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Abstract
Tropical	species	are	considered	to	be	more	threatened	by	climate	change	than	those	
of	other	world	regions.	This	increased	sensitivity	to	warming	is	thought	to	stem	from	
the	assumptions	of	low	physiological	capacity	to	withstand	temperature	fluctuations	
and	already	living	near	their	limits	of	heat	tolerance	under	current	climatic	conditions.	
For	birds,	despite	thorough	documentation	of	community-	level	rearrangements,	such	
as	biotic	attrition	and	elevational	shifts,	there	is	no	consistent	evidence	of	direct	phys-
iological	sensitivity	to	warming.	In	this	review,	we	provide	an	integrative	outlook	into	
the	physiological	response	of	tropical	birds	to	thermal	variation	and	their	capacity	to	
cope	with	warming.	In	short,	evidence	from	the	literature	suggests	that	the	assumed	
physiological	sensitivity	to	warming	attributed	to	tropical	biotas	does	not	seem	to	be	a	
fundamental	characteristic	of	tropical	birds.	Tropical	birds	do	possess	the	physiologi-
cal	capacities	to	deal	with	fluctuating	temperatures,	including	high-	elevation	species,	
and	are	prepared	to	withstand	elevated	 levels	of	heat,	even	those	 living	 in	hot	and	
arid	environments.	However,	 there	are	still	many	unaddressed	points	 that	hinder	a	
more	complete	understanding	of	the	response	of	tropical	birds	to	warming,	such	as	
cooling	 capacities	when	exposed	 to	 combined	 gradients	 of	 heat	 and	humidity,	 the	
response	of	montane	species	to	heat,	and	thermoregulation	under	increased	levels	of	
microclimatic	stress	in	disturbed	ecosystems.	Further	research	into	how	populations	
and	species	from	different	ecological	contexts	handle	warming	will	increase	our	un-
derstanding	of	current	and	future	community	rearrangements	in	tropical	birds.

K E Y W O R D S
anthropocene,	bird	conservation,	ecophysiology,	thermal	stress

T A X O N O M Y  C L A S S I F I C A T I O N
Biodiversity	ecology,	Biogeography,	Community	ecology,	Conservation	ecology,	
Ecophysiology,	Global	change	ecology

http://www.ecolevol.org
mailto:
https://orcid.org/0000-0002-2419-1951
https://orcid.org/0000-0002-1528-2288
http://creativecommons.org/licenses/by/4.0/
mailto:monge_otto@hotmail.com
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fece3.9985&domain=pdf&date_stamp=2023-04-18


2 of 14  |     MONGE et al.

1  |  INTRODUC TION

The	 effects	 of	 anthropogenic	 climate	 change	 can	 be	 particularly	
pervasive	 in	 tropical	 ecosystems	 (Foden	 et	 al.,	 2013;	 Laurance	
et	al.,	2011).	 For	example,	 recent	predictions	 suggest	 that	end-	of-	
century	 temperatures	 could	 surpass	 the	 realized	 thermal	 limits	 of	
proportionally	 more	 organisms	 in	 the	 Tropics	 than	 at	 higher	 lati-
tudes	(Trisos	et	al.,	2020).	 In	consequence,	redistributions	of	trop-
ical	communities	are	expected	to	occur	more	frequently	 (Freeman	
et	al.,	2021).	Distributions	would	shift	along	elevational	gradients,	
with	species	at	the	mountain	tops	being	particularly	disadvantaged	
given	the	spatial	limitations	for	expanding	further	upwards	(Freeman	
et	al.,	2018;	Marris,	2007).	In	turn,	the	lowest	elevations	would	suf-
fer	from	biotic	attrition	because	upward	shifts	and	local	extinctions	
of	their	biotas	may	not	be	compensated	by	species	moving	in	from	
still	warmer	areas	(Colwell	et	al.,	2008).	Following	these	rearrange-
ments,	 turnovers	benefitting	warm-	adapted	species	would	 lead	 to	
the	thermophilization	of	communities	(Fadrique	et	al.,	2018).

It	is	commonly	assumed	that	the	main	driver	of	the	observed	dis-
tributional	rearrangements	in	tropical	biotic	communities	is	thermal	
sensitivity	(Khaliq	et	al.,	2014;	Laurance	et	al.,	2011)	because	many	
organisms	are	thought	to	live	near	their	thermal	tolerance	limits,	be-
yond	which	survival	is	compromised,	already	under	current	climatic	
conditions	(Trisos	et	al.,	2020)	and	to	possess	low	tolerance	to	tem-
perature	variation	(Tewksbury	et	al.,	2008).	These	assumptions	have	
been	derived	from	the	narrow	distribution	ranges	(e.g.,	elevational)	
of	 many	 tropical	 species,	 which	 apparently	 suggest	 narrow	 ther-
mal	niches	and	hence	high	thermal	sensitivity	(Colwell	et	al.,	2008; 
Laurance	et	al.,	2011).	Yet,	sound	empirical	evidence	for	 these	as-
sumptions	coming	from	physiological	studies	is	surprisingly	limited.	
In	fact,	most	studies	that	measured	thermal	tolerance	in	relation	to	
the	warming	 expected	over	 the	next	 decades	 focused	on	 tropical	
ectotherms	so	far	[e.g.,	Anolis	lizards	(Logan	et	al.,	2014);	ants	(Tizón	
et	 al.,	2014);	 littoral	 snails	 (Marshall	 et	 al.,	2015);	 amphibians	 (von	
May	et	al.,	2019)].

For	 tropical	 endotherms,	 there	 is	 a	 large	 knowledge	 gap	 on	
whether	 physiological	 vulnerability	 to	warming	 underlies	 distribu-
tional	 rearrangements.	 In	 the	 case	 of	 birds,	 population	 responses	
to	climate	change	have	been	well	documented.	Biotic	attrition	and	
abundance	 declines	 have	 been	 related	 to	 increases	 in	 maximum	
temperature	and	rainfall	alterations	 (Blake	&	Loiselle,	2015; Curtis 
et	 al.,	 2021;	 Tsai	 et	 al.,	 2015).	 Elevational	 shifts	 (Forero-	Medina	
et	al.,	2011;	Freeman	et	al.,	2018;	Freeman	&	Class-	Freeman,	2014; 
Neate-	Clegg	 et	 al.,	 2021;	 Peh,	 2007),	 and	 thermophilization	 of	
montane	(Neate-	Clegg	et	al.,	2021;	Williams	&	de	la	Fuente,	2021) 
and	 lowland	bird	 communities	 (Curtis	 et	 al.,	2021)	 have	also	been	
observed.	 Accordingly,	 many	 authors	 have	 underscored	 the	 pos-
sibility	 that	a	diminished	capacity	 to	handle	 temperature	variation	
in	 tropical	 birds	may	be	behind	population-	level	 responses	 (Curtis	
et	al.,	2021;	Huey	et	al.,	2012;	Jirinec,	Elizondo,	et	al.,	2022;	Khaliq	
et	al.,	2014).	However,	to	date,	there	is	no	empirical	evidence	linking	
these	rearrangements	to	direct	physiological	sensitivity	to	warming.

