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Simple Summary: The emergence of resistant cells remains a major obstacle for chemotherapy 

treatment of metastatic colorectal cancers. Improvement of the therapeutic response requires a 

thorough understanding of the mechanisms of resistance as well as informative biomarkers. In the 

REVEAL study, we have systematically compared the mutational patterns and expression profiles 

of primary tumor specimens before and after first-line chemotherapy treatment in the metastatic 

situation. In addition, we analyzed liquid biopsies pre, during, and after treatment. Alterations in 

gene expression appeared as the major drivers of chemotherapy resistance. We identified a gene 

expression signature differentiating primary tumors and metastases and validated this signature in 
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two independent patient cohorts. Moreover, we evaluated the expression of two signature genes, 

SFRP2 and SPP1, as prognostic and potentially druggable biomarkers. 

Abstract: Most metastatic colorectal cancer (mCRC) patients succumb to refractory disease due to 

secondary chemotherapy resistance. To elucidate the molecular changes associated with secondary 

resistance, we recruited 64 patients with mCRC and hepatic metastases before standard first-line 

chemotherapy between 2014 and 2018. We subjected DNA from primary tumor specimens (P), 

hepatic metastasis specimens after treatment (M), and liquid biopsies (L) taken prior to (pre), during 

(intra), and after (post) treatment to next generation sequencing. We performed Nanostring 

expression analysis in P and M specimens. Comparative bioinformatics and statistical analysis 

revealed typical mutational patterns with frequent alterations in TP53, APC, and KRAS in P 

specimens (n = 48). P and pre-L (n = 42), as well as matched P and M (n = 30), displayed a similar 

mutation spectrum. In contrast, gene expression profiles classified P (n = 31) and M (n = 23), 

distinguishable by up-regulation of immune/cytokine receptor and autophagy programs. Switching 

of consensus molecular subtypes from P to M occurred in 58.3% of cases. M signature genes SFRP2 

and SPP1 associated with inferior survival, as validated in an independent cohort. Molecular 

changes during first-line treatment were detectable by expression profiling rather than by 

mutational tumor and liquid biopsy analyses. SFRP2 and SPP1 may serve as biomarkers and/or 

actionable targets. 

Keywords: metastatic colorectal cancer; next generation sequencing; gene expression signature; 

biomarker; liquid biopsy; secondary resistance; therapeutic target 

 

1. Introduction 

Colorectal cancer (CRC) is the third leading cause of cancer worldwide with 1.93 

million people affected globally, accounting for 10% of all cancer deaths [1]. The high 

mortality is explained in part by the fact that nearly 20% of patients present with de novo 

metastatic disease, and 25–30% of patients with stage II/III disease have a recurrence 

within five years of a curative intended surgery [2]. A major obstacle in the treatment of 

metastatic CRC (mCRC) is the development of drug resistance during systemic treatment 

[3]. Median overall survival (OS) exceeding 30 months has been reached in selected 

patients [4–6] following the introduction of modern chemotherapy in combination with 

monoclonal antibodies such as bevacizumab, cetuximab and panitumumab targeting 

vascular endothelial growth factor (VEGF) and epithelial growth factor receptor (EGFR), 

respectively. However, a high mortality rate with a 5-year survival of only 12% indicates 

the need for further understanding therapy resistance and metastatic mechanisms, as well 

as for identifying novel prognostic biomarkers and potential therapeutic targets [7]. 

Previous studies have addressed the mutational landscape in primary and metastatic 

CRCs and found that genomes of metastases are essentially not different from those of 

primary tumors. [8,9]. Only a few studies investigated gene expression profiles in primary 

tumors and metastases utilizing distinct comparative models to identify prognostic 

metastasis signatures and biomarkers [8–11]. In these analyses, transcriptomic differences 

in cellular programs, such as downmodulation of epithelial–mesenchymal transition 

(EMT) and differential expression of a few single genes, were described [9–11]. However, 

most of these investigations were performed on samples of primary tumors and 

metastases; as both were obtained prior to any chemotherapeutic therapy, they thus do 

not reflect the massive influence of cytotoxic agents on the expression levels of numerous 

genes in metastases. 

Recently, circulating tumor DNA (ctDNA) has emerged not only as a promising 

noninvasive biomarker but also as a clinical tool for therapeutic and relapse monitoring. 

