 
100 times to generate a null distribution considering no 
population-specific effects. Our empirical observations 
were then tested against the null distribution. A smaller va
lue indicates higher heterogeneity (i.e., more deviation 
from random expectation). The P value was calculated as 
the proportion of sampled permutations where the mean 
Jaccard index/Pearson’s correlation coefficient was smaller 
than the observed mean. We considered P < 0.05 as an in
dication of a heterogeneous evolutionary response across 
evolved populations.

Metabolomic Data Analysis

The normalized area for each detected compound in each 
sample was log transformed for subsequent analysis. In to
tal, 940 metabolites were detected in all samples (log- 
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transformed normalized area > 10). For the identification 
of differentially expressed metabolites during adaptation 
in each evolved population, we applied a permutation 
test to compare the abundance of each metabolite for 
five reconstituted ancestral samples to three biological sam
ples for a given evolved population. For each metabolite, 
we randomly reassigned eight observations into ancestral 
(n = 5) and evolved (n = 3) groups and the difference in 
mean between two groups were calculated. The procedure 
was repeated for 100 times to generate a null distribution. 
Observation deviating on both sides of the null distribution 
indicate significant differences in abundance between the 
ancestral and evolved samples. Hence, the P value for 
each metabolite of the test is calculated as the proportion 
of sampled permutations where the absolute difference 
was greater than the observed absolute difference. P value 
adjustment was performed using Benjamini–Hochberg FDR 
correction. Metabolites with adjusted P < 0.05 are consid
ered significant. The procedure was done separately in 
each evolved population.

Like the RNA-Seq analysis (see above), we calculated the 
Jaccard index and Pearson’s correlation coefficient for all 
pairwise combinations of the six evolution populations 
(15 combinations in total). For Jaccard index calculations, 
we used the significantly evolved metabolites in each evolved 
population while for Pearson’s correlation coefficients, 
we used the evolutionary abundance changes (log2FC) of 
all metabolites (n = 940) in each evolution populations.

In correspondence to the permutation procedure 
described for the RNA-Seq data, we also applied the 
same approach to the metabolome. Here, we permuted 
the metabolite abundances across all 18 biological samples 
belonging to the six evolved populations.

Comparison of the Consistency between Gene 
Expression and Metabolite

The distribution of Jaccard indices/Pearson’s correlation 
coefficients for changes in gene expression and metabolite 
abundance was compared to understand the consistency 
between these two molecular phenotypes in their evolution 
response using t-test. We restricted the comparison of 
those six evolved populations (pop4, pop5, pop6, pop7, 
pop8, and pop9) for which transcriptomic and metabolo
mic data were available. To account for the different num
ber of total genes/metabolites, we downsampled the 
number of expressed genes (n = 10,780) to the number 
of total metabolites (n = 940) and calculated the pairwise 
correlation coefficient in log2FC based on 940 genes. This 
was repeated 100 times, and the mean distribution was 
compared to the mean observation of metabolites. For 
the comparison of Jaccard indices, we downsampled the 
number of significant DE genes into the number of signifi
cant metabolites in each evolved population and calculated 

the Jaccard indices based on the downsampled gene set. 
This procedure was repeated for 100 times, and the 
mean distribution was compared to the mean observation 
of metabolites.

Joint Pathway Analysis

We performed joint KEGG pathway analysis to integrate 
pathway-level analysis of transcriptomics and metabolomics 
data. For each evolution population, we performed quantita
tive enrichment analysis on transcriptomic and metabolomic 
data using R packages “globaltest” and “metaboanalystR” 
(Chong and Xia 2018; Goeman et al. 2022). Briefly, quanti
tative enrichment analysis is based on the globaltest algo
rithm (Chong and Xia 2018; Goeman et al. 2022). A list of 
log2FC across all genes/metabolite is provided and does 
not require a list of significantly changed genes/metabolites. 
The raw P values were integrated with Fisher’s method fish
er.method() (R package “metaseqR”) (Fisher 1925; Moreau 
et al. 2003). Benjamini–Hochberg FDR correction was per
formed on the integrated P value. Pathways with adjusted 
P < 0.05 are considered significant. Pathview (Luo et al. 
2017) was used for the pathway visualization of both gene 
expression and metabolomic data.

Supplementary material
Supplementary data are available at Genome Biology and 
Evolution online (http://www.gbe.oxfordjournals.org/).
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