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Schistosomes undergo complicated migration in final hosts during infection,

associated with differential immune responses. It has been shown that CD4+ T

cells play critical roles in response to Schistosoma infections and accumulated

documents have indicated that miRNAs tightly regulate T cell activity. However,

miRNA profiles in host T cells associated with Schistosoma infection remain

poorly characterized. Therefore, we undertook the study and systematically

characterized T cell miRNA profiles from the livers and blood of S. japonicum

infected C57BL/6J mice at 14- and 21-days post-infection. We observed 508

and 504 miRNAs, in which 264 miRNAs were co-detected in T cells isolated

from blood and livers, respectively. The comparative analysis of T cell miRNAs

from uninfected and infected C57BL/6J mice blood showed that miR-486b-

5p/3p expression was significantly downregulated and linked to various T cell

immune responses and miR-375-5p was highly upregulated, associated with

Wnt signaling and pluripotency, Delta notch signaling pathways, etc. Whereas

hepatic T cells showed miR-466b-3p, miR-486b-3p, miR-1969, and miR-375

were differentially expressed compared to the uninfected control. The different

expressions of somemiRNAs were further corroborated in isolated T cells from

mice and in vitro cultured EL-4 cells treated with S. japonicum worm antigens

by RT-qPCR and similar results were found. In addition, bioinformatics analysis

combined with RT-qPCR validation of selected targets associated with the

immune system and parasite-caused infectious disease showed a significant

increase in the expression of Ctla4, Atg5, Hgf, Vcl and Arpc4 and a decreased

expression of Fermt3, Pik3r1, Myd88, Nfkbie, Ppp1r12a, Ppp3r1, Nfyb, Atg12,

Ube2n, Tyrobp, Cxcr4 and Tollip. Overall, these results unveil the

comprehensive repertoire of T cell miRNAs during S. japonicum infection,

suggesting that the circulatory (blood) and liver systems have distinct miRNAs

landscapes that may be important for regulating T cell immune response.

Altogether, our findings indicated a dynamic expression pattern of T cell

miRNAs during the hepatic stages of S. japonicum infection.
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Introduction

Schistosoma has a complex life cycle and needs different

hosts (intermediate host and definitive host) to complete its life

cycle. It has fascinating migratory nature starting from the

infection site of the skin epidermis to blood vessels, then

through the heart and lungs to the vasculature of the livers

(1). During the migratory process, significant morphological

changes and worm developments are associated with parasites

(2). Ultimately, the parasites can develop into adult worms and

then survive within the venous system of the definitive

mammalian hosts for many years (3). The circulatory system

is accumulated by various immune defenses, including immune

cells, phagocytes, complement proteins, and antibodies. The

adult schistosomes are shown to adopt several strategies, from

coating their outer tegument with antigens from the hosts to

secreting excretory-secretory products and extracellular vesicles

to modulate the host immune response in its favor (4).

Livers are known as immune-permissive organs with unique

anatomy, which contain various immunocompetent cells such as

dendritic cells, Kupffer cells (KCs), natural killer (NK) cells, natural

killer T cells, regulatory T cells, etc. (5, 6). Schistosomes have

complicated migration in final hosts. Upon cercaria penetrating

the skin epidermis, juvenile schistosomula are transformed and

then reaches the dermal blood vessels. Then schistosomula reach

the lungs and S. japonicum schistosomula found in lungs at day 2

and peaks at 3 days post-infection. Subsequently, S. japonicum

schistosomula usually migrate into the liver 3 days post-infection

and take 8-10 days for them to grow up and develop in the livers.

Then, parasites begin to lodge in the portal and mesenteric veins at

11 days post infection. The early phase of S. japonicum living in the

hepatic portal vein is essential to find a mate and pairing and

complete maturation as well as flow to reach the egg laying sites (2,

7). The majority of studies focused on S. japonicum eggs induced

immune response and liver pathology in final hosts (8), however,

early stages of hepatic progression and related host immune

response, which is critical for parasite development and

maturation, remains poorly characterization. Consequently, it is

necessary to determine how S. japonicum infection induces host

immune response at early hepatic schistosomula stages, which may

help to further reveal the relationship between schistosomula

modulating host immune response and parasite development.

T helper cells have a crucial role in shaping the immune

responses during schistosomiasis (9). During the early phase of
02
infection, cercaria initiates a Th1 immune response, characterized

by increased pro-inflammatory cytokines, including TNF-a and

IFN-g, IL-1, and IL-6 (10). When worms develop into adults and

lay eggs, however, the Th2 immune response is triggered by their

soluble egg antigen (11, 12). The Th2 immune response plays a

critical role in the pathogenesis of schistosomiasis (13). Previous

studies have suggested that Th17/IL-17 exacerbates egg-induced

liver pathology and treatment with anti-IL-17 antibodies

remarkably inhibits hepatic granulomatous inflammation (14).

Then, Treg cells are recruited in the liver to hepatic granulomas

and exert an immunosuppressive role to limit granulomatous

inflammation and fibrosis (15, 16). Moreover, recent studies

showed that Tfh and Th9 cells potentially promote liver

granulomas and fibrogenesis in S. japonicum infected murine

model of schistosomiasis (17, 18). Overall, these studies suggested

that T cell subsets undergo complex crosstalk with antigen-

presenting cells that regulate the pathological progression of

schistosomiasis (19).

MicroRNAs (miRNAs) are endogenous small non-coding

RNAs that regulate various biological processes, including

proliferation, development, differentiation, and cell death, etc.

(20). In the murine liver, some miRNAs such as miR-146b and

miR-155 are dysregulated during the mid-phase of schistosome

infection, indicating they are potentially involved in the

modulation of hepatic inflammation (21, 22). Additionally,

some studies have suggested that specific miRNAs can regulate

T-cell activation, proliferation, and development by targeting

prime transcription factors, signaling molecules, and cytokines

(23, 24). For instance, the ablation of mature miRNAs at the

early thymocyte developmental stage leads to the developmental

arrest and a consequent peripheral mature alpha-beta T and

invariant natural killer T (iNKT) cell pool (25–28). Furthermore,

the enhanced expressions of miR-146b and miR-155 may induce

the recruitment of lymphocytes (B and T lymphocytes) in

response to antigens secreted by eggs (29, 30). Besides, the

miRNA expression profile of thymic T cells at each

developmental stage shows a unique pattern of expression

(31). Overall, these studies suggested that miRNAs can

regulate T cells differentiation and functions. However, the

detailed repertoire of T cell miRNAs has not been explored yet

during Schistosoma infection particularly for early stage.

