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Abstract

Most organismal phenotypes have a polygenic basis, which enables adaptive phenotypic responses on ecological time scales.
While adaptive phenotypic changes are highly parallel in replicate populations, this does not apply to the contributing loci. In
particular for small populations, the same phenotypic shift can be fueled by different sets of alleles at alternative loci (genetic
redundancy). Although this phenomenon is empirically well supported, the molecular basis of the genetic redundancy is not
yet understood. To fill this gap, we compared the heterogeneity of the evolutionary transcriptomic and metabolomic re-
sponse in ten Drosophila simulans populations which evolved parallel high-level phenotypic changes in a novel temperature
environment but used different allelic combinations of alternative loci. We showed that the metabolome evolved more par-
allel than the transcriptome, confirming a hierarchical organization of molecular phenotypes. Different sets of genes re-
sponded in each evolved population but led to the enrichment of similar biological functions and a consistent metabolic
profile. Since even the metabolomic response was still highly heterogeneous across evolved populations, we propose that
selection may operate on pathways/networks.

Significance

It is now firmly established that polygenic adaptation can be heterogeneous across evolved populations at the genomic
level but converges for high-level phenotypes (e.g., fitness). One question towards this is how the heterogeneous gen-
omic responses are transmitted to the parallel changes in high-level phenotypes. To fill this gap, we studied two inter-
mediate molecular phenotypes—transcriptomics and metabolomics. We demonstrated that the consistency of
evolutionary response across replicates increases from the transcriptomic level to the metabolomic level, and similar bio-
logical functions are enriched by the heterogeneous sets of genes responding in each replicate but lead to consistent
metabolic output.

Introduction shift can be obtained by several allelic combinations at differ-
ent genetic loci (Csilléry et al. 2018; Barghi et al. 2019;
Therkildsen et al. 2019). This genetic redundancy is particu-

larly important to understand the adaptive response in small

Rapid adaptive response mediated by many loci in ecologic-
ally relevant time frames is a hallmark of polygenic adapta-
tion (Sella and Barton 2019). Even large phenotypic

changes can be achieved by minor allele frequency changes
at many loci (Mackay 2001; Barton and Keightley 2002;
Sella and Barton 2019). Nevertheless, the same phenotypic

to moderately sized populations. Because genetic drift can
either act synergistically or antagonistically to selection dri-
ven allele frequency changes, genetic redundancy leads to
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Fic. 1.—lllustration of trait hierarchy and redundancy in adaptive trait evolution. Traits are hierarchically organized. Different layers indicate different trait
hierarchies. An adaptive trait may be mediated by the metabolomic output of several pathways each with different sets of involved genes. Genes with the
same colors are assumed functionally redundant. In a population, coding sequence variation and/or regulatory variants in the genome are the raw material for
adaptation to any environmental shift. The hierarchical nature of trait organization provides the possibility of redundancy among genomic variants/genes and
hence the heterogeneous evolutionary response at genomic/molecular phenotypic levels (arrows indicate all potential adaptive paths across trait hierarchy in
the populations: black arrows denote the path taken in each population while gray ones are not taken). Nevertheless, such redundancy and heterogeneity
would decline at higher levels such as metabolomes and organismal phenotypes.

different genomic responses in replicate populations even
when the same selection regime is applied to genetically
identical populations (Barghi et al. 2020).

This many-to-one relationship, where alleles at many dif-
ferent genes ultimately cause a convergent high-level
phenotypic response (typically fitness), has been of interest
to both theoreticians and empiricists. While the theory was
mostly focused on connecting dynamics of adaptive alleles
and phenotypes (Hollinger et al. 2019; Hayward and Sella
2022), empirical work took advantage of pathways and
GO categories to characterize polygenic adaptation either
based on inconsistent sets of genes or very subtle frequency
shifts (e.g., Conte et al. 2012; Daub et al. 2013; Natarajan
et al. 2016; Lai and Schlotterer 2022).