In	 stark	 contrast,	 it	 is	 possible	 that	 the	 true	 thermal	 niches	of	
at	 least	 lowland	 birds	 are	 actually	 wider	 than	 currently	 realized	
ones	because	warmer	conditions	could	be	managed	but	do	not	cur-
rently	occur	across	species	ranges	(Burner	et	al.,	2019;	Freeman	&	
Beehler,	2018;	Shoo	et	al.,	2005).	This	may	explain	why	lowland	birds	
have	retained	their	distributions	through	decades	of	warming	in	an	
undisturbed	Andean	 forest	 (Freeman	 et	 al.,	2018).	 This	 possibility	
might	 also	 extend	 to	montane	 communities	 that	 have	 not	 experi-
enced	changes	in	elevation	limits	or	abundance	(Campos-	Cerqueira	
et	 al.,	 2017;	 Rosselli	 et	 al.,	 2017),	 and	 in	 which	 warm-		 and	 cold-	
adapted	birds	have	increased	in	abundance	(Dulle	et	al.,	2016).

Given	 the	 void	 of	 knowledge	 on	 the	 physiological	 response	
of	 tropical	birds	 to	global	warming,	 this	aspect	 should	be	 first	ad-
dressed	before	 attempting	 to	 relate	 distributional	 rearrangements	
to	 thermal	 sensitivity	 (Cahill	 et	 al.,	 2013).	 In	 this	 paper,	 we	 con-
ducted	a	review	of	 literature	on	thermoregulation	 in	tropical	birds	
when	 exposed	 to	 thermal	 variation,	 specifically	 their	 response	 to	
heat.	Our	approach	consisted	of	an	integrative	or	synthetic	review	
(Sayer,	2018;	 Torraco,	2005)	 for	which	we	 performed	 a	 search	 of	
literature	in	online	databases	(Supplementary	Material).	We	focused	
our	synthesis	on	 the	circumstances	under	which	 tropical	birds	are	
vulnerable	to	warm	conditions.	We	tied	together	the	empirical	data	
from	the	retrieved	studies	with	the	physiological	processes	that	can	
confer	vulnerability	or	resilience	to	answer	the	following	questions:	
are	tropical	birds	characterized	by	narrow	thermal	tolerances?	Are	
they	 currently	 living	 close	 to	 their	 thermal	 tolerance	 limits?	 And,	
consequently,	 are	 they	 particularly	 vulnerable	 to	 warming	 from	 a	
physiological	 standpoint?	We	 reinforced	 our	 analysis	 by	 exploring	
how	microclimatic	alterations,	such	as	the	ones	driven	by	land-	use	
change,	 and	 humidity	 influence	 physiological	 vulnerability.	 Finally,	
we	 identified	knowledge	gaps	and	suggested	directions	 for	 future	
research	that	can	guide	comprehensive	analyses	of	tropical	bird	vul-
nerability	to	the	effects	of	global	warming.

2  |  CLIMATE CHANGE AND AVIAN THERM 
ORE GUL  ATION IN THE TROPIC S

Recent	studies	show	that	the	Tropics	are	warming	more	and	expe-
riencing	more	extreme	heat	events	than	other	world	regions	(Zeng	
et	al.,	2021).	 If	a	~5°C	warmer	future	 is	met,	as	 in	worst-	case	sce-
nario,	 by	 2100	 some	 tropical	 regions	 could	 have	 as	much	 as	 120	
heat-	wave	 days	 per	 season	 (Perkins-	Kirkpatrick	 &	 Gibson,	 2017). 
Hot	days	in	the	Tropics	are	becoming	hotter	because	they	are	also	
dry	days	(Byrne,	2021).	Increases	in	drought	stress	are	expected	to	
occur	in	many	tropical	regions	due	to	shifts	in	the	wind	patterns	that	
determine	 the	 rainfall	 seasonality	 across	 the	 Tropics	 (Mamalakis	
et	al.,	2021).	Moreover,	long-	term	drying	trends	have	caused	large-	
scale	 reductions	 in	 terrestrial	 water	 storage	 (Zhou	 et	 al.,	 2014). 
On	 the	other	hand,	 the	 frequency	of	 combined	events	of	 danger-
ously	high	heat	following	major	tropical	cyclones	is	projected	to	in-
crease	from	currently	three	events	per	30-	year	period	to	potentially	
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occurring	annually,	if	temperatures	rise	by	up	to	4°C	in	some	tropical	
regions	(Matthews	et	al.,	2019).

In	 order	 to	 cope	 with	 heat	 stress,	 physiological	 mechanisms	
are	 set	 in	 motion	 in	 birds	 to	 prevent	 negative	 effects	 to	 fitness	
(Figure 1a;	Angilletta	et	al.,	2010).	 In	particular,	body	 temperature	
(Tb)	 is	 regulated	 when	 ambient	 temperatures	 (Ta)	 increase.	 For	
this,	 heat	 loads	 produced	 by	 endogenous	 metabolic	 activity	 and	
those	absorbed	 from	the	environment	are	dissipated	by	evaporat-
ing	 water	 (evaporative	 water	 loss,	 EWL)	 through	 the	 respiratory	
tract,	 enhanced	by	panting	 in	many	 species,	 and	 through	 the	 skin	
(Weathers,	1981).	However,	 at	 increasingly	high	Ta,	 Tb	might	 start	
to	rise	uncontrollably	and	push	the	bird	into	heat	stress,	surpassing	
the	birds'	heat	tolerance	limits	(Cabello-	Vergel	et	al.,	2022;	Pollock	
et	 al.,	 2021).	 Reaching	 the	 maximum	 tolerable	 Ta	 (Tamax) would 
then	prove	 fatal	 (Kendeigh,	 1969).	More	 important	 than	 the	mere	
exposure	is	the	intensity	and	duration	of	the	exposure	that	can	de-
termine	 the	heat	 tolerance	 limits	and	ultimately	 the	probability	of	
survival	(Rezende	et	al.,	2014).	Furthermore,	since	most	birds	cannot	
produce	enough	water	 from	metabolism	 to	 replace	 losses,	 several	
mechanisms	 can	 be	 additionally	 triggered	 to	 conserve	 water	 and	
avoid	 dehydration	 (Dawson,	 1982).	 Facultative	 hyperthermia	 al-
lows Tb	 to	 slightly	 surpass	Ta,	 thereby	 creating	 a	 thermal	 gradient	
in	which	heat	dissipates	passively	 from	the	body	 to	 the	surround-
ings	(McKechnie	&	Wolf,	2019),	 reducing	the	need	for	evaporative	

cooling	(Gerson	et	al.,	2019).	Birds	may	also	benefit	from	maintaining	
low	levels	of	metabolic	activity	to	avoid	generating	excess	internal	
heat.	Commonly,	the	rate	of	metabolic	expenditure	is	measured	ex-
perimentally	when	 it	 is	 at	 a	minimum	 (basal	metabolic	 rate,	BMR)	
across	a	given	range	of	Ta.	This	range	(thermo-	neutral	zone,	TNZ)	is	
limited	by	lower	and	upper	critical	Ta	(TLC	and	TUC,	respectively)	and	
may	vary,	along	with	BMR,	across	ecological	contexts,	even	among	
populations	 of	 the	 same	 species	 (Castro	 et	 al.,	 1985;	 Maldonado	
et	al.,	2012;	McNab,	2013;	Tieleman	et	al.,	2002).