Understanding of mechanisms of miRNAs mediated T cell

immune response during S. japonicum infection may help to

develop effective strategies against schistosomiasis.
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Here, we reported the comprehensive repertoire of T cell

miRNA profiles from blood and livers of C57BL/6J mice during

S. japonicum infection at 14 dpi and 21 dpi using fluorescence-

activated cell sorting (FACs) combined with deep sequencing. In

comparison to uninfected control, we identified several miRNAs

that are differentially and enriched explicitly in T cells of S.

japonicum-infected mice. The results indicated the dynamic

expression profiles of T cell miRNAs in blood and livers,

exhibiting unique regulatory signatures during S. japonicum

infection at early hepatic schistosomula stages (14 dpi and

21 dpi).
Materials and methods

Establishment of schistosomiasis
mice model

Male C57BL/6J mice (6–8 weeks old) were procured from

Shanghai SLAC Laboratory of Animal Co., Ltd, (Shanghai,

China). All animals were housed under standard experimental

conditions. All animal experiment protocols were approved by

the Animal Management Committee and the Animal Care and

Use Committee of the Shanghai Science and Technology

Commission of the Shanghai Municipal government for

Shanghai Veterinary Research Institute, Chinese Academy of

Agriculture Sciences, China (Permit No. SHVRI-SZ-20200720-

03). The life cycle of S. japonicum (Anhui isolate) was

maintained in male mice and the intermediate snail host

Oncomelania hupensis (Center of National Institute of

Parasitic Disease, Chinese Center for Disease Control and

Prevention, Shanghai, China). The mice were challenged with

50 ± 2 S. japonicum cercariae via abdominal skin.
Purification of T cells from peripheral
blood and liver

A total of two biological replicates were used for each group (the

sample for each biological replicate is pooled from 10 mice, n = 10).

At 14- and 21-days post-infection (dpi), blood samples were

collected from S. japonicum infected mice in anticoagulant blood

collection tubes (BD Biosciences, Mountain View, CA, USA).

Similarly, blood samples of uninfected mice were collected as a

control. The whole blood was diluted with PBS and overlaid on top

of the Ficoll (1.084). Then centrifuge at 400 × g for 30-40 min at

room temperature, during the centrifugation, granulocytes, platelets

and red blood cell (RBC) pellet to the bottom of the tube and the

peripheral blood mononuclear cells (PBMCs) float over the Ficoll-

plasma interface layer. After collection, PBMCs were washed with

PBS at 300 × g at 4°C twice. Then PBMCs were lysed using RBC

lysis buffer (Biolegend, San Diego, USA) and the remaining cells

were pelleted and resuspended in 200 mL of wash solution. The
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fluorochrome-conjugated antibodies against mouse (BV510,

Fixable Viability Stain 510, BD Biosciences, Mountain View,

USA), CD45, CD45R (B220), CD3e, CD4 and CD8a

(eBioscience™, Frankfurt, Germany) with the dilutions as

suggested by manufacturer was used to stain immune cells and

then cells were sorted using a BD FACsAria II system (BD

Biosciences, Mountain View, USA). Firstly, we sorted the live

cells by gating BV510 positive cells and then interrogated for

surface CD45 expression to sort leukocytes. Later T and B cells

were sorted using CD3e and B220 antibodies. Then the CD3e

positive population was gated using CD4 and CD8a antibodies to

sort T cells. The flow cytometry data were analysed using

FlowJo (v10.6.2).

For isolating liver T cells, both infected and uninfected mice

were anesthetized, and livers were perfused with RPMI-1640

(Invitrogen, USA) at indicated days of post infection (dpi). The

livers were thoroughly washed, minced into small pieces with

surgical scissors, and forced through a 70 µm cell strainer

(Falcon) using a sterile syringe plunger. The obtained

preparation was suspended in 50 mL RPMI-1640 medium and

centrifuged for 5 min at 700 × g at 4°C. Then, the pellet was

resuspended with 30 mL of 40% Percoll (GE Healthcare, Boston,

USA), recentrifuged for 20 min at 900 × g at 4°C with the off-

brake setting twice. The resultant sediments were resuspended in

RPMI-1640 and filtered through a 40 µm cell strainer (Falcon).

The pellet was resuspended again in 2 mL of RBC lysis buffer

(Biolegend, San Diego, USA), incubated for 5 min, then

centrifuged for 5 min at 500 × g at 4°C. Finally, the pellet

obtained was resuspended in 1 mL PBS and the antibodies used

in above sections were added with same dilutions and incubated

for 30 min at 4°C. After staining, cells were washed with PBS

containing 0.04% BSA at 500 × g for 5 min at 4°C. The collected

cells were resuspended and sorted by flow cytometry as

described for T cell purification. The information of antibodies

used are listed and provided in Supplementary Table 1.
RNA preparation, sequencing and
data analysis

Total RNAs were extracted from sorted peripheral blood T

cells and liver T cells (14 dpi, 21 dpi and uninfected control)

using a miRNeasy Mini Kit (QIAGEN, Germany). RNA quality

was evaluated using an Agilent 2100 Bioanalyzer (Agilent

Technologies). Small RNAs in the 18-30 nt fraction were

extracted from denaturing 15% polyacrylamide gels and used

for library preparation using the TruSeq® Small RNA Library

Preparation Kit (Illumina, CA, USA). Twelve resulting small-

RNA libraries were subjected to Illumina 50 bp single-end

sequencing by Illumina HiSeq™ 2500 sequencing at BGI (The

Beijing Genomics Institute). Following sequencing, raw reads

were cleaned by removing adapter sequences, reads containing

poly-N, low-quality reads, and oligonucleotides with length >32
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or <18 nt. The remaining sequences were mapped to the

reference genome and another small RNA database, including

miRbase, siRNA, piRNA, and snoRNA with Bowtie (32). The

covariance models (cm) search was mainly performed for Rfam

mapping (33). The software miRDeep2 (34) was used to predict

novel miRNA by exploring the secondary structure. The small

RNA expression level is calculated by counting absolute

numbers of molecules using unique molecular identifiers (35).