Most redundant adaptive variants do not affect fitness
directly but rather affect traits organized in a network
(Fagny and Austerlitz 2021) or a trait hierarchy (Barghi
et al. (2020); figure 1). Seminal work on temperature adap-
tation of Escherichia coliin a highly replicated experimental
evolution study uncovered this hierarchy by finding differ-
ent extent of parallel evolution on different hierarchical le-
vels: while least parallelism was seen for SNPs, the most

parallel response was detected for annotated biological
pathways (Tenaillon et al. 2012). Very little information is
available on how redundant genetic variants are propa-
gated through intermediate phenotypic levels into a high-
level parallel phenotypic response. In this study, we aim
to explicitly focus on intermediate molecular phenotypes,
gene expression, and metabolite abundance, to character-
ize phenotypic convergence in an experimental system with
divergent phenotypic responses that converge on high-
level phenotypes.

We take advantage of a recently described experimental
evolution study, where ten replicated populations starting
from the same founders were adapting independently to
a novel temperature regime (18 °C night/28 °C day) over
100 generations (Barghi et al. 2019; Hsu et al. 2020;
Jaksic et al. 2020). On the genomic level, heterogeneous re-
sponses were observed across the ten evolved populations,
but for high-level phenotypes, such as female fecundity,
CO; production, and neuronal signaling, a convergent re-
sponse has been detected (Barghi et al. 2019; Jaksic et al.
2020). We explored whether the concept of trait hierarch-
ies can be applied to gene expression and metabolite
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abundancies, by asking if gene expression evolution is more
redundant than metabolite abundance. We confirm
the presence of trait hierarchies by demonstrating more
phenotypic convergence for metabolites than for gene
expression.

Results

Heterogeneity in Gene Expression across Ten Replicated
Evolved Populations

Reanalyzing RNA sequencing (RNA-Seq) data from previous
studies (Hsu et al. 2020; Jaksi¢ et al. 2020), we investigated
gene expression changes in each of the ten Drosophila po-
pulations which independently evolved for more than 100
generations in a high-temperature (18 °C night/28 °C
day) regime. We contrasted three samples from each
evolved population which independently experienced the
same common garden environment with five reconstituted
ancestral population samples, to identify those genes,
which evolved a gene expression change. We identified be-
tween 904 and 2,423 genes showing significant evolution-
ary responses in different populations (adjusted P < 0.05;
supplementary table S1, Supplementary Material online).
The similarity of gene expression evolution across popula-
tions can be quantified by the Jaccard index of genes
with a significant gene expression change in at least one
evolved population. Low to intermediate Jaccard similarity
indices of all pairwise combination among the ten evolved
populations (0.19-0.45) reveal a heterogeneous evolution-
ary response (fig. 2a and b). Since the calculation of the
Jaccard index depends on a fixed significance cutoff to
identify genes with an evolved expression change, we
also evaluated the correlation in evolutionary gene expres-
sion changes (Log,FC; see Materials and Methods) in pair-
wise comparisons of independently evolved populations. A
moderate Pearson’s correlation coefficient (0.55-0.83) pro-
vided additional evidence of heterogeneous evolutionary
response at the gene expression level (fig. 2c and d). Both
measures, Jaccard Index and Pearson’s correlation coeffi-
cient, were significantly smaller than the null expectation
(considering no population-specific effect) (permutation
test P<0.01; supplementary fig. S1, Supplementary
Material online), suggesting that the observed heteroge-
neous evolutionary response cannot be explained by sto-
chasticity only. This population-specific signature of gene
expression change in combination with the previously de-
scribed convergence for high-level phenotypes (Barghi
et al. 2019) suggests that independently evolved popula-
tions may take alternative paths of expression change to
mediate the adaptation to the new environment. This indi-
cates that redundancy is not only observed at the level of
genomic response (Barghi et al. 2019) but also detected
for gene expression changes.