Traditionally,	the	TNZ	has	been	regarded	as	ecologically	import-
ant	for	thermal	stress	because	an	increased	amount	of	metabolic	en-
ergy	is	invested	into	maintaining	constant	Tb	when	Ta	surpasses	its	
limits	(Fristoe	et	al.,	2015;	Scholander	et	al.,	1950).	In	consequence,	
it	has	been	stated	that	as	long	as	Ta	remains	within	the	TNZ,	tropical	
birds	 are	 in	 a	 thermoregulatory	 “safe	 zone,”	but	when	warming	Ta 
deviates	beyond	the	TUC,	survival	 is	threatened	or	fitness	reduced	
(Khaliq	et	al.,	2014).	Despite	that	the	relevance	of	relying	on	the	TNZ	
as	a	measure	of	thermal	tolerance	in	endotherms	has	been	disputed	
(e.g.,	Cabello-	Vergel	et	al.,	2022;	Mitchell	et	al.,	2018),	 it	remains	a	
prominent	feature	in	avian	physiological	studies.	In	fact,	our	review	
of	literature	evidenced	a	tendency	toward	estimating	the	TNZ	and	
its	 limits	with	 less	attention	given	to	quantifying	EWL	or	Tamax	 in	
tropical	 birds	 (Figure 1b).	 However,	 assessing	 the	 possible	 conse-
quences	of	climate-	change	driven	 increases	 in	Ta	 in	relation	to	the	

F I G U R E  1 Avian	physiological	response	to	thermal	variation.	(a)	Body	temperature	(Tb)	is	regulated	within	a	range	of	ambient	
temperatures	(Ta),	outside	of	which	Tb	varies	with	Ta.	Hyperthermia	develops	when	the	heat	load	is	not	sufficiently	dissipated	and	death	may	
follow	thereafter	if	exposure	is	prolonged	and	intense.	As	a	hypothetical	example,	under	current	conditions,	a	tropical	bird	species	living	in	
a	hot	environment	may	experience	seasonal	or	yearly	dangerous	Ta	for	a	small	proportion	of	the	time	(lighter	shadings);	however,	exposure	
may	increase	under	warming.	(b)	Frequency	in	which	physiological	traits	of	tropical	birds	related	to	the	tolerance	of	cold	(blue	bars)	and	hot	
(red	bars)	Ta	appear	in	studies	(n = 47	articles,	Supplementary	Table S1). TLC	and	TUC = lower	and	upper	critical	limits	of	the	thermo-	neutral	
zone	(TNZ),	Thypo	and	Thyper = Ta	in	which	hypo-		and	hyperthermia	develop;	Tther = Ta	that	triggers	a	thermogenesis	response	to	cold	(i.e.,	
metabolic	heat	production);	TEWL = Ta	that	forces	a	sharp	increase	in	the	rate	of	evaporative	water	loss	(EWL);	Tamin	and	Tamax = minimum	
and	maximum	tolerable	Ta.
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TNZ	alone	may	not	be	the	best	approach,	because	many	endotherms	
regulate	their	Tb	outside	the	TNZ	through	physiological	and	behav-
ioral	strategies	and	may	actually	live	at	Ta	above	their	TUC	(Freeman	
et	al.,	2020;	Mitchell	et	al.,	2018).	For	better	insights	into	possible	ef-
fects	of	climate	change	on	tropical	bird	thermoregulation,	it	is	hence	
reasonable	to	jointly	examine	the	variation	in	the	rate	of	metabolism	
along	with	the	physiological	mechanisms	for	heat	tolerance.

Worldwide,	birds	from	hot	and	water-	limited	environments	have	
been	 studied	 in	depth	because	of	 their	obvious	 state	of	 risk	 from	
warming,	 but	 virtually	 all	 studies	 come	 from	 sub-	tropical	 deserts.	
Thus,	we	scarcely	know	how	tropical	birds,	and	especially	rainforest	
and	montane	species,	deal	with	heat	stress.	For	instance,	what	is	the	
variation	in	the	heat	tolerance	limits	and	Tamax	of	individuals,	popu-
lations,	and	species	(Boyles	et	al.,	2011;	Cabello-	Vergel	et	al.,	2022; 
Pollock	et	al.,	2021)?	Thermal	environments	 that	demand	a	higher	
evaporative	cooling	effort	may	not	be	limiting	to	birds	if	water	lost	to	
EWL	is	replaced,	thereby	safely	maintaining	an	efficient	cooling	ca-
pacity.	Regular	drinking	is	in	fact	vital	to	endure	Ta	approaching	Tamax 
(Czenze	et	al.,	2020;	Freeman	et	al.,	2020).	On	the	other	hand,	with	
limited	access	to	water,	survival	can	be	compromised	with	sustained	
exposure	 even	 to	 nonimmediately	 lethal	 Ta	 (Mitchell	 et	 al.,	2018). 
Subtropical	birds	who	start	panting	at	a	relatively	 low	Ta	are	more	
vulnerable	 to	warming	 (Pattinson	 et	 al.,	2020)	 because	 prolonged	
panting	can	result	in	dehydration	from	EWL	and	also	interfere	with	
efficient	food	and	water	consumption	(Du	Plessis	et	al.,	2012;	Smit	
et	al.,	2016).	Moreover,	some	species	may	perish	if	they	are	unable	
to	withstand	severe	hyperthermia,	even	if	specialized	in	conserving	
body	water	(Czenze	et	al.,	2020).	Thus,	in	hot,	arid	subtropical	envi-
ronments,	and	most	 likely	elsewhere,	there	will	be	variation	 in	the	
degree	of	 vulnerability	 to	warming	 among	bird	 species	depending	
on	their	capacity	to	fulfill	cooling	requirements	(Riddell	et	al.,	2019).