Differential expression analysis was performed using the

DEGseq (36), Q value ≤ 0.05, and the absolute value of

Log2Ratio ≥ 1 as the default threshold to judge the

significance of expression difference. RNAhybrid (37),

miRanda (38) and TargetScan (39) were used to predict the

target genes of miRNAs. To annotate gene functions, the target

genes were aligned against the Kyoto Encyclopedia of Genes

(KEGG) and Gene Ontology (GO) database (40, 41). GO

enrichment analysis and KEGG enrichment analysis of target

genes were performed using phyper, a function of R. The P-value

was corrected using the Bonferroni method (42), and a corrected

P-value ≤ 0.05 was taken as a threshold. GO terms or KEGG

terms fulfilling this condition were significantly enriched terms.
Preparation of S. japonicum soluble
antigen and stimulation of isolated
T cells and EL-4 cells

Freshly perfused S. japonicum were thoroughly washed in PBS

(pH 7.4). PBS solution containing protease and phosphatase

inhibitor (Thermo Fisher Scientific Corp., MA, USA) was added

and the mixture was homogenized for 30 min on ice and the

homogenate was sonicated for 30 min. Then centrifuged at

16,000 x g for 30 min and the supernatant was used for S.

japonicum soluble worm antigen (SWA). Protein concentration

was measured by standard Bradford protein assay (Beyotime

Biotechnology, China) using bovine serum albumin as standard.

T cells were isolated from blood and liver of C57BL/6J mice using

CD90.2+ MicroBeads (Miltenyi Biotec, Bergisch Gladbach,

Germany) following manufacturers protocol. Isolated cells were

cultured RPMI 1640 medium containing 10% fetal bovine serum

and 1% penicillin-streptomycin solution, Then, the cells were

treated with S. japonicum soluble antigen (15 µg/mL) or PBS

(control) for 36 h and total RNA was isolated and RT-qPCR was

performed to assess the miRNA expression. Similarly, EL-4 cells

were treated with S. japonicum soluble antigen or PBS (control) and

RT-qPCR was carried out to assess selected miRNA expression.
MiRNA and its target gene expression
validation by RT-qPCR

A real-time quantitative reverse transcription-polymerase

chain reaction (RT-qPCR) was performed to confirm miRNA
Frontiers in Immunology 04
expressions and the target gene expressions in isolated T cells.

Briefly, total RNA was extracted using Trizol (Thermo Fisher

Scientific) and reversed transcribed using the miScript II RT Kit

(QIAGEN, Hilden, Germany). The miRNA expression was

determined using the reverse primer given in the miScript

SYBR Green PCR Kit (QIAGEN). For the expressions of target

genes, the real-time PCR was performed using the following

thermal cycling program: 95°C for 5 min, 40 cycles at 95°C for 10

s, 57°C for 20 s, and 72°C for 36 s. U6 (a type of small nuclear

RNA) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH)

were used as the internal controls. The fold change was

calculated using the 2−DCT method (43). All the primer

sequences are provided in Supplementary Tables 2, 3.
MiRNA target pathway network building

To build a murine miRNA target network, we used the

online tool miRTargetLink 2.0 (https://www.ccb.uni-saarland.

de/mirtargetlink2) to build the miRNA target network (44). The

strongly validated targets with pathways were included to build

and visualize the network of several most significantly

differentially expressed miRNAs such as miR-486b-5p, miR-

375-5p, miR-1969, miR-486b-3p, etc.
Statistical analyses

The RT-qPCR results were expressed as mean ± SEM from

representative triplicate experiments. The comparison among

uninfected vs 14 dpi and 21 dpi were analyzed using one-way

ANOVA and comparative analysis between two groups were

analyzed using Student’s T-test. The results at P ≤ 0.05 were

considered statistically significant.
Results

Experimental design and data output

T cells were isolated from murine peripheral blood and liver

tissues using flow cytometry (the details of workflow and T cell

sorting were shown in Figure 1A and Supplementary Figures 1A,

B). The average of live T cells isolated from murine blood were

85.2%, 99.4% and 97.4% at 14 dpi, 21 dpi and uninfected mice,

respectively. Similarly, there were 94.4%, 99.6% and 93.95% of

average live T cells isolated from livers at 14 dpi, 21 dpi and

uninfected mice, respectively (Supplementary Figures 1C, D). In

addition, we observed the average of live CD4+ T cells (66.15%,

50.3% and 66.15% for blood; 74.1%, 60.9% and 57.95% for liver)

and CD8a+ T cells (25.7%, 22.75% and 26.3% for blood; 10.15%,

20.25% and 15.8% for liver) at 14 dpi, 21 dpi and uninfected

mice (Supplementary Figures 1E, F). Then, the isolated T cells
frontiersin.org
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were subject to RNA isolation for RNA-Seq analyses. Details

output data of RNA-seq for each library given in Supplementary

Data Sheets 1, 2. The average number of obtained clean reads for

T cells isolated from blood were approximately 25.92, 29.51 and

28.12 million and were approximately 33.50, 30.95 and 30.78

million for T cells isolated from liver at 14 dpi, 21 dpi and

uninfected mice, respectively (Supplementary Data Sheet 1). The

average percentages of the total mapping clean reads were

87.315%, 91.21% and 92.98% for blood T cells at 14 dpi, 21

dpi and uninfected mice and were 86.465%, 85.18% and 89.28%

for liver T cells in corresponding groups, respectively

(Supplementary Data Sheet 2). The classifications and

distributions of small RNAs for each sample given in

Supplementary Figures 2A, B. The results showed that most

reads are related to intergenic regions followed by unmapped,

hairpin, mature, rRNA, tRNA and precursor and others. To

determine the cluster of miRNA expression profiles among

different samples (blood and liver) for different groups (14 dpi,

21 dpi and uninfected mice), Pearson correlation analysis was

performed. The correlation heat map showed that infected and

uninfected had distinct clusters based on the miRNA expression

profiles (Figures 1B, C). All samples were subjected to principal

component analysis (PCA) to assess variations. The results

indicated that each T cell sample isolated from different stages
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(14 dpi, 21 dpi and uninfected control) or organs (blood and

liver) is close together, in contrast, a higher dispersion of samples

between blood and liver at different stages or organs was

observed (Figure 1D).
MiRNA profiles of T cells from blood of
S. japonicum infected mice

A total of 508 miRNAs was detected in T cells isolated from

blood in S. japonicum infected at 14 dpi, 21 dpi and uninfected

mice, respectively (Figure 2A). Meanwhile, we observed 264 co-

detected miRNAs, out of which 50 miRNAs exhibited increased

expressions and 81 miRNAs showed decreased expressions

compared to the T cells from uninfected control (Supplementary

Figures 2C, D). In detail, 60 miRNAs were specifically detected in T

cells from uninfected control and 21 dpi, whereas 35 miRNAs were

specifically detected from 14 dpi (Figure 2A). The differentially

expressed miRNAs between two groups (uninfected vs 14 dpi: 12

decreased and 12 increased; uninfected vs 21 dpi: 15 decreased and

16 increased) showed the co-detected and specific miRNAs

(Figure 2B; Supplementary Datasheet 3), among them, we noted

14 co-detected miRNAs (mark in green) and two novel miRNAs

(novel-miR-365-5p and novel-miR-243-3p, mark in blue) at 14 and
A B

D
C

FIGURE 1

T cell isolation and RNA seq analyses. (A) Schematic workflow for T cell isolation at different stages of S. japonicum infected mice and
uninfected mice; (B, C) Heatmap of Pearson correlations of T cell miRNA expressions among different samples from blood (B) and liver (C) at
different stages of S. japonicum infected mice and uninfected mice. Colors in the heat map indicate the Pearson correlation coefficient among
different samples, lighter color indicated higher correlation; (D) PCA analyses of T cell samples isolated from blood and liver of S. japonicum
infected mice at 14 dpi and 21 dpi and uninfected mice.
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21 dpi (Supplementary Figures 3A, B). The heatmap of co-detected

miRNAs revealed 14 differentially expressed miRNAs (7 increased

and 7 decreased) in blood T cells among 14 and 21 dpi (Figure 2C).