Heterogeneity in Metabolite Abundance across Six
Replicated Evolved Populations

Metabolites are the precursors, intermediate, or end pro-
ducts in enzymatic pathways, and their abundance is the
outcome of the activities of gene products (Fiehn 2002).
Using samples from the same common garden experiment
that was used for the RNA-Seq analysis, we investigated the
metabolome of five reconstituted ancestral and six random-
ly chosen evolved populations (each with three samples)
using high-performance liquid chromatography and mass
spectrum (HPLC-MS). In total, we identified and quantified
940 compounds (supplementary table S2, Supplementary
Material online). Contrasting three samples from each
evolved population to five reconstituted ancestral popula-
tion samples, we identified metabolites with significant dif-
ferences in metabolite abundance in each evolved
population. 133 to 162 metabolites per evolved population
changed significantly in abundance after 100 generations
of adaptation to a novel environment (adjusted P < 0.05;
supplementary table S2, Supplementary Material online).
The pairwise Jaccard similarity indices and Pearson's correl-
ation coefficients were not high (Jaccard similarity indices
[0.22-0.48] and Pearson’s correlation coefficient [0.62—
0.82]), indicating heterogeneity for metabolites (fig. 3).
Importantly, both the Jaccard similarity index and the cor-
relation coefficient were significantly smaller than the null
expectation of no population-specific evolutionary effects
(permutation test [P<0.05, supplementary fig. S2,
Supplementary Material online]), evidencing a significant
level of heterogeneity between evolved populations at
the metabolomic level as well. However, the heterogeneity
of the transcriptome is considerably more pronounced than
for the metabolome (supplementary figs. S1 and S2,
Supplementary Material online).

Heterogeneous Gene Expression Evolution Is Translated
into Consistent Metabolite Evolution

Metabolites are regulated by complex interactions at the le-
vel of the genome and transcriptome and are considered
closest to the organismal (high-level) phenotype (Zhou
et al. 2020). Given the convergent evolution of high-level
phenotypes of the focal populations (Barghi et al. 2019),
we were interested whether the evolution of the metabo-
lome is more consistent across evolved populations than
the transcriptome. Pairwise Pearson’s correlation coeffi-
cients of evolved changes in gene expression (log,FC) be-
tween evolved populations were significantly higher for
metabolome based on six evolved populations (pop4,
pop5, pop6, pop7, pop8, and pop9) than the transcrip-
tome (t-test, P<0.001; see Materials and Methods)
(fig. 4a). The same significant difference was observed for
the Jaccard index, which is based on genes with significant
changes in the evolved populations (supplementary fig.
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Fic. 2.—Parallelism of adaptive gene expression changes across ten evolved populations. (a) Jaccard similarity indices of pairwise comparisons among
differentially expressed genes (orange; upper triangle) and Pearson'’s correlation coefficients of pairwise comparisons among all genes (blue; lower triangle)
in each population. (b) Distribution of correlation coefficients for 45 pairwise comparisons between populations from a (lower triangle). (c) Distribution of
Jaccard Indices in 45 comparisons between ten evolved populations from a (upper triangle).

S3a, Supplementary Material online). To rule out that a lar-
ger number of observations for gene expression affected
the results, we randomly sampled the same number of ex-
pressed genes as the number of tested metabolites for cal-
culating the Jaccard Index and Pearson’s correlation
coefficient (see Materials and Methods). The results re-
mained unaffected by the downsampling process
(Supplementary fig. 4a and b).

To characterize the pathways that are affected both
transcriptionally and metabolically during thermal adapta-
tion, we performed a joint pathway analysis which inte-
grates the information from both gene expression and

metabolites (see Materials and Methods). We identified be-
tween 49 and 83 significantly enriched KEGG pathways in
each evolved population, 29 of them were shared across all
six evolved populations for which both metabolomics and
transcriptomic  data were available (table 1 and
supplementary fig. S5, Supplementary Material online).
These enriched pathways are related to the sugar, lipid me-
tabolism, synthesis of neural transmitter precursors, and
energy metabolism (table 1 and supplementary table S3,
Supplementary Material online).

To demonstrate that the heterogeneous response in
gene expression evolution can result in similar changes in
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Fic. 3.—Parallelism of adaptive metabolite abundance change across six evolved populations. (a) Jaccard similarity indices of pairwise comparisons be-
tween the DE metabolites identified in each population (orange; upper triangle) and Pearson’s correlation coefficients of pairwise comparisons among all
metabolites (blue; lower triangle). (b) Distribution of correlation coefficient of 15 comparisons among populations from a (lower triangle). () Distribution
of Jaccard indices of 15 pairwise DE metabolite comparison between six populations from a (upper triangle).

metabolite abundance in the potentially selected pathways,
we focused our subsequent analysis on pathways that are
consistently detected across all six populations and have
at least five annotated metabolites. We compared the cor-
relation of evolved changes in gene expression and changes
metabolite abundance that are annotated in these path-
ways. Consistent with the full data set, we found that
both correlation coefficients and Jaccard Indices were sig-
nificantly lower for gene expression than for metabolites
(t-test, P< 0.05 for correlation coefficient (fig. 4b); t-test, P
<3.26e7% for the Jaccard Index (Supplementary fig. 3b)).
This observation suggests that the heterogeneity at the

gene expression level is transmitted to similar metabolomic
profiles through shared biological functions or features
across evolved populations.