3  |  PHYSIOLOGIC AL FE ATURES OF 
TROPIC AL BIRDS AND THEIR REL ATION 
WITH VULNER ABILIT Y TO CLIMATE 
WARMING

Tropical	birds	would	become	physiologically	vulnerable	to	warming	
if	unable	to	efficiently	cool	down	the	body	when	facing	extremely	
high	temperatures.	The	limits	of	thermal	tolerance	could	be	subse-
quently	surpassed	and	local	extinctions	may	follow.	These	dynam-
ics	promoted	the	collapse	of	a	subtropical	avian	desert	community	
(Riddell	et	al.,	2019),	but	no	cases	have	been	reported	so	far	in	the	
wet	Tropics.	In	addition,	warming-	induced	heat	stress	within	native	
distributions	might	lead	organisms	to	redistribute	into	areas	where	
temperatures	match	 preferred	 values,	 chasing	 their	 thermal	 niche	
when	 rising	 temperatures	 exceed	 their	 narrow	 tolerance	 of	 tem-
perature	 variation	 (Colwell	 et	 al.,	2008).	 However,	 to	 date	 such	 a	
direct	 physiological	 trigger	 of	 distributional	 changes	 has	 not	 been	
documented	in	tropical	birds	anywhere.	In	this	section,	we	examine	
whether	 tropical	 birds	 are	 actually	 characterized	 by	 a	 low	 capac-
ity	to	handle	Ta	fluctuations	and	live	close	to	their	limits	of	thermal	

tolerance	under	current	conditions.	We	additionally	discuss	the	in-
fluence	of	air	humidity	and	variation	in	micro-	habitat	conditions	in	
the	context	of	vulnerability	to	warming.

3.1  |  Thermal tolerance capacity

The	 prevalent	 notion	 in	 the	 literature	 is	 that	 tropical	 endotherms	
possess	a	narrow	TNZ	because	they	inhabit	mostly	climatically	sta-
ble	habitats	and,	as	a	result,	 they	are	physiologically	vulnerable	to	
temperature	variation	(Scholander	et	al.,	1950;	Sheldon	et	al.,	2018; 
Stratford	&	Robinson,	2005).	Under	 this	view,	many	 tropical	birds	
are	restricted	to	habitats	where	Ta	fluctuates	within	a	very	narrow	
range—	presumably	the	TNZ.	When	facing	fluctuations	in	Ta outside 
the	TNZ	limits,	birds	would	thence	become	thermally	stressed.	For	
instance,	one	tropical	montane	species	was	deemed	intolerant	to	Ta 
above	a	TUC	of	merely	31°C	(Weathers	&	van	Riper,	1982).

However,	contrary	to	the	assumption	of	narrow	thermal	niches,	a	
growing	body	of	literature	shows	that	the	thermal	tolerance	capacity	
of	many	tropical	birds	is	broader	than	commonly	thought	(Freeman	
et	al.,	2018;	Pollock	et	al.,	2021).	Experimental	measurements	evi-
dence	a	highly	variable	thermo-	tolerance	response	to	temperature	
gradients,	 including	 Tb	 fluctuating	 or	 remaining	 almost	 constant	
within	 or	 above	 the	 TNZ	 (Table 1).	 In	 fact,	 some	 species	 experi-
ence	natural	daily	Tb	rhythms	in	amplitudes	of	≥10°C	(Bartholomew	
et	al.,	1983;	Cheke,	1970;	Morrison,	1962;	Schuchmann	&	Schmidt-	
Marloh,	1979a),	and,	contrary	to	common	belief,	the	trend	for	many	
ecologically	diverse	tropical	birds	is	to	possess	broad	TNZs	of	≥10°C.	
Thus,	it	seems	unlikely	that	a	narrow	tolerance	to	thermal	variation	
is	a	fundamental	characteristic	of	tropical	birds	and	that	species	are	
restricted	to	a	specific	thermal	context	in	consequence.

3.2  |  Proximity to thermal tolerance limits

If	tropical	birds	 live	close	to	their	 limits	of	thermal	tolerance,	their	
vulnerability	would	 drastically	 increase	when	 facing	warming.	 For	
instance,	decade-	long	trends	in	extended	and	warmer	dry	seasons	
have	 been	 associated	 with	 reductions	 in	 survival,	 recruitment,	
and	 population	 growth	 rates	 in	 Central	 American	 birds,	 including	
one	 species	 adapted	 to	 lowland	 dry	 forests	 (Brawn	 et	 al.,	 2017; 
Woodworth	et	al.,	2018).	However,	without	measurements	of	ther-
mal	 tolerance,	 it	 is	 unknown	whether	 the	observed	patterns	 arise	
from	thermal	stress.

The	assumption	of	a	generalized	proximity	to	the	limits	of	ther-
mal	 tolerance	probably	 stemmed	 from	 regarding	 the	TUC	 as	 a	 tol-
erance	threshold	 (Mitchell	et	al.,	2018).	Because	the	TUC	has	been	
considered	 largely	 invariable,	 tropical	 endotherms	 would	 expe-
rience	 thermal	 stress	 any	 time	 that	 Ta	 surpasses	 this	 limit	 (Araújo	
et	al.,	2013;	Huey	et	al.,	2012).	Thus,	given	that	current	Ta	lie	around	
the TUC	of	many	 tropical	birds	 (Pollock	et	 al.,	2021),	 these	are	as-
sumed	to	be	constantly	exposed	to	increased	costs	of	thermoregula-
tion	or	to	risks	of	overheating.	We	believe	that	these	notions	should	
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be	reconsidered.	First,	there	is	evidence	of	temporal	variation	in	the	
TUC	in	tropical	birds,	highlighting	their	potential	for	acclimatization	
and	 adaptation	 (Pollock	 et	 al.,	 2019).	 Also,	 modest	 hyperthermia	
is	tolerated	at	Ta	above	the	TUC	(Table 1),	hinting	reduced	thermo-
regulatory	expenditure.	Finally,	recent	research	on	temperate	birds	
demonstrates	 the	 capacity	 to	 adjust	 the	 limits	 of	 hyperthermia	
tolerance	 depending	 on	 the	 prevalent	 environmental	 conditions	
(Freeman	et	al.,	2022).	We	suggest	that	an	appropriate	indicator	of	
whether	tropical	birds	can	tolerate	Ta	even	higher	than	the	ones	cur-
rently	experienced	within	 their	 ranges	 is	 the	 response	of	Tb	when	
facing	high	levels	of	heat	(Figure 2).