Volcano plot analysis indicated that the expressions of miR-486b-

5p/3p and miR-669o-3p were decreased in blood T cells of mice

infected with S. japonicum (14 dpi and 21 dpi), and in contrast,

miR-375-5p, miR-138-5p, and miR-204-5p were upregulated

(Figure 2D). We further wanted to know whether there are any

specific miRNA expression profiles between 14 dpi and 21 dpi, and

the results showed significant downregulation of miR-122-5p,

whereas upregulation of miR-669a-5p, miR-449a-5p, miR-301a-5p,

miR-149-5p, and miR-466c-3p (Figure 2D). These results indicated

that T cell miRNAs altered their expressions at blood of mice during

different stages of S. japonicum infection.

Subsequently, we validated the expressions of several

miRNAs using RT-qPCR and found that the majority of
Frontiers in Immunology 06
selected miRNAs (75%) showed consistent expressions with

RNA-seq results. As shown in Figure 2E, we observed that

miR-99a-5p expression was significantly increased in T cells of

blood from 14 dpi and 21 dpi infected mice compared with

uninfected control, whereas miR-142a-3p, miR-486a-5p, miR-

486b-5p, miR-378a-5p, miR-16-5p, and miR-30d-5p were

decreased. These results were consistent with RNA-Seq data.

In addition, analysis of the isolated blood T cells treated with

SWA indicated the decreased expressions of miR-181c-5p, miR-

29a-3p, miR-16-5p, miR-30d-5p, miR-142a-3p, miR-151-5p,

miR-378a-5p and miR-486b-5p as compared with that of

control (Supplementary Figure 4A). Similar results were also

noted in EL-4 T cell treated with SWA (Supplementary

Figure 4C). Overall, these results were further corroborated

with the differentially expressed miRNAs in blood T cells of S.

japonicum infected mice. GO analysis of putative targets of the
A

B

D

E

F G H

C

FIGURE 2

Blood T cell miRNA profiles, expression validation and prediction of molecular functions of their targets. (A) Venn diagram showing total and
co-detected blood T cell miRNAs among uninfected, 14 dpi and 21 dpi groups (the number indicates the common or specific miRNAs identified
in different groups); (B) Venn diagram showing codetected and specific blood T cell miRNAs between two groups (uninfected vs 14 dpi and
uninfected vs 21 dpi); (C) Heatmap showing differentially expressed blood T cell miRNAs co-detected between two groups (uninfected vs. 14 dpi
and uninfected vs. 21 dpi); (D) Volcano plot showing differentially expressed blood T cell miRNAs for different comparative analyses (uninfected
control vs 14 dpi; uninfected control vs 21 dpi; 14 dpi vs 21 dpi). Green dot indicates downregulated miRNAs, red dot indicates upregulated
miRNAs and grey dot indicates no significantly expressed miRNAs; (E) Validation of increased and decreased expressions of miRNAs of blood T
cells by RT-qPCR. Data illustrate representative results and show the mean and standard error mean from an experiment carried out in triplicate.
Statistical analysis was performed comparing uninfected vs 14 dpi or 21 dpi using one-way ANOVA and * denotes P ≤ 0.05, ** denotes P ≤ 0.01,
*** denotes P ≤ 0.001, **** denotes P ≤ 0.0001 and ns denotes non-significant; (F–H) GO enrichment analyses of molecular functions of
targets for differently expressed miRNAs (Uninfected vs 14 dpi (F); Uninfected vs 21 dpi (G); 14 dpi vs 21 dpi (H) in blood T cells). The results
showing 20 most significantly enrichment functions of targets for differentially expressed miRNAs.
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differentially expressed miRNAs in T cells isolated from blood

showed significant enrichment of molecular functions such as

protein binding, metal ion binding, nucleotide binding, ATP

binding, and DNA binding (Figures 2F–H; Supplementary

Datasheet 5). The GO biological processes showed their

associations with positive/negative regulation of transcription

by RNA polymerase II, multicellular organism development,

cell differentiation, etc. (Supplementary Figures 3E–G;

Supplementary Datasheet 5).
MiRNA profiles of T cells from the livers
of S. japonicum infected mice

Totally, 504miRNAs were detected in T cells isolated from the

livers in S. japonicum infected and uninfected mice, respectively

(Figure 3A). Among them, 59 and 85 miRNAs were specifically
Frontiers in Immunology 07
detected at 21 dpi and uninfected control, respectively, whereas 18

miRNAs were specifically detected at 14 dpi (Figure 3A). We

observed 264 co-detected miRNAs, of which 52 and 133 miRNAs

were up- and downregulated compared to the uninfected control,

respectively (Supplementary Figures 2E, F). Analysis of the

differentially expressed miRNAs between two groups

(uninfected vs 14 dpi: 3 decreased and 14 increased; uninfected

vs 21 dpi: 26 decreased and 26 increased) showed the co-detected

and specific miRNAs (Figure 3B; Supplementary Datasheet 3). In

addition, seven novel miRNAs (novel-miR-133-3p, novel-miR-

120-3p, novel-miR-62-5p, novel-miR-279-3p, novel-miR-389-3p,

novel-miR-226-3p, and novel-miR-44-5p, mark in blue) were also

shown to differentially express in T cell of liver between S.