Discussion

This study benefitted from a common garden experiment,
which provided sufficient samples to enable the compari-
son of evolutionary response of replicated populations for
the transcriptome and metabolome from the same experi-
ment. In the same common garden experiment of this
population, a convergent evolutionary response has been
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seen for high-level phenotypes (e.g., fecundity, metabolic
rate, and neuronal signaling (Barghi et al. 2019; Hsu et al.
2020; Jaksic et al. 2020)). To understand how heteroge-
neous genomic responses converge to similar changes of
organismal phenotypes, we measured the evolutionary het-
erogeneity at two intermediate molecular levels—transcrip-
tome and metabolome. One interesting observation in this
study was the high level of heterogeneity among the
evolved populations at both levels. This implicates the pres-
ence of redundancy and alternative molecular paths to
achieve organismal adaptation.

We expected more consistent signals across evolved po-
pulations for the metabolome than for the transcriptome,
reasoning different hierarchy levels for these two classes
of molecular phenotypes (fig. 1). This expectation is consist-
ent with the results of Zhou et al. (2020). The authors builta
network incorporating polymorphic markers, transcrip-
tome, and metabolome that are associated with the vari-
ation in higher organismal traits. This integrated network
suggested that metabolites are regulated by complex inter-
actions of genomic variation and transcriptomic differ-
ences. Consistent with these expectations, we found that
the evolutionary response was more parallel for the meta-
bolome than for the transcriptome not only on a genome-
wide scale (fig. 4a and Supplementary fig. 3a) but also for
putative adaptive pathways that are consistently enriched
in six evolved populations (fig. 4b and Supplementary fig.
3b). Heterogeneous sets of genes of the same pathway
may respond to selection in different evolved populations,
but a similar metabolic output is reached. For example, in
the purine metabolism, some of the enzyme-coding genes

with heterogeneous expression changes across evolved po-
pulations are connected to metabolites that show more
parallel changes among populations (e.g., GMP, guano-
sine, deoxyguanosine, and their connected enzyme-coding
genes) (supplementary fig. S6, Supplementary Material on-
line). This higher level of convergence for the metabolome
than transcriptome may result from the hierarchical organ-
ization of the two phenotype classes as previously proposed
by Zhou et al. (2020).

Although consistent with a hierarchical organization of
traits, we caution that different levels of convergence be-
tween the metabolome and transcriptome may have other
causes. First, metabolomics and transcriptomics may have
different levels of measurement errors. Larger measure-
ment errors can lower the correlation of the evolutionary
response across populations. We observed significantly lar-
ger measurement errors for metabolite abundance
(supplementary fig. S7, Supplementary Material online),
suggesting that we underestimated the convergence for
the metabolome. Because we found more convergence at
the metabolomic level than for the transcriptome, the dif-
ferent levels of technical noise for the two methods are con-
servative and do not affect our conclusion. Second, the
identification of metabolites and transcripts differs. While
we used untargeted metabolomics, the identification of
metabolites is limited by the available reference metabo-
lites. Transcriptomic analysis, on the other hand, relies on
the quality of the annotation. Furthermore, the annotation
of all reaction steps in various of biological pathways with
involved genes and metabolites is even more challenging.
Third, the relationship between genes and metabolites in
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Table 1
Significantly Enriched Pathways in All Six Evolved Populations
KEGG KEGG pathway FDR Pathway category
ID value®
00020 Citrate cycle (TCA cycle) 0.031 Carbohydrate
00051 Fructose and mannose 0.033 metabolism
metabolism
00052 Galactose metabolism 0.033
00500 Starch and sucrose 0.043
metabolism
00520 Amino sugar and 0.024
nucleotide sugar
metabolism
00190  Oxidative phosphorylation  0.021 Energy metabolism
00561 Glycerophospholipid 0.021 Lipid metabolism
metabolism
00600 Sphingolipid metabolism 0.021
00230 Purine metabolism 0.031 Nucleotide
00240 Pyrimidine metabolism 0.031 metabolism
00270 Cysteine and methionine 0.021 Amino acid
metabolism metabolism
00290 Valine, leucine, and 0.021
isoleucine biosynthesis
00330 Arginine and proline 0.043
metabolism
00350 Tyrosine metabolism 0.021