Hyperthermia	 at	 high	 Ta	 can	 be	 endured	 by	 tropical	 birds	 for	
the	duration	of	metabolic	experiments—	typically	2–	4 h—	reflecting	a	
flexible	response	to	acute	heat	exposure	(Table 1).	Species	from	hot,	

xeric	regions	that	have	access	to	water	sources	tolerate	hyperther-
mia	at	experimental	Ta	above	the	maximum	of	the	study	areas	(~45°C) 
by	 increasing	EWL	 rates	 to	 dissipate	 all	metabolic	 and	 exogenous	
heat	 (Dawson	 &	 Bennett,	 1973;	 Ehlers	 &	Morton,	 1982;	Withers	
&	Williams,	1990).	Along	elevational	gradients,	highland	humming-
birds	(Trochilidae)	maintain	constant	Tb,	while	mid-	elevation	species	
develop	modest	 hyperthermia,	 at	 Ta	 well	 above	 the	 local	maxima	
of	 their	 natural	 habitats	 (Lasiewski	 et	 al.,	 1967;	 Schuchmann	 &	
Schmidt-	Marloh,	1979a,	1979b;	Wolf	&	Hainsworth,	1972).	Tropical	
birds	can	also	tolerate	hyperthermia	regularly	during	the	dry	season	
in	their	natural	habitat	or	during	experimental	exposure	for	weeks	
(Cox,	1961;	Nilsson	et	al.,	2016).	In	addition,	one	species	did	not	ex-
perience	hyperthermia	when	living	under	experimental	worst-	case	
scenario	warming	for	one	year	 (Thompson	et	al.,	2015).	All	of	 this	

TA B L E  1 Reported	response	of	tropical	birds	exposed	to	experimental	thermal	gradients	in	a	representative	selection	of	thermo-	
tolerance	studies	(see	Supplementary	Material).

Species Habitat Thermal gradient (°C) TNZ range (°C) Tb range (°C) Reference

Podargus ocellatus Lowland	rainforest 5–	47 30–	40 36–	43 Lasiewski	et	al.	(1970)

Lonchura fuscans Lowland	open	areas 17–	44 30–	39 38–	44 Weathers	(1977)

Bolborhynchus lineola Montane	humid	forest 4–	36 28–	30 40–	42 Bucher	(1981)

Geophaps plumifera Lowland	arid −10–	51 35–	45 41–	44 Withers	and	Williams	(1990)

Amadina fasciata Lowland	open	areas 19–	42 31–	38 43–	44 Marschall	and	
Prinzinger	(1991)

Sporophila corvina Lowland	rainforest 14–	46 29–	39 39–	47 Weathers	(1997)

Coereba flaveola Lowland	rainforest 15–	40 25–	35 35–	45 Merola-	Zwartjes	(1998)

Saltator orenocensis Lowland	dry	forest 13–	34 28	–		≥34 35–	40 Bosque	et	al.	(1999)

Todus mexicanus Lowland	rainforest/xeric 15–	40 29–	≥35 28–	43 Merola-	Zwartjes	and	
Ligon	(2000)

Eurillas virens Lowland	rainforest/xeric 10–	35 22–	≥35 38–	41 Seavy	and	McNab	(2007)

Hylophylax naevioides Lowland	rainforest 14–	36 30–	34 35–	42 Steiger	et	al.	(2009)

Cyanerpes cyaneus Lowland	rainforest 15–	35 25–	35 40–	41 Mata	(2010)

Note:	All	temperature	values	were	rounded	to	the	upper	unit.	In	some	cases,	an	approximate	value	for	the	upper	critical	limit	of	the	thermo-	neutral	
zone	(TNZ)	was	given.	Body	temperature	(Tb)	range	represent	minima	and	maxima	during	experiments.

F I G U R E  2 Factors	that	influence	the	
tolerance	of	hyperthermia	in	tropical	
birds,	based	on	studies	in	which	thermal	
tolerance	was	measured	through	
experimental	approaches.	Reference	
numbers	(in	parenthesis)	come	from	the	
list	in	the	Supplementary	Material.	Factors	
had	a	positive	(plus	sign),	negative	(minus	
sign)	or	mixed	outcome	(plus/minus)	on	
birds.	Ta = ambient	temperature	during	
experiments.
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6 of 14  |     MONGE et al.

empirical	 data	 support	 the	 recent	discovery	 that	projected	warm-
ing	Ta	will	most	likely	stay	far	from	eliciting	lethal	hyperthermia	for	
many	tropical	birds	(Pollock	et	al.,	2021;	but	see	Section	5).	Thus,	the	
notion	that	tropical	birds	risk	thermal	stress	in	their	natural	habitats	
because	of	warming	must	 be	 reconsidered	 in	 the	 context	 of	 their	
capacity	to	tolerate	elevated	Tb.	We	note,	however,	that	there	is	an	
impending	need	 to	explore	 further	 their	 response	 to	 chronic	heat	
exposure.

3.3  |  Humidity and thermoregulation in 
tropical birds

Air	moisture	 is	a	 relevant	 factor	 in	 the	avian	thermoregulatory	re-
sponse	to	heat.	Humidity	along	with	Ta	can	directly	affect	Tb	regula-
tion	in	birds	(Gardner	et	al.,	2016),	but	their	combined	effects	have	
not	been	as	exhaustively	studied	as	the	impacts	of	Ta	alone	(i.e.,	dry	
heat;	Rogers	et	al.,	2021).	Humid	heat	can	severely	hamper	the	ef-
ficacy	 of	 cutaneous	 evaporative	 cooling	 in	 endotherms	 at	 high	 Ta 
(Buzan	&	Huber,	2020)	when	the	water	vapor	pressure	 in	 the	sur-
rounding	 air	 exceeds	 that	 of	 the	 body	 surfaces	 from	which	water	
is	used	to	dissipate	heat	 (Boyles	et	al.,	2011).	Although	dissipating	
heat	through	panting	might	soften	the	effects	of	humidity	(Gerson	
et	al.,	2014),	exposure	to	high	humid	heat	could	have	a	generalized	
effect	across	avian	taxa	of	generating	more	metabolic	heat	than	can	
be	lost	through	evaporative	cooling	(van	Dyk	et	al.,	2019).

Because	the	combination	of	high	humidity	and	high	heat	is	more	
prevalent	in	the	Tropics	than	in	other	climatic	zones,	tropical	birds	
might	frequently	resort	to	dissipating	heat	convectively	via	faculta-
tive	hyperthermia	instead	(Gardner	et	al.,	2016;	van	Dyk	et	al.,	2019). 
In	 lowland	 areas	 with	 high	 dew	 points,	 facultative	 hyperthermia	
may	 overcome	 the	 limitations	 of	 the	 diminished	 scope	 for	 evapo-
rative	dissipation	of	heat	loads	(Weathers,	1997).	This	strategy	can	
allow	 tropical	 rainforest	 birds	 to	 remain	 active	 (e.g.,	 foraging	 or	
flying)	 when	 exposed	 to	 intense	 sun	 radiation	 (Weathers,	 1977). 
Nonevaporative	 heat	 dissipation	 through	 body	 structures	 is	 an	
effective	 thermo-	tolerance	 mechanism	 to	 survive	 in	 tropical	 hot-	
humid	habitats	 (Eastick	et	al.,	2019;	Tattersall	et	al.,	2009;	 van	de	
Ven	et	al.,	2016).	For	instance,	the	bill	plays	a	key	role	in	the	adaptive	
thermoregulatory	response	of	birds	(Tattersall	et	al.,	2017).	Notably,	
the	positive	association	between	bill	 size	and	humidity	appears	 to	
be	phylogenetically	independent	and	more	likely	to	be	determined	
by	 environmental	 conditions	 (Gardner	 et	 al.,	 2016).	 For	 example,	
larger	bills	have	been	measured	in	individuals	of	temperate	and	mi-
gratory	passerines	that	live	in	water-	limited,	humid	and	hot	habitats	
(Greenberg	et	al.,	2012;	Luther	&	Greenberg,	2014).