japonicum infected mice (14 dpi or 21 dpi and uninfected

control (Supplementary Figures 3C, D). The heatmap of

miRNAs in liver T cells at 14 dpi and 21 dpi showed four co-

detected differentially expressed miRNAs (miR-10a-5p,miR-466b-
A

B

D

E

F G H

C

FIGURE 3

Liver T cell miRNAs profiles, validation of expressions, and prediction of molecular functions of their targets. (A) Venn diagram showing total and
co-detected liver T cell miRNAs among uninfected, 14 dpi and 21 dpi groups (the number indicates the common or specific miRNAs identified
in different groups); (B) Venn diagram showing co-detected and specific liver T cell miRNAs between two groups (uninfected vs 14 dpi and
uninfected vs 21 dpi); (C) Heatmap showing the expression of differentially expressed liver T cell miRNAs co-detected between two groups
(uninfected vs 14 dpi and uninfected vs 21 dpi); (D) Volcano plot showing differentially expressed liver T cell miRNAs for different comparative
analyses (uninfected control vs 14 dpi; uninfected control vs 21 dpi; 14 dpi vs 21 dpi). Green dot indicates down regulated miRNAs, red dot
indicates upregulated miRNAs and grey dot indicates no significantly expressed miRNAs; (E) Validation of selected increased and decreased
expressions of liver T cell miRNAs by RT-qPCR. Data illustrate representative results and show the mean and standard error mean from an
experiment carried out in triplicate. Statistical analysis was performed comparing uninfected vs 14 dpi or 21 dpi using one-way ANOVA and
* denotes P ≤ 0.05, ** denotes P ≤ 0.01, *** denotes P ≤ 0.001, **** denotes P ≤ 0.0001; (F–H) GO enrichment analyses of molecular functions
of targets for differently expressed miRNAs (Uninfected vs 14 dpi (F); Uninfected vs 21 dpi (G); 14 dpi vs 21 dpi (H) in liver T cells). The results
showing 20 most significantly enrichment functions of targets for differentially expressed miRNAs.
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3p, miR-221-3p and miR-18b-5p) (Figure 3C). Volcano plot

analysis of differentially expressed miRNAs between uninfected

and 14 dpi mice showed the downregulation of miR-466b-3p,

novel-miR-120-3p and novel-miR-133-3p, and the upregulation of

miR-223-3/5p, miR-1969, miR-7213-5p, miR-7659-5p, novel-miR-

62-5p, miR-18b-5p, miR-362-5p, miR-122-5p and miR-6924-5p as

well as other 4 miRNAs (Figure 3D). In comparison with

uninfected, miRNAs such as miR-486b-3p, miR-181c-5p, miR-

669a-5p were downregulated in T cells isolated from 21 dpi

murine livers, while miR-375-3p, miR-204-5p, miR-669p-5p,

miR-221-3p and others exhibited notable upregulation

(Figure 3D). In addition, a panel of miRNAs was found to be

differentially expressed in liver T cells between 14 dpi and 21 dpi

(Figure 3D). The RT-qPCR validations of selected miRNAs

indicated miR-669c-5p, miR-181c-5p, miR-142a-3p/5p, miR-

378a-5p, miR-16-5p, and miR-30d-5p exhibited significantly

decreased expressions in murine liver T cells at 14 dpi and 21

dpi compared to uninfected control (Figure 3E). The RT-qPCR

results of these altered expressions of T cell miRNAs were

consistent (80%) with RNA-seq results. Furthermore, isolated T

cells from liver treated with SWA showed increased expressions of

miR-182-5p, miR-21a-5p and miR-222-3p while decreased

expressions of miR-142a-3p, miR-181c-5p, miR-142a-5p, miR-

191-5p and miR-467a-5p were observed (Supplementary

Figure 4B). Similar results were also noted in EL-4 T cell treated

with SWA (Supplementary Figure 4C). Overall, these results were

further corroborated with the differentially expressed miRNAs in

liver T cells of S. japonicum infected mice. GO enrichment

analysis of molecular functions of targets for differentially

expressed miRNAs in three groups (uninfected vs 14 dpi;

uninfected vs 21 dpi; 14 dpi vs 21 dpi) showed several

significant binding functions, including protein binding, metal

ion binding, nucleotide binding, ATP binding, DNA binding, etc.

(Figures 3F–H; Supplementary Datasheet 6). GO analysis of

biological processes of targets for differentially expressed

miRNAs in these groups showed their significant enrichment

with positive/negative regulation of transcription by RNA

polymerase II, multicellular organism development, cell

differentiation, etc. (Supplementary Figures 3H-J; Supplementary

Datasheet 6). These results suggest that most targets of these

differentially expressed miRNAs were associated with binding

potentially involved with posttranscriptional gene regulation.
Comparative analysis of differentially
expressed miRNAs between blood and
liver T cells

Comparative analysis of T cell miRNAs between blood and

liver for 14 dpi, 21 dpi and uninfected control indicated 265, 402

and 351 co-detected miRNAs (Supplementary Figures 3K–M).

Whereas differentially expressed miRNAs between liver and

blood for 14 dpi, 21 dpi and uninfected control, we found 92
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miRNAs and observed one co-detected miRNA (miR-669a-5p)

(Figure 4A; Supplementary Datasheet 4). We further compared

the expression pattern of these differentially expressed miRNAs

of T cells between blood and liver at 14 dpi and visualized by

heatmaps (Figure 4B). We selected a few miRNAs to validate

their expressions between liver and blood of S. japonicum

infected mice at 14 dpi. The results indicated a higher

expression of miR-223-5p in T cells isolated from the liver

compared to the blood T cell at 14 dpi (Figure 4C). In

contrast, a significantly decreased expression was observed in

miR-375-3p, miR-138-5p and miR-338-3p in liver T cells at 14

dpi (Figure 4C). In addition, the expression pattern of

differentially expressed miRNAs between blood and liver T

cells at 21 dpi was shown in Figure 4D. Validation of several

selected miRNAs by RT-qPCR showed that the expressions of

miR-669c-5p, miR-669d-5p, miR-151-3p, and novel-miR-389-3p

were significantly increased in blood isolated T cells compared to

the liver at 21 dpi (Figure 4E). GO molecular function analysis of

enriched terms for targets of differentially expressed miRNAs

between blood and livers at 14 dpi and 21 dpi showed these

targets were potentially associated with protein binding, metal

ion binding, nucleotide binding, ATP binding, DNA binding,

etc. (Figures 4F, G; Supplementary Datasheet 7). GO analysis of

biological processes showed their targets associated with positive

and negative regulation of transcription by RNA polymerase II

multicellular organism development, cell differentiation and

others in case of blood vs liver T cells at 14 dpi and 21 dpi

(Figures 4H, I; Supplementary Datasheet 7). These results

suggest that there may be specific functional cues that lead to

distinct expression patterns observed between blood and liver

isolated T cells.
RT-qPCR analysis of selected miRNA
targets at different stages of S.
japonicum infection and bioinformatic
analysis of regulatory networks