00360  Phenylalanine metabolism  0.021
00400 Phenylalanine, tyrosine, 0.029
and tryptophan
biosynthesis
00450 Selenocompound 0.021
metabolism
00130 Ubiquinone and other 0.024
terpenoid-quinone

Metabolism of
cofactors and

biosynthesis vitamins
00740 Riboflavin metabolism 0.024
00790 Folate biosynthesis 0.021

Metabolism of
terpenoids and

00903 Limonene and pinene 0.021
degradation

polyketides
00980 Drug metabolism— 0.021 Xenobiotics
cytochrome 450 biodegradation and
00982  Metabolism of xenobiotics  0.024 metabolism
by cytochrome P450
04142 Lysosome 0.021 Transport and
04145 Phagosome 0.021 catabolism
04080 Neuroactive 0.024 Signaling molecules

ligand-receptor interaction and interaction

®The mean FDR values among six populations are reported.

a pathway is most likely much more complex than the linear
relationship assumed in this study. Rather, complex net-
work structures with feedback loops, substrates competi-
tion, etc. are biologically more realistic (Sontag et al.
2004; Lempp et al. 2019). Lastly, we studied pools of indi-
viduals, which average across heterogeneities among indi-
viduals and tissues. It is possible that accounting for these

Table 2
Metabolites That Are Significantly Evolved in at Least 3 Evolved
Populations

Metabolite KEGG Belonging pathway ~ Xeyo — Xanc®
ID
GDP-mannose C00096 Amino sugar and -0.278
nucleotide sugar
metabolism; fructose
and mannose
metabolism
Deoxyguanosine C00330 Purine metabolism 0.235
Orotate C00295 Pyrimidine metabolism 0.211
Uridine C00299  Pyrimidine metabolism —-0.326
D-Glucosamine C00329 Amino sugar and -0.297
nucleotide sugar
metabolism
N-Acetylputrescine  C02714  Arginine and proline -0.300
metabolism
Guanosine C00387  Purine metabolism 0.222
FAICAR C04734  Purine metabolism 0.316

“Xevo — Xanc indicates the difference in abundance between the average of
evolved samples (n = 18) and ancestral samples (n =5).

heterogeneities may uncover different trends than those
seen in this study, but the scale of such experiments is
out of scope for this study. We anticipate this study to
spearhead future investigations when more mature and
cost-effective techniques come into place.

Here, we present not only a systematic study on the mo-
lecular mechanisms underlying phenotypic adaptation, but
we also identified the pathways that evolved in response to
the hot environment. Many of them have been associated
with important roles in temperature adaptation. For ex-
ample, the regulation of purine metabolism has been re-
ported to reduce the heat-induced oxidative stress (Tian
et al. 2022) and is involved in the adaptation to high tem-
perature in several species (Paget et al. 2014; Chen et al.
2021; Jahan et al. 2022). The pentose phosphate pathway
contributes to thermal adaptation in Thermus filiformis:
under heat conditions, glucose was predominantly meta-
bolized via the pentose phosphate pathway instead of the
glycolysis pathway (Mandelli et al. 2017). The lysosome
was also found to be involved in adaptation and tolerance
to temperature stress in various organisms (Camus et al.
2000; Wang et al. 2018). Furthermore, several of the
enriched pathways can be connected to previously identi-
fied selected traits in this experimental evolution study
using a polymorphic D. simulans population from Florida.
Tyrosine metabolism and phenylalanine metabolism are
the pathways related to the synthesis of dopamine, one
important neural transmitter. Evolution in dopaminergic
neuronal activities is one of the evolved phenotypes
documented for the populations (Jaksic et al. 2020).
Neuroactive ligand-receptor interaction, a pathway related
to signaling molecules and interaction, is also identified in
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all six populations. Furthermore, several evolved metabo-
lites within the enriched pathways may be involved in tem-
perature adaptation (table 2). For example, guanosine
diphosphate (GDP)-mannose (consistently detected in
all six evolved populations) is part of the amino sugar and
nucleotide sugar metabolism has been reported to be
involved in the acclimatization to heat-induced abiotic
stress in several species (Bizri et al. 1984; Hoeberichts
et al. 2008) as well as thermal adaptation (Gu and Hilser
2009). Deoxyguanosine, which is significantly changing in
all six evolved populations, participates in oxidative
damage-related processes (Greenberg 2004). Further func-
tional validation experiments on these metabolites may
help us to better understand the molecular mechanism
underlying temperature adaptation.