Different approaches of ctDNA analysis in pre- and post-operative specimens were 
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investigated in solid tumors including CRCs [12–17], and ctDNA analysis also detected 

minimal residual disease and predicted recurrence in patients with stage I-III colon cancer 

[17,18]. Personalized ctDNA deep sequencing of stage I to III CRCs showed the potential 

of ctDNA analysis to change post-operative management and early relapse detection [15]. 

The value of ctDNA analysis in mCRCs, e.g., for RAS and BRAF typing, was investigated 

in only a few studies so far [16,19]. 

Here, we report results from the prospective observational biomarker study REVEAL 

(ReEVAluation of Liver metastasis) in patients with previously untreated mCRC. We 

investigated tumor and liquid biopsies before, during and after standard fist-line 

chemotherapy. By next-generation sequencing (NGS) of 100 CRC-specific genes using a 

customized gene panel [20], we explored the potential of ctDNA detection for tracking 

tumor mutations under first-line treatment as well as compared mutational patterns in 

primary tumor before and liver metastasis after first-line treatment. Furthermore, we 

explored the gene expression of 770 cancer-associated genes in untreated primary tumors 

and metastatic tissue after first-line chemotherapy utilizing the Nanostring system. 

2. Materials and Methods 

2.1. Study Design, Patients and Samples 

The REVEAL study (ReEVAluation of Liver metastases) is a prospective, multicenter, 

observational biomarker study for the indication of mCRC. Patients were recruited from 

hospitals and private practices in Germany (Table S1). Inclusion criteria: Age ≥ 18 y; ECOG 

(Eastern Cooperative Oncology Group) performance status 0–1; stage IV, histologically 

confirmed adenocarcinoma of the colon or rectum; presence of measurable liver 

metastases according to RECIST (Response Evaluation Criteria in Solid Tumors) version 

1.1; intention to initiate standard mCRC chemotherapy according to physician’s choice; 

recruitment irrespective of RAS or BRAF status; white blood cell count ≥ 3.0 × 109 cells/L; 

neutrophils ≥ 1.5 × 109 cells/L; platelets ≥ 100 × 109/L ; hemoglobin ≥5.6 mmol/L 

(corresponding to 9.0 g/dL); serum bilirubin ≤ 1.5 × upper limit of normal (ULN); alanine 

aminotransferase and aspartate aminotransferase ≤ 2.5 × ULN or ≤5 × ULN in the presence 

of liver metastases; serum albumin ≥ 2.5 g/dL. Exclusion criteria: previous CRC 

chemotherapy, excluding adjuvant therapy completed at least 6 mo before trial enrolment; 

severe bleeding within past 6 mo and any severe coagulopathy; myocardial infarction 

within past 6 mo, congestive heart failure (New York Heart Association classification > 2); 

serious non-healing wounds and a history of secondary malignancy within the past 5 y. 

Tissue specimens from primary tumor biopsied were obtained before study entry. In 

case of progressive disease (PD) upon first-line chemotherapy, another biopsy of the 

colorectal liver metastasis was intended according to informed consent to study 

procedures before enrolment. Of course, refusal and study withdrawal by the patient was 

possible at any time point. In case of secondary hepatic resection, tumor specimens of the 

hepatic metastasis were retrieved. Before (pre-), during (intra-) and after (post-) first-line 

systemic treatment, serial blood samples to evaluate ctDNA were taken (liquid biopsies). 

During treatment, blood samples were taken every 4 weeks. Circulating free DNA 

(cfDNA) was extracted from blood serum (2–6 mL). Serum was prepared 1–7 h after blood 

draw and stored in polypropylene tubes at −20 °C until cfDNA extraction. 

The trial was done in compliance with the Declaration of Helsinki. The protocol was 

approved by local ethics committees of all participating centers. 

2.2. Histopathological Samples 

Histopathological diagnosis and classification was reviewed for every available 

tumor specimen at the accredited Institute of Pathology of the University of Munich 

(Germany). In all cases, histopathological grade was confirmed by an experienced 

pathologist. Sections from formalin-fixed paraffin-embedded (FFPE) tissue samples were 

prepared followed by hematoxylin–eosin staining of one slide. Areas with a minimum 
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percentage of 50% tumor cells were microdissected from subsequent unstained sections 

and used for DNA and RNA preparation. Normal tissue samples were taken at a 

minimum distance of 0.5 cm from the tumor site. 