Despite	thriving	in	mainly	hot	and	humid	habitats,	knowledge	of	
the	response	of	tropical	birds	to	the	joint	effects	of	humidity	and	heat	
is	still	incipient.	For	example,	under	constant	relative	humidity	of	45%	
during	experiments,	lowland	and	even	highland	birds	seemed	to	tol-
erate	the	typical	Ta	of	the	lowland	rainforest	(Londoño	et	al.,	2017). 
In	contrast,	when	humidity	was	not	controlled,	some	lowland	passer-
ines	quickly	became	hyperthermic	after	acute	and	chronic	exposure	

to	moderate	 Ta	 or	 failed	 to	 survive	 high	 Ta	 (Cox,	 1961;	 Prinzinger	
et	al.,	1989;	Weathers,	1977).	Under	constant	Ta	of	25°C,	EWL	in	the	
mountain-	dwelling	 giant	 hummingbird	 (Patagona gigas)	 decreased	
by	~3-	fold	when	experimental	relative	humidity	increased	from	0%	
to	90%	(Lasiewski	et	al.,	1967).	Furthermore,	the	thermoregulatory	
advantage	of	 larger	bills	 in	 tropical	birds	can	 fade	 in	highly	humid	
sites	 that	 experience	 extreme	 maximum	 temperatures	 (Gardner	
et	al.,	2016).	Undoubtedly,	more	research	is	needed	to	improve	our	
understanding	of	how	 the	combined	effects	of	heat	and	humidity	
modify	thermal	vulnerability	in	tropical	birds.

3.4  |  Microclimate, land- use 
change, and thermoregulation

Tropical	birds	have	 long	been	severely	 impacted	by	deforestation,	
with	 long-	term	 abundance	 declines	 of	 terrestrial	 and	 understory	
insectivores	 of	 up	 to	 95%	 in	 isolated	 forest	 fragments	 (Stouffer	
et	 al.,	 2006).	 Unfortunately,	 clearing	 and	 degradation	 of	 lowland	
and	montane	forests	continues	to	spread	at	alarming	rates	(Bodart	
et	 al.,	 2013;	 Ernst	 et	 al.,	 2013;	 Shearman	 et	 al.,	 2009),	 even	 oc-
curring	 during	 periods	 of	 severe	 drought	 (Bullock	 et	 al.,	 2020). 
Consequently,	tropical	deforestation	can	become	a	major	amplifier	
of	climate	change.	For	instance,	accumulated	local	warming	in	defor-
ested	lands	now	equates	to	predicted	worst-	case	scenario	warming	
(Zeppetello	et	al.,	2020).	Furthermore,	the	incidence	of	heat	waves	
in	the	Tropics	will	likely	be	highest	in	areas	converted	to	agriculture	
(Im	et	al.,	2017).	The	relevant	question	here	 is	whether	this	pano-
rama	can	increase	the	physiological	vulnerability	of	tropical	birds	to	
warming.	Based	on	our	synthesis	of	 literature,	we	believe	that	the	
answer	may	lie	at	the	interplay	between	the	extent	of	habitat	loss,	
heat	tolerance	and	resource	availability	(Figure 3).

F I G U R E  3 Potential	drivers	of	tropical	bird	population	response	
to	the	interactive	effects	of	land	use	and	climate	change	based	
on	the	combination	of	physiological	vulnerability,	habitat	loss	
and	resource	availability.	The	drawings	represent	three	scenarios	
of	progressive	habitat	loss,	with	forest	depicted	in	green	and	
converted	lands	in	light	red.	Symbols	depict	our	own	predictions	
of	how	the	drivers	may	affect	tropical	bird	populations,	whether	
strongly	(plus)	or	weakly	(minus),	in	each	of	the	three	scenarios.
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    |  7 of 14MONGE et al.

The	 loss	 of	 natural	 habitat	 cover	 disrupts	microclimatic	 condi-
tions,	with	potential	consequences	for	biological	communities	(Guo	
et	al.,	2018;	Zellweger	et	al.,	2020).	For	instance,	while	habitat	con-
version	 can	 reduce	 total	 abundance	 in	 avian	 communities,	 associ-
ated	 warming	 can	 alter	 species-	specific	 abundances	 because	 of	
differences	in	heat	tolerance	(Bowler	et	al.,	2018).	Surviving	species	
would	not	only	live	under	increased	average	local	temperatures	but	
further	habitat	loss	and	resource	depletion	may	result	in	heat	waves	
and	drought	challenging	their	thermal	limits	(Senior	et	al.,	2017). The 
availability	of	microclimatic	 refuges	 can	 in	 fact	determine	 survival	
for	birds	when	physiological	responses,	such	as	panting,	become	in-
efficient	to	deal	with	extreme	heat	(Sharpe	et	al.,	2022). This could 
be	 particularly	 true	 for	 tropical	 birds	 resilient	 to	 deforestation	 in	
lowland	hot	and	dry	habitats	(Frishkoff	et	al.,	2016).	Likewise,	even	if	
montane	species	can	tolerate	exposure	to	increased	microsite	tem-
peratures	 under	 current	 conditions,	 they	 may	 become	 vulnerable	
under	 progressing	warming	 and	 habitat	 loss	 in	 the	 future	 (Monge	
et	al.,	2022).