To assess the regulatory roles of T cell miRNAs, we evaluated

the expressions of several selected miRNA targets that are

predicted to be associated with the KEGG pathways associated

immune system and parasite-caused infectious diseases

(Figures 5A–D; Supplementary Datasheet 8). We noted several

miRNAs targets potentially associated with parasitic infections

and T cell immune response during these stages of infection. RT-

qPCR analyses of several selected miRNA targets potentially

involved in parasitic infections and T cell immune response

(Figure 5E) and their corresponding miRNA expressions

(Figure 5F) at blood T cells showed a generally negative

correlation, suggesting that the miRNAs could regulate their

targets at blood T cells during S. japonicum infection. For

example, the expressions of targets such as cytotoxic T-

lymphocyte-associated protein 4 (Ctla4 , a target of
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FIGURE 4

Comparative analyses of T cell miRNA expressions between blood and liver at 14 dpi and 21 dpi. (A) Comparison of differentially expressed
miRNAs between blood and liver showing co-detected and specific miRNAs at 14 dpi, 21 dpi and uninfected control; (B) Heatmap showing
differentially expressed T cell miRNAs between blood and liver at 14 dpi (miRNAs highlighted in blue color are validated by RT-qPCR); (C) RT-
qPCR validation of the expressions of selected miRNAs between blood and liver at 14 dpi. Data illustrate representative results and show the
mean and standard error mean from an experiment carried out in triplicate. Statistical analysis was performed comparing blood and liver using
Student’s T-test and * denotes P ≤ 0.05, ** denotes P ≤ 0.01. (D) Heatmap showing differentially expressed T cell miRNAs between blood vs
liver at 21 dpi (miRNAs highlighted in blue color are validated by RT-qPCR); (E) Validation of the expressions of selected miRNAs from blood vs
liver at 21 dpi by RT-qPCR; For RT-qPCR, data illustrate representative results and show the mean and standard error mean from an experiment
carried out in triplicate. Statistical analysis was performed between S. japonicum infected mice blood and liver isolated T cells at 14 dpi and 21
dpi using Students T test and ** denotes P ≤ 0.01, *** denotes P ≤ 0.001; (F, G) GO analysis of molecular functions of targets for differentially
expressed T cell miRNAs between blood and liver at 14 dpi (F) or at 21 dpi (G); (H, I) GO analysis of biological processes of targets for
differentially expressed T cell miRNAs between blood and liver at 14 dpi (H) or at 21 dpi (I).
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FIGURE 5 (Continued)
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FIGURE 5 (Continued)

KEGG analyses of targets for differentially expressed miRNAs and RT-qPCR analysis of the expressions of target genes. (A–D) KEGG analysis of up- and
downregulated miRNA targets (uninfected vs 14 dpi; uninfected vs 21 dpi) in murine blood (A, B) or liver (C, D) associated with human disease and
organismal systems in blood and liver. Rectangle indicates selected miRNAs targets associated the pathways of infectious (parasitic) disease and
immune system; (E) RT-qPCR analysis of the expressions of target genes for differently expressed miRNAs in blood T cells. The putative targets
associated with parasitic disease and immune system were selected for RT-qPCR analysis. Data illustrate representative results and show the mean and
standard error mean from an experiment carried out in triplicate. Statistical analysis was performed comparing uninfected vs 14 dpi or 21 dpi using
one-way ANOVA and * denotes P ≤ 0.05, ** denotes P ≤ 0.01, *** denotes P ≤ 0.001, **** denotes P ≤ 0.0001 and ns denotes non-significant; (F) RT-
qPCR validation of the expressions of several miRNAs in blood T cells that potentially regulate the corresponding targets as shown in (E). Pik3r1 and
Nfkbie are the targets of miR-204-5p; Ctla4 is the target of miR-151-5p; Atg5 is the target of miR-181c-5p. Data illustrate representative results and
show the mean and standard error mean from an experiment carried out in triplicate. Statistical analysis was performed comparing uninfected vs 14 dpi
or 21 dpi using one-way ANOVA and ** denotes P ≤ 0.01, *** denotes P ≤ 0.001 and ns denotes non-significant. (G) RT-qPCR analysis of the
expressions of target genes for differently expressed miRNAs in liver T cells. The putative targets associated with parasitic disease and immune system
were selected for RT-qPCR analysis. Data illustrate representative results and show the mean and standard error mean from an experiment carried out
in triplicate. Statistical analysis was performed comparing uninfected vs 14 dpi or 21 dpi using one-way ANOVA and * denotes P ≤ 0.05, ** denotes P ≤

0.01, *** denotes P ≤ 0.001, **** denotes P ≤ 0.0001 and ns denotes non-significant; (H) RT-qPCR validation of the expressions of several miRNAs in
liver T cells that potentially regulate the corresponding targets as shown in (G). Ppp3r1 and Tollip are the targets of miR-182-5p; Nfyb and Ppp1r12a are
the target of miR-222-3p; Arpc4 is the target of miR-191-5p; Fermt3 is the target of miR-122-5p; Vcl is the target of miR-467a-5p; Hgf is a target of
miR-29a-3p. Data illustrate representative results and show the mean and standard error mean from an experiment carried out in triplicate. Statistical
analysis was performed comparing uninfected vs 14 dpi or 21 dpi using one-way ANOVA and ** denotes P ≤ 0.01, *** denotes P ≤ 0.001 and ns
denotes non-significant. (I) miR-486b-5p decreased in blood T cells as shown in Figure 2E potentially regulates many biological processes by
interacting with its corresponding targets; (J) Top differentially expressed T cell miRNAs including miR-486b-5p/3p, miR-375-5p, miR-1969, and miR-
6924-5p are putatively involved in the regulations of Wnt signaling pathway and pluripotency, Delta-Notch signaling pathway, mitochondrial LC-fatty
acid beta-oxidation, eicosanoid metabolism via cyclo oxygenases (COX) and others by interacting with their targets.
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downregulated miR-151-5p) and autophagy-related 5 (Atg5) (a

target of downregulated miR-181c-5p) were increased in blood T

cells at 14 dpi compared to uninfected control while the

expressions of miR-151-5p and miR-181c-5p were decreased

(Figures 5E, F). Similar results were also observed at liver T cells

between the expressions of target genes (Figure 5G) and their

corresponding miRNAs (Figure 5H). Similarly, the liver isolated T

cells target genes such as hepatocyte growth factor (Hgf, a target of

downregulated miR-29-3p), vinculin (Vcl, a target of

downregulated miR-467a-5p) and actin-related protein 2/3

complex, subunit 4 (Arpc4, a target of downregulated miR-191-

5p) shown increased expression at liver T cell of 21 dpi, whereas

the Fermt3 (a target of upregulated miR-122-5p), protein

phosphatase 1, regulatory subunit 12A (Ppp1r12a) and nuclear

transcription factor-Y beta (Nfyb) (targets of upregulated miR-

222-3p), toll interacting protein (Tollip) and protein phosphatase 3

regulatory subunit B, Beta (Ppp3r1) (targets of upregulated miR-

182-5p) shown decreased expression in liver T cells following S.