2.3. DNA Extraction and NGS Analyses 

Genomic DNA (gDNA) was isolated from FFPE tissue sections using the Generead 

kit (Qiagen, Hilden, Germany), and cfDNA was extracted with the QIAmp Circulating 

Nucleic Acid Kit (Qiagen) following the vendor’s recommendations and as described 

previously [21]. The gDNA and cfDNA were used as template for targeted next-

generation-sequencing (NGS) using the customized CRC sequencing panel, covering 100 

frequently mutated genes with 784 amplicons (covering 21,000 COSMIC (Catalogue of 

Somatic Mutations In Cancer) mutations) [20]. Libraries were prepared using 20 ng DNA 

with the Ampliseq Library 2.0 kit and analyzed on the IonTorrent PGM (Personal Genome 

Machine; gDNA) or Ion S5 (Ion GeneStudio S5 prime; cfDNA) platforms (both Thermo 

Fisher Scientific, Darmstadt, Germany). The experimental procedures were conducted 

according to the manufacturer’s manual. Briefly, DNA concentration was measured using 

the Qubit3 Fluorimeter (Thermo Fisher Scientific). The concentration of amplifiable gDNA 

was quantified using a TaqMan RNaseP Detection Reagents Kit (Thermo Fisher 

Scientific). The cutoff for further processing was a minimum of 1 ng/µL RNaseP. Groups 

of two tumor samples or six health control samples (gDNA) or eight (cfDNA) libraries 

were transferred into the IonChef pipetting station for clonal amplification by emulsion 

PCR and Ion-316 Chip or Ion-550 Chip loading followed by sequencing on the PGM or S5, 

respectively. Sequencing data were aligned to the human reference genome hg19 using 

Torrent Suite™ (v5.8). Analysis of the NGS data was performed with SoFIA [22] (gDNA) 

or with Ion Reporter™ v5.10 (cfDNA) software, the Integrated Genomics Viewer (IGV, 

Broad Institute), and an in-house calling tool for the identification of tumor variants (SNV, 

single nucleotide variants; Insertions; Deletions) and the tumor genetic evaluation of the 

identified alterations. The following sequencing quality metrics were applied: 1) average 

base coverage depth gDNA ≥ 500 or cfDNA ≥ 5000; 2) percent reads on target ≥ 70%; or 3) 

uniformity of base coverage gDNA ≥ 85% or cfDNA ≥ 70%. Sequencing quality metrics for 

each sample are presented in Table S2. Patient-specific SNPs (single nucleotide 

polymorphisms) were utilized to confirm identity of the matched samples and for 

removal of healthy tissue ‘normal’ SNPs. The clinical relevance of the identified tumor 

variants was evaluated based on the ClinVar [23], COSMIC [24], and Varsome [25] 

databases/tools. Only likely pathogenic, pathogenic, and VUS (variant of unknown 

significance with a prediction trend of being likely pathogenic) variants with allele 

frequencies ≥ 5% (gDNA) or ≥0.5% (cfDNA) were reported. 

2.4. RNA Extraction and Expression Analysis (NanoString® nCounter Assay) 

Total RNA was extracted from six to twelve sections of FFPE tissue sections using 

the RNeasy FFPE Kit (Qiagen, Hilden, Germany) according to the manufacturer’s 

instructions. RNA yield and purity were assessed using the NanoDrop ND-1000 

spectrophotometer (NanoDrop Technologies, Rockland, ME, USA). A 260/280 optical 

density ratio within 1.7–2.3 and a minimal RNA concentration of 10 ng/µL were required 

for further processing. The mRNA expression was measured with the NanoString 

nCounter FLEX Analysis System (NanoString Technologies, Seattle, WA, USA) using 100 

ng of total RNA and the pan cancer pathway panel (770 genes). The nCounter CodeSet 

was hybridized to total RNA for 18 h at 65 °C and nCounter Prep Station loading, and 

expression quantification with the nCounter Digital Analyzer was performed as 

recommended by the manufacturer. 
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2.5. RNA Expression Quality Control (QC) and Filtering of the Data 

QC was performed with default nSolver v4.0 software settings and by analyzing the 

positive/negative controls, reference genes, total counts, and binding densities in each 

sample. Reference genes with an expression variation within all samples > 100% and 

expression values below the limit of detection (positive control E) were excluded. 