One important challenge for understanding adapta-
tion is the identification and characterization of an adap-
tive trait. Genetic redundancy in combination with trait
hierarchies provides the potential to characterize selected
phenotypes: heterogeneous responses across evolved
populations indicate that these phenotypes cannot re-
present the direct target of selection, for which a conver-
gent response across evolved populations is expected
(Barghi et al. 2020). Thus, in theory, the phenotype at
the lowest hierarchical level which shows convergent
adaptive response is a good candidate for the selected
traits. Higher trait levels integrate too many subpheno-
types to identify the actual selection target. A good ex-
ample is fitness, which will converge, but is determined
by so many traits that a convergent increase in fitness
does not allow many conclusions about the selected phe-
notype(s). Here, our results show to what extent molecu-
lar phenotypes allow for a better characterization of the
selected trait. Transcriptomic and metabolomic data of-
fer the advantage of high-throughput analyses, but we
also demonstrated the limitations of theses phenotypes
to identify the selected phenotypes. Our analysis of
some putatively selected pathways misses many metabo-
lites. This may reflect the unbiased nontargeted metabo-
lomics approach and the limited reference metabolite
annotation. Targeted metabolomic profiling for all meta-
bolites of a pathway, if possible, could be complemen-
tary. More refined expression and metabolomics
profiling with single-cell analysis may provide reliable mo-
lecular networks and help characterizing a more resolved
picture of the responses to selection. Nevertheless, it is
not yet clear whether selection targets can be broken
down to individual molecular entities, such as a metabol-
ite. One approach to address this question empirically is
to perform experimental evolution with a well-defined
selection target and explore the ability to identify it
from molecular phenotypes. Furthermore, crosses be-
tween evolved populations may also be a promising ap-
proach for future work.

Materials and Methods

Experimental Evolution and Common Garden
Experiment

The experimental evolution and common garden experi-
ments are described in Barghi et al. (2019); Hsu et al.
(2020); Jaksic et al. (2020). Briefly, ten outbred populations
seeded from 202 isofemale lines were exposed to a labora-
tory experiment at 28/18 °C with 12 hr light/12 hr dark
photoperiod for more than 100 generations. Each evolving
population consisted of 1,000 to 1,250 adults at each gen-
eration. The collection of samples from the evolution ex-
periment for RNA-Seq and metabolite profiles was
preceded by two generations of common garden. The com-
mon garden experiment (CGE) was performed at gener-
ation 103 in the hot environment (Barghi et al. 2019; Hsu
et al. 2020; Jaksic¢ et al. 2020). In brief, an ancestral popu-
lation was reconstituted by pooling five mated females
from 184 founder iso-female lines. No significant allele fre-
quency differences are expected between the reconstituted
ancestral populations and the original ancestral popula-
tions initiating the experiment (Nouhaud et al. 2016).
Furthermore, we do not anticipate that deleterious alleles
acquired during the maintenance of the iso-female lines
had a major impact on the phenotypic variance in the re-
constituted ancestral population. The reason is that novel
deleterious mutations occurring during the maintenance
of the iso-female lines are present in a single iso-female
line only. Given the large number of iso-female lines
(184), such deleterious alleles occur in a low frequency in
the reconstituted population with a small influence on
the phenotypic variance (Walsh and Lynch 2018).
Furthermore, most of these deleterious alleles are present
in heterozygous individuals and masked because deleteri-
ous alleles tend to be recessive (Charlesworth and
Charlesworth 2010).

Five replicates of the reconstituted ancestral population
and ten independently evolved populations at generation
103 were reared for two generations with egg-density con-
trol (400 eggs/bottle) at the same temperature regime as in
the evolution experiment. Each independently evolved
population has three biological replicates of 50 5-day-old
adult males, which were kept separately for the two gen-
erations of common garden. Five biological replicates
from the ancestral populations and three biological repli-
cates from all evolved populations (pop1, pop2, ...,
pop10) were subjected to RNA Sequencing. For a more de-
tailed description of the RNA extraction and library prepar-
ation, see Hsu et al. (2020); Jaksi¢ et al. (2020).