Under	 a	 less	 extreme	 scenario,	 microclimatic	 buffering	 pro-
vided	by	even	a	fragmented	forest	has	the	potential	to	shield	birds	
from	increased	warming,	though	less	than	in	intact	forest	(Ewers	
&	Banks-	Leite,	2013).	When	facing	fragmentation,	how	likely	are	
tropical	birds	associated	with	the	forest	interior	to	become	phys-
iologically	vulnerable	to	warming?	According	to	the	“microclimate	
hypothesis,”	tropical	understory	birds	choose	cool,	moist	and	dark	
microsites	 within	 rainforests	 and	 changes	 to	 these	 conditions	
bring	 physiological	 vulnerability	 (Patten	 &	 Smith-	Patten,	 2012). 
However,	 the	 relative	 contribution	 of	 thermal	 stress	 in	 this	 vul-
nerability	is	still	poorly	understood.	When	natural	fragmentation	
occurs,	 remaining	 in	 or	 around	 gaps	 can	 cause	 understory	 birds	
to	become	slightly	hyperthermic	(Jirinec,	Rodrigues,	et	al.,	2022). 
Avoiding	large	natural	gaps	would	thus	be	advantageous,	consid-
ering	that	these	can	be	<1 ha	in	area	and	cover	<2%	of	the	entire	
rainforest	tracts	(Hunter	et	al.,	2015).	This	way,	birds	could	escape	
high	 humid	 heat	 in	 gaps	 by	 staying	 in	 close-	canopy	 sites	 during	
the	hottest	hours	of	the	day.	Naturally,	the	reduction	in	fragment	
size	 would	 lower	 the	 chances	 of	 finding	 microclimatic	 refugia	
because	 the	 buffering	 effect	 drops	 near	 forest	 edges	 (Ewers	 &	
Banks-	Leite,	2013),	potentially	increasing	the	vulnerability	of	un-
derstory	birds	(Patten	&	Smith-	Patten,	2012;	Pollock	et	al.,	2015). 
Thus,	 unraveling	 the	 degree	 of	 thermal	 stress,	 if	 any,	 of	 forest-	
dependent	birds	 inside	tropical	 rainforests	 is	a	pending	research	
avenue.	More	urgent	is	to	investigate	their	physiological	response	
during	exposure	to	conditions	at	the	forest	edges,	where	the	most	
drastic	microclimatic	changes	take	place.

Finally,	abundance	declines	and	community	turnover	of	 terres-
trial	and	understory	 insectivores	have	been	reported	 inside	undis-
turbed	tropical	forests.	While	intuitively	linked	to	climate	change,	the	
proximate	causes	of	these	rearrangements	remain	unknown	(Blake	
&	Loiselle,	2015;	Curtis	 et	 al.,	2021;	 Pollock	et	 al.,	2022;	 Stouffer	
et	al.,	2021).	Negative	indirect	effects,	such	as	variations	in	resource	
availability,	 offer	 a	 plausible	 explanation	 (Lister	 &	 Garcia,	 2018; 
Neate-	Clegg	et	al.,	2020),	especially	if	those	resources	are	involved	

in	maintaining	effective	thermoregulation	when	climatic	conditions	
harshen.	Terrestrial	 insectivorous	birds	can	seasonally	 track	water	
or	prey	 to	 fulfill	 thermoregulatory	needs,	but	 increasingly	hot	and	
dry	 conditions	might	 lower	 habitat	 quality	 and	 increase	 the	 birds'	
vulnerability	(Jirinec,	Elizondo,	et	al.,	2022).	The	loss	of	thermoreg-
ulatory	resources	coupled	with	the	intense	climatic	conditions	may	
thus	drive	the	disappearance	of	birds	on	the	interior	in	intact	forests	
(Curtis	et	al.,	2021).	Hopefully,	more	work	would	help	to	unravel	if,	
when	and	how	thermal	tolerance	is	related	to	these	puzzling	trends.

4  |  AN UPDATED APPROACH TO 
A SSESS VULNER ABILIT Y TO WARMING IN 
TROPIC AL BIRDS,  KNOWLEDGE GAPS,  AND 
FUTURE RESE ARCH DIREC TIONS

The	empirical	data	on	thermal	tolerance	allowed	us	to	assess	whether	
the	physiological	response	of	tropical	birds	to	heat	support	the	as-
sumption	that	observed	distributional	rearrangements	are	driven	by	
thermal	vulnerability.	In	essence,	a	narrow	thermal	tolerance	and	a	
proximity	to	thermal	 limits	do	not	appear	to	be	prevailing	features	
of	 tropical	 birds,	 not	 even	 for	 high-	elevation	 species	 which	 are	
alarmingly	underrepresented	in	studies	of	heat	tolerance	(Table 1). 
Therefore,	based	on	the	information	synthesized,	we	present	an	up-
dated	approach	to	re-	assess	vulnerability	and	resilience	of	tropical	
birds	 (Figure 4).	The	observed	distributional	 rearrangements,	 from	
the	individual	to	the	community	level,	seem	to	result	from	synergies	
between	land-	use	change	and	microclimatic	variation	or	from	indi-
rect	effects	of	climate	change	on	natural	habitats	and	key	resources.	
However,	there	are	still	unaddressed	topics	which	limit	our	knowl-
edge	about	potential	sources	of	thermal	vulnerability	(Table 2).

First	and	foremost,	most	studies	have	focused	on	the	BMR	and	
the	TNZ.	For	analyses	of	vulnerability	or	resilience	to	climate	change	
to	be	complete,	a	close	examination	of	the	abilities	for	heat	dissipa-
tion	is	a	requirement.	Ideally,	more	data	on	the	long-	term	response	
should	 be	 produced	because	 chronic	 exposure	 to	 heat	 can	 impair	
vital	functions	over	time	when	birds	become	unable	to	dissipate	heat	
efficiently	(Conradie	et	al.,	2019).	Thus,	future	studies	should	con-
sider	a	careful	selection	of	key	parameters	to	measure	vulnerability	
to	warming	and	how	these	react	to	seasonal	climatic	variation	and	
anomalies.	Of	such,	the	EWL	and	the	Tamax	have	informed	assess-
ments	of	 the	probability	 of	 extirpation	 and	 survival	 in	 subtropical	
birds	 that	 inhabit	 arid	 zones	 in	 which	 Ta	 variation	 has	 intensified	
as	 a	 consequence	 of	 climate	 change	 (Albright	 et	 al.,	 2017; Riddell 
et	al.,	2019).	In	addition,	the	variation	in	the	maximum	tolerable	Tb 
has	been	 analyzed	 across	 ecological	 gradients	 in	 subtropical	 birds	
(Freeman	et	al.,	2022).	Researchers	might	also	analyze	the	combina-
tions	of	humidity	and	Ta	that	severely	hamper	effective	heat	dissipa-
tion,	and	are	detrimental	to	survival,	to	determine	species-	specific	
vulnerability.	For	 instance,	changes	 in	rainfall	could	be	particularly	
problematic	to	small	tropical	songbirds	given	that	their	reliance	on	
passive	heat	dissipation	could	put	 them	at	 risk	during	episodes	of	
very	high	humid	heat	(Gardner	et	al.,	2016;	Gerson	et	al.,	2019).
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8 of 14  |     MONGE et al.