Reference genes for data normalization were AMMERCR1L, C10orf76, CNOT4, COG7, 

DDX50, DHX50, DHX16, EDC3, EIF2B4, FCF1, FTSJ2, MRPS5, MTMR14, PIAS1, PIK3R4, 

SAP130, SF3A3, SWLC4A1AP, TLK2, TMUB2, TTC31. nSolver as well as Box plot and 

similarity matrix analysis (MKmisc package [26]) in R (Figure S1) were used for QC after 

normalization. Genes with an average expression within all tumor samples < 30 and the 

lowest varying 10% of genes were excluded from further analyses. Log2 expression levels 

of leftover genes in all patient samples are presented in Table S3. 

2.6. Statistical Analysis of the Filtered RNA Expression Data 

The expression data were analyzed utilizing nSolver v4.0 (NanoString), R studio 

3.5.3/4.0.2 [27], SPSS 22.0 (SPSS, Chicago, IL, USA), GraphPad PRISM 8 (GraphPad 

Software, Inc., San Diego, CA, USA), Perseus [28], MR4Cancer[29], GSEA [30] (gene set 

enrichment analysis), and STRING [31] (Search Tool for the Retrieval of Interacting 

Genes/Proteins) software. Validation datasets were downloaded from GEO [32] (Gene 

Expression Omnibus). Normal distribution of the datasets was confirmed by quantile–

quantile (q-q) plot in R (data not shown). Expression changes and differentially expressed 

genes (DEGs) were identified by moderated t-test with limma (linear models for 

microarray) in R [33]. Adjusted P values/false discovery rates (FDR) were calculated using 

Benjamini and Hochberg correction [34]. Unsupervised hierarchical clustering/heat maps 

were performed with the ComplexHeatmap [35] and volcano plots with 

EnhancedVolcano packages in R. PCA (Principal Component Analysis) were generated 

in Perseus. GO (gene ontology) analyses were performed with MR4Cancer (Colon 

adenocarcinoma), GSEA (Hallmark and C1-C7 datasets) and STRING (FDR = stringency 

5%; minimum required interaction score: 0.4). CMS (consensus molecular subtype) 

classification/prediction (nearest template prediction) was conducted with CMScaller R 

package [36]. 

Overall survival (OS) was defined as the time from start of chemotherapy to death 

due to any cause. Distributions of this time-to-event variable was estimated with the 

Kaplan–Meier method and compared with logrank test. The effect of molecular markers 

was estimated with the Cox proportional hazards model. To identify an optimized 

threshold value to discriminate high from low expression, the maximum of sensitivity and 

specificity of logarithmic expression data was calculated using a receiver operator 

characteristic (ROC) model (R package ggplot2, R version 4.0.2). Metastasis prediction 

was computed by using multivariate logistic regression to obtain coefficients for each 

gene. Coefficients were multiplied with the continuous expression values for the 

corresponding gene and subsequently added. To determine how well the metastasis 

prediction model discriminates primary tumor and metastasis, ROC analysis was 

performed. All p-values <0.05 (two-sided) were regarded significant. 

3. Results 

3.1. Study Design and Population Demographics 

Between 2014 and 2018, altogether 64 patients from six centers in Germany were 

recruited (Table S1). After centralized pathological review, 48 patients were identified 

with histopathological diagnosis of adenocarcinoma of the colorectum and sufficient 

primary tumor material for further evaluations. Metastatic tissue obtained after first-line 

chemotherapy was available for NGS from 30 patients. Liquid biopsies taken before study 

enrollment were available from 42 patients. Liquid biopsies taken during and after first-

line treatment were available from 44 patients. The study profile including sample 
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numbers is depicted in Figure 1. Baseline and treatment characteristics of the patients are 

summarized in Table 1. The median duration of follow-up was 23.3 months. 

 

Figure 1. Design (A) and workflow of the data analyses (B) of the REVEAL study (M, post-

therapeutic tissue, liver metastasis; N, normal tissue in the vicinity of the primary tumor; P, pre-

therapeutic primary tumor; i-L, intra-therapeutic liquid biopsy; i/p-L, intra/post-therapeutic liquid 

biopsy); GO, gene ontology analysis; GSEA, gene set enrichment analysis; IGV, integrative genomics 

viewer; PCA, principal component analysis; QC, quality control. 

Table 1. Patient and tumor baseline characteristics. 

Characteristics N % 

Age     

Age-median 62 (range 20–87)  

Sex     

Male 38 59.4 

Female 26 40.6 

Performance status 

ECOG 0