Metabolomic Profiling

For an unbiased metabolomic profiling, we did not focus on
an a priori determined set of metabolites but rather used an
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untargeted approach. We used samples from the same
CGE (Barghi et al. 2019; Hsu et al. 2020; Jaksi¢ et al.
2020), to quantify metabolites from the reconstituted an-
cestral population with five biological replicates and six ran-
domly picked, independently evolved populations (pop4,
pop5, pop6, pop7, pop8, and pop9) with three biological
replicates each. Samples of 50 male flies from each bio-
logical replicate were used for metabolite extraction.
Metabolite extraction was performed in MeOH:ACN:H20
(2:2:1 v/v) using a bead mill, followed by one freezing/
thawing cycle and a sonication step. Homogenized samples
were then put at —20 °C for 1 h for the proteins to precipi-
tate. After protein removal, samples were dried in a speed-
vac and reconstituted in ACN:H20 1:1 (v/v). All samples
were stored at —80 °C until measurement. Metabolomic
measurements were performed by Vienna Bio-Center
(VBC). Samples were diluted 1:1 with 80% ACN, assigned
randomly into the autosampler, and measured randomly in
full MS mode on a ZIC-pHILIC. A blank containing the dilu-
tion solvent and a pooled FlyQC (5 ul of each sample) were
measured before and after 6 samples and used for back-
ground correction and normalization, respectively. QC
samples were also measured in discovery and confirmation
mode to obtain additional MS2 spectra for identification.
Raw data were extracted and passed through quality con-
trol processes. Peak identification was performed using
Compound Disocoverer 3.1 based on the annotation in
mzCloud database.

RNA-Seq Data Analysis

RNA-Seq data were retrieved from European Nucleotide
Archive (ENA) with the study accession number
PREJEB35504 and PRJEB35506 and reanalyzed following
the standard analytical pipeline (Hsu et al. 2020; Jaksic
etal. 2020). Only genes with at least 0.1 normalized counts
per million bases (CPM) across all samples were considered
expressed for further analysis. Because we were interested
in the evolutionary response of each independent evolution
population, we therefore contrasted the three biological
samples from each evolved population to the five biological
samples from the ancestral population. The differential ex-
pression (DE) analysis was done separately in each of the
ten evolved populations. We utilized the generalized linear
modeling function implemented in edgeR (Robinson et al.
2010) to fit the expression to the model (y =evo +¢) in
which y stands for the gene expression, evo is the effect
of evolution, and ¢ is the random error. A likelihood
ratio test was performed to test the effect of evolution.
P value adjustment was performed using the Benjamini-
Hochberg false discovery rate (FDR) correction (Benjamini
and Hochberg 1995). After identifying DE genes (adjusted
P < 0.05) in each population, we calculated Jaccard similar-
ity indices (Real and Vargas 1996) of the DE gene sets for all

pairwise combinations of the ten evolved populations (45
combinations in total). Jaccard index was calculated as fol-
lows:

_n(AnB)
I=aos

where A and B referred to the DE gene sets of any two
evolved populations. The Jaccard index ranges from O to 1.
Higher values indicated higher consistency between any pair-
wise combination of evolved populations.

For a second measure for similarity between evolved po-
pulations based on the quantitative estimates for gene ex-
pression in our analysis, we calculated Pearson’s correlation
coefficient for the expression changes (log,FC) of all genes
(n=10,780) for all pairwise combinations of evolved popu-
lations. The log,FC was calculated as follows:

log,FC =log, (&ﬁ)
anc

where Yevo is the mean expression value (CPM) per gene
across three evolved samples and yanc is the overall mean
expression value (CPM) per gene across five ancestral
samples.