japonicum infection (Figures 5G, H). Additionally, several selected

differentially expressed miRNAs at 14 dpi or 21 dpi compared to

uninfected control (decreased in blood and liver:miR-486b-5p/3p,

miR-6924-5p; increased in blood and liver: miR-375-5p and miR-

1969) suggested that these miRNAs are related with diverse

functions associated with infection. In particular, miR-486b-5p

shown decreased expression in S. japonicum infected mice at 14

dpi and 21 dpi compared to uninfected control (Figure 2E) and is

putatively associated with adaptive immune response, peptide

binding, T cell-mediated immune response, nuclear outer

membrane-endoplasmic reticulum membrane network, antigen

binding, protein-containing complex binding, peptide antigen

binding, endoplasmic reticulum membrane, and others

(Figure 5I). Similarly, differentially expressed miRNAs
Frontiers in Immunology 11
(downregulated: miR-486b-3p, miR-6924-5p; upregulated: miR-

1969, miR-375-5p, miR-669a-5p, and miR-138-5p) were shown to

be putatively involved in the regulations of apoptosis, Wnt

signaling pathway and pluripotency, eicosanoid metabolism via

cyclooxygenase (COX), eicosanoid metabolism via lipo oxygenase

( LOX ) and m i t o c hond r i a l LC - f a t t y a c i d b e t a -

oxidation (Figure 5J).
Discussion

T cells are one of most important lymphocytes and the main

elements of adaptive immunity. The potential role of miRNAs in

regulating T cell proliferation, activation, and differentiation has

been well discussed (24, 45). However, the expression profiles of

host T cell miRNAs during Schistosoma infection are scanty. The

liver stages are critical for schistosomula development and

schistosome-caused pathology. Schistosoma are blood dwelling

flatworms. Blood acts as a pipeline for immune system, carry

different immune cells from one place to another and respond

according to the types of infections. Most of the studies on

schistosomes have carried out on the adult worm infection stages

to observed mostly eggs induced immune response. However, very

few studies have focused on early stages especially on schistosomula

and pre-egg laying worms, which are important for worm

development and maturation for finally residing. In addition,

schistosomula are also considered to be a valuable stage for

vaccine development to dump worm parasitism. Therefore, we

undertook the study to profile the miRNAs repertoire in peripheral

blood and livers to understand T cell miRNA alteration that may be

involved in T cell-mediated immune response during the

parasitic infection.
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Schistosoma infection induces different immune responses.

In the early phase of infection, cercaria initiates the Th1 immune

response, and the produced eggs induce a shift towards Th2 type

immune response (11, 12). The Th2 immune response plays an

important role in the pathogenesis of schistosomiasis (46). At 14

and 21 dpi, we observed a significant decrease in the expression

of miR-486b-5p/3p, miR-122-5p, miR-181c-5p and miR-6924-5p

etc. In contrast, a significant increase in the expression of

miRNAs such as miR-375-5p, miR-466c-3p, and miR-138-5p in

both blood and livers isolated T cells. The functional aspect of

some of these miRNAs has been documented previously;

however, their specific roles during S. japonicum infection

remain unknown. Bioinformatic analysis of top differentially

expressed miRNAs and their targets suggested their putative

roles in infections and immune responses, especially adaptive

immune responses (Figures 5I, G). GO analysis of targets of

differentially expressed miRNAs suggested that most of the

miRNAs may be involved in signal transduction, signal

molecule and interactions, infectious disease and others.

We observed the increased expression of Ctla4 and Atg5 of

growth signal transduction protein kinases in blood (Figure 5E).

T cells circulate consistently between blood, lymphoid tissue,

and lymph nodes to encounter foreign antigens presented by

DCs (47). Ctla4 limits the interactions of CD4+ T-cells with DCs

by modulating the threshold for T cell activation and induces T

cell motility response in secondary lymphoid organs (48). The

other target gene, Atg5, has been shown to be responsible for the

activation and differentiation of innate and adaptive immune

cells and then promotes the interaction between T cells or B cells

and antigen-presenting cells (49). The increased expression of

these target genes (Ctla4 and Atg5) during schistosome infection

at 14 dpi, especially during blood stages, may potentially involve

in T cells mediated immune response. Hgf is a pleiotropic

cytokine that influences mitogenesis , moti l i ty and

differentiation of many different cell types (50). It also

maintains the differentiation of hepatic sinusoidal endothelial

cells, specializing in lymphocyte recruitment to the liver (51).

The increased expression of Hgf in liver at 21 dpi may suggested

the organ specific immune response during S. japonicum

infection. Actin-related protein is highly conserved in

eukaryotes that nucleate branched actin filaments and generate

actin networks (52). It includes five subunits and Arpc2, and 4

forms the core of this complex, and the deficiency in Arpc led to

the decrease in the number of peripheral T cell (53). The

increased expression of Arpc4 may suggest to potentially

regulate T cells populations during S. japonicum infection.

Considering the important roles of miRNAs in T cell

development program and function, several groups have

documented miRNA profiles in different types of T cells (54–

56). We observed a differentially decreased expression of miR-

486b-5p/3p in T cells isolated from blood and liver.miR-486a-5p

and miR-486b-5p originate from the different pre-miRNAs

transcribed from the opposite strand of the same genomic
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locus; however, they share the same mature sequences (57).

Primarily miR-486-5p was identified as a tumor-suppressive

miRNA in lung cancer (58), and shown decreased expression

in breast cancer patients (59). Another study suggested that the

inhibition of miR-486-5p alleviated LPS-induced cell damage by

limiting inflammatory injury, oxidative stress and apoptosis by

targeting NRF1 (60). The decreased expression ofmiR-486 in the

present study may lead to minimal inflammatory response at 14

dpi and 21 dpi of S. japonicum infection. miR-223 is one of the

differentially expressed miRNAs identified in our study that has

been shown to play a vital role in the immune response,

regulating multiple processes from myeloid differentiation to

neutrophil, macrophage, and DC function (61). The changes of

miR-223-3p expression are linked to macrophage apoptosis (62)

and play an essential role in maintaining the balance of innate

immunity to avoid excess inflammation and tissue damage.

Another study indicated that miR-223 level is negatively

associated with lymphocyte apoptosis by targeting FOXO1

during sepsis (63). Further investigation of the roles of these

differently expressed miRNAs may gain important insight into

how miRNAs involve in immune response during S. japonicum

infection, then resulting into the development of effective

strategies for schistosomiasis control.