Additionally,	more	 intra-		 and	 interspecific	 studies	 of	 species	
that	 inhabit	environmental	gradients	 (e.g.,	Ta,	precipitation,	arid-
ity)	could	allow	the	identification	of	populations	and	species	more	
vulnerable	to	local	warming	as	well	as	physiological	features	which	
could	make	them	more	resilient	in	different	parts	of	their	distribu-
tion	(i.e.,	phenotypic	plasticity)	(Cavieres	&	Sabat,	2008;	Tieleman	
et	al.,	2002).	Birds	in	general	can	experience	short-		and	long-	term	
seasonal	 variation	 in	 BMR	 and	 EWL	 (McKechnie	 et	 al.,	 2007; 
Soobramoney	et	al.,	2003;	Thompson	&	Downs,	2017;	Tieleman	
et	 al.,	 2003)	 but	 also,	 and	 most	 importantly,	 cooling	 capacity	
and	 heat	 tolerance	 limits	 can	 vary	 in	 proportion	 to	 the	 severity	
of	variation	in	environmental	conditions,	such	as	Ta	and	humidity	
(Freeman	et	al.,	2022;	Noakes	et	al.,	2016).	For	instance,	some	lark	
species	(Alaudidae)	responded	to	increasing	aridity	along	their	dis-
tributions	with	 lower	phylogeny-	independent	rates	of	EWL,	sug-
gestive	of	a	plastic	response	among	species	(Tieleman	et	al.,	2002). 
Unfortunately,	intraspecific	and	phenotypic	plasticity	studies	are	
largely	absent	for	tropical	birds.	While	Puerto	Rican	todies	(Todus 
mexicanus)	from	a	lowland	xeric	habitat	exhibited	lower	BMR	than	
individuals	from	montane	humid	forests,	evidence	for	Tb	was	less	
definite	 (Merola-	Zwartjes	&	 Ligon,	2000;	Oniki,	 1975).	 Similarly,	
interspecific	studies	are	scant	and	show	inconsistencies	in	the	pat-
terns	of	variation.	For	example,	across	elevational	and	ecological	
gradients,	 Tb	 and	BMR	varied	 in	 some	 studies	 but	 not	 in	 others	
(Hails,	1983;	Londoño	et	al.,	2015,	2017;	Seavy,	2006).	Given	that	
BMR	 can	 only	 partially	 explain	 flexibility	 in	 thermal	 tolerance,	
more	intra-		and	interspecific	data	on	EWL,	cooling	efficiency,	and	

upper Tb	 limits	 are	urgently	needed	 for	 species	 along	ecological	
and	elevational	gradients.

Finally,	we	would	 like	to	underscore	the	relevance	of	consider-
ing	the	human	disturbance	of	natural	habitats	as	the	leading	cause	
of	vulnerability	for	birds	 in	the	tropical	regions	 (Caro	et	al.,	2022). 
Tropical	 birds	 are	 well	 adapted	 to	 the	 abiotic	 conditions	 of	 their	
natural	 habitats,	 but	 the	 changes	 in	 land	 use	 disrupt	 this	 balance	
(Figure 3).	In	fact,	the	combination	of	habitat	alterations	and	climatic	
variations	can	drive	patterns	of	extinction	and	colonization	shifts	in	
tropical	birds	(Beale	et	al.,	2013).	Therefore,	we	believe	that	the	key	
areas	 that	 need	 to	 be	 assessed	 in	 order	 to	 determine	 the	 physio-
logical	vulnerability	of	tropical	birds	to	warming	are	those	directly	
affected	by	human	activities.

5  |  CONCLUSIONS

Based	on	our	literature	review,	we	propose	that	many	tropical	birds	
are	resilient	enough	to	tolerate	thermal	variation	within	the	range	
of	predicted	future	levels	of	warming.	Thus,	we	concur	with	Pollock	
et	al.	(2021)	that	tropical	birds	are	no	more	physiologically	threat-
ened	by	warming	 in	 the	 short-	term	 than	birds	 at	 other	 latitudes.	
Most	likely,	the	global	hotspots	of	imminent	avian	physiological	vul-
nerability	reside	in	arid	regions	outside	the	Tropics	[e.g.,	southern	
Africa	 (Conradie	 et	 al.,	2019),	 Australia	 (McKechnie	 et	 al.,	2012),	
North	American	southwest	(Albright	et	al.,	2017),	and	the	Iberian	
Peninsula	 (Cabello-	Vergel	 et	 al.,	 2022)].	 However,	 this	 does	 not	

F I G U R E  4 Physiological	vulnerability	and	resilience	to	warming	in	tropical	birds.	The	Traditional Approach	refers	to	the	assumptions	
commonly	used	to	describe	vulnerability	to	warming	in	tropical	biotas	in	general	whereas	the	Updated Approach	is	based	on	our	synthesis	
of	literature	involving	tropical	birds.	The	dashed	lines	in	the	Mechanisms	box	connect	assumptions	with	their	respective	physiological	
mechanisms	in	the	response	to	temperature	changes.
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mean	that	tropical	birds	are	physiologically	insensitive	to	warming	
in	general.	An	increase	of	5°C	in	local	average	Ta,	as	in	worst-	case	
scenarios,	 could	prove	 challenging	 to	birds	 from	open	areas	who	
rely	on	Tb–	Ta	gradients	for	passive	heat	dissipation,	as	this	strategy	
would	 demand	 higher	 levels	 of	 hyperthermia.	 An	 equally	 vulner-
able	group	are	birds	from	hot,	xeric	habitats	 if	water	sources	be-
come	 absent	 or	 reduced	 during	 heat	waves.	 Also,	 the	 consistent	
variation	in	rainfall	regimes,	which	can	produce	more	intense	wet	
and	dry	seasons	(Brawn	et	al.,	2017;	Chadwick	et	al.,	2016),	has	the	
potential	to	alter	the	frequency	of	stronger	humid-	heat	events	and	
extend	the	length	of	the	dry	season.	Climate	change	is	the	world's	
greatest	concern	at	the	scientific	and	public-	opinion	level	but	this	
has	 taken	 the	 focus	 away	 from	other,	more	 imminent,	 threats	 to	
biodiversity	 such	 as	 anthropogenic	 habitat	 loss	 and	 degradation	
(Caro	et	al.,	2022).	Land-	use	change	does	not	only	affect	tropical	
bird	diversity	directly	but	also	reinforces	climate-	driven	threats	by	
altering	the	microclimate	birds	are	exposed	to	(Monge	et	al.,	2022). 
Therefore,	 adaptive	measures	 such	 as	 protecting	 vast	 areas	 cov-
ered	 by	 forest	 (Stouffer	 et	 al.,	2011),	 especially	 along	 ecological	
gradients	(Brodie	et	al.,	2012)	or,	alternatively,	improving	land	man-
agement	strategies	(Oliver	&	Morecroft,	2014)	are	the	most	prom-
ising	approaches	to	safeguard	the	diversity	of	tropical	birds.
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