Finally, we applied a permutation test to investigate
whether the observed Jaccard Index/Pearson’s correlation
coefficient detected in the evolved populations could be
caused by random processes (i.e., experimental noise or
the sampling process) (Anderson 2001). We randomly per-
muted the expression values per gene across all 30 biologic-
al samples from the evolved populations. With the
permuted expression values, we compared them to the
five ancestral samples to reidentify the DE genes/recalculate
the log,FC for all genes and calculated the pairwise Jaccard
Index/Pearson’s correlation coefficient in each evolved
population under null expectation considering no
population-specific effects. The procedure was repeated
100 times to generate a null distribution considering no
population-specific effects. Our empirical observations
were then tested against the null distribution. A smaller va-
lue indicates higher heterogeneity (i.e., more deviation
from random expectation). The P value was calculated as
the proportion of sampled permutations where the mean
Jaccard index/Pearson’s correlation coefficient was smaller
than the observed mean. We considered P < 0.05 as an in-
dication of a heterogeneous evolutionary response across
evolved populations.

Metabolomic Data Analysis

The normalized area for each detected compound in each
sample was log transformed for subsequent analysis. In to-
tal, 940 metabolites were detected in all samples (log-
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transformed normalized area > 10). For the identification
of differentially expressed metabolites during adaptation
in each evolved population, we applied a permutation
test to compare the abundance of each metabolite for
five reconstituted ancestral samples to three biological sam-
ples for a given evolved population. For each metabolite,
we randomly reassigned eight observations into ancestral
(n=5) and evolved (n=3) groups and the difference in
mean between two groups were calculated. The procedure
was repeated for 100 times to generate a null distribution.
Observation deviating on both sides of the null distribution
indicate significant differences in abundance between the
ancestral and evolved samples. Hence, the P value for
each metabolite of the test is calculated as the proportion
of sampled permutations where the absolute difference
was greater than the observed absolute difference. P value
adjustment was performed using Benjamini-Hochberg FDR
correction. Metabolites with adjusted P < 0.05 are consid-
ered significant. The procedure was done separately in
each evolved population.

Like the RNA-Seq analysis (see above), we calculated the
Jaccard index and Pearson’s correlation coefficient for all
pairwise combinations of the six evolution populations
(15 combinations in total). For Jaccard index calculations,
we used the significantly evolved metabolites in each evolved
population while for Pearson’s correlation coefficients,
we used the evolutionary abundance changes (log,FC) of
all metabolites (n = 940) in each evolution populations.

In correspondence to the permutation procedure
described for the RNA-Seq data, we also applied the
same approach to the metabolome. Here, we permuted
the metabolite abundances across all 18 biological samples
belonging to the six evolved populations.

Comparison of the Consistency between Gene
Expression and Metabolite

The distribution of Jaccard indices/Pearson’s correlation
coefficients for changes in gene expression and metabolite
abundance was compared to understand the consistency
between these two molecular phenotypes in their evolution
response using t-test. We restricted the comparison of
those six evolved populations (pop4, pop5, pop6, pop7,
pop8, and pop9) for which transcriptomic and metabolo-
mic data were available. To account for the different num-
ber of total genes/metabolites, we downsampled the
number of expressed genes (n=10,780) to the number
of total metabolites (n =940) and calculated the pairwise
correlation coefficient in log,FC based on 940 genes. This
was repeated 100 times, and the mean distribution was
compared to the mean observation of metabolites. For
the comparison of Jaccard indices, we downsampled the
number of significant DE genes into the number of signifi-
cant metabolites in each evolved population and calculated

the Jaccard indices based on the downsampled gene set.
This procedure was repeated for 100 times, and the
mean distribution was compared to the mean observation
of metabolites.

Joint Pathway Analysis

We performed joint KEGG pathway analysis to integrate
pathway-level analysis of transcriptomics and metabolomics
data. For each evolution population, we performed quantita-
tive enrichment analysis on transcriptomic and metabolomic
data using R packages “globaltest” and “metaboanalystR”
(Chong and Xia 2018; Goeman et al. 2022). Briefly, quanti-
tative enrichment analysis is based on the globaltest algo-
rithm (Chong and Xia 2018; Goeman et al. 2022). A list of
log,FC across all genes/metabolite is provided and does
not require a list of significantly changed genes/metabolites.
The raw P values were integrated with Fisher’'s method fish-
er.method() (R package “metaseqR”) (Fisher 1925; Moreau
et al. 2003). Benjamini-Hochberg FDR correction was per-
formed on the integrated P value. Pathways with adjusted
P<0.05 are considered significant. Pathview (Luo et al.
2017) was used for the pathway visualization of both gene
expression and metabolomic data.

Supplementary material

Supplementary data are available at Genome Biology and
Evolution online (http:/www.gbe.oxfordjournals.org/).
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