Comparative analysis of the identified miRNAs between

blood and liver at 14 dpi or 21 dpi, we noted the majority of

differently expressed miRNAs was specially associated with S.

japonicum infection at 14 dpi or 21 dpi (Figure 4A). However,

there were a few of differently expressed miRNAs between blood

and livers showing to be co-detected between 14 dpi/21 dpi and

uninfected controls (Figure 4A). For example, miRNAs such as

miR-10a-5p, miR-149-5p, miR-223-3p, miR-669a-3p and miR-

669p-5p showed to be co-detected for different expressions

between blood and livers among 14 dpi and uninfected control

and miR-122-5p, miR-142a-3p, miR-151-5p, miR-211-5p and

miR-15b-5p showed to differently express in both 21 dpi and

uninfected control. Interestingly, we observed an increased

expression of miR-669a-5p in T cells isolated from murine

blood during Schistosoma infection (14 dpi vs 21 dpi) while a

decreased expression of this miRNA in T cells isolated from liver

was observed. The results suggested that miR-669a-5p may have

different roles in different organs during Schistosoma infection.

miR-122 levels have been suggested to be a diagnostic marker for

liver disease. The decreased expression of miR-122 in T cells

isolated from blood and liver of S. japonicum-infected mice may

potentially be associated with increased adaptive immune

response and decreased innate immunity since the increased

level of miR-122 was shown to link with hepatocyte innate

immunity (64). Comparative analysis of T cell miRNA profiles

between blood and liver shows dynamic expression patterns.

Among them, we noted miR-669a-5p was shown to be the

common differentially expressed between blood and livers.

Unfortunately, the role of miR-669a in immune response

remain unknown although a study suggested its role in the
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prevention of skeletal muscle differentiation and in postnatal

cardiac progenitors (65). Consequently, it is worth to investigate

whether miR-669a-5p regulates T cell response during the early

stage of S. japonicum infection.

In conclusion, our study presents a comprehensive dataset of

differentially expressed T cell miRNAs from blood and liver of S.

japonicum infected mice at differently early hepatic

schistosomula stages. Several panels of differentially expressed

miRNAs, such asmiR-486a-5p/3p,miR-486b-5p/3p,miR-375-3p,

miR-466a-5p/3p, miR-466b-5p/3p, miR-223-3p, miR-181c-5p,

etc., were identified to be putatively associated with T cell

immune response showing dynamic expressions during S.

japonicum infection. Further studies unpinning the potential

role of these miRNAs are expected to provide the translational

value for understanding and application of miRNAs mediated T

cell immune response during Schistosoma infection.
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SUPPLEMENTARY FIGURE 1

Flow cytometry sorting of T cells and cell viability analysis. (A, B)
Representative flow cytometry sorting of T cells isolated from blood (A)
and liver (B) of S. japonicum infected mice and uninfected control; (C, D)
Flow cytometry analysis of percentage of live T cells isolated from the
blood (C) and liver (D) of S. japonicum infected mice and uninfected

control; (E, F) Flow cytometry analysis of percentage of CD4+ and CD8a+

cells isolated from the blood (E) and liver (F) of S. japonicum infected mice
and uninfected control. Representative results presented as the average

from two biological replicates.

SUPPLEMENTARY FIGURE 2

Classifications of distributions of small RNAs identified by RNA seq and

heatmap showing differently expressed miRNAs. (A) Classifications of

distributions of small RNAs identified from T cells isolated from murine
blood for each library; (B) Classifications of distributions of small RNAs

identified from T cells isolated from murine livers for each library; (C)
Heatmap showing increased expressions of miRNAs in blood T cells; (D)
Heatmap showing decreased expressions of miRNAs in blood T cells; (E)
Heatmap showing increased expressions of miRNAs in liver T cells; (F)
Heatmap showing decreased expressions of miRNAs in liver T cells; (G).
Heatmap of miRNAs expression showing increased miRNAs such as miR-
10a-5p in uninfected liver vs uninfected blood T cells. Red color showed

higher expression and blue color showed lower expression.

SUPPLEMENTARY FIGURE 3

Differentially expressed miRNAs from blood/liver T cells between S.

japonicum infected mice and uninfected control and predictions of the
biological processes of their targets. (A) Heatmap showing differentially

expressed miRNAs from blood T cells between uninfected control and S.

japonicum infected mice at 14 dpi; (B) Heatmap showing differentially
expressed miRNAs from blood T cells between uninfected control and S.

japonicum infected mice at 21 dpi; (C) Heatmap showing differentially
expressed miRNAs from liver T cells between uninfected control and S.

japonicum infected mice at 14 dpi; (D) Heatmap showing differentially
expressed miRNAs from liver T cells between uninfected control and S.

japonicum infectedmice at 21 dpi. (E)GO analyses of biological processes

of the targets for differentially expressed miRNAs (uninfected vs 14 dpi)
from blood T cells; (F) GO analyses of biological processes of the targets
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for differentially expressed miRNAs (uninfected vs 21 dpi) from blood T
cells; (G) GO analyses of biological processes of the targets for

differentially expressed miRNAs (14 dpi vs 21 dpi) from blood T cells; (H)
GO analyses of biological processes of the targets for differentially

expressed miRNAs (uninfected vs 14 dpi) from liver T cells; (I) GO
analyses of biological processes of the targets for differentially

expressed miRNAs (uninfected vs 21 dpi) from liver T cells; (J) GO
analyses of biological processes of the targets for differentially

expressed miRNAs (14 dpi vs 21 dpi) from blood T cells; (K-M)
Comparative analysis of differently expressed T cell miRNAs for each
biological replicate between blood and liver at 14 dpi (K), 21 dpi (L) and
uninfected (M).

SUPPLEMENTARY FIGURE 4

RT-qPCR analysis of selected miRNA expressions in isolated T cells and
in vitro cultured EL-4 cells treated with S. japonicum worm antigens

(SWA). (A) RT-qPCR analysis of the expressions of selected miRNAs in
blood T cells isolated from mice treated with or without SWA; (B) RT-
qPCR analysis of the expressions of selected miRNAs in liver T cells

isolated from T cells treated with or without SWA; (C) RT-qPCR analysis
of the expressions of selected miRNAs in EL-4 cells treated with or

without SWA. Data illustrate representative results and show the mean
and standard error mean from an experiment carried out in triplicate.

Statistical analysis was performed on T cells from blood and liver and
EL-4 cells between SWA treatment and controls using Student’s T-test

and * denotes P ≤ 0.05, ** denotes P ≤ 0.01, *** denotes P ≤ 0.001. ****

denotes P ≤ 0.0001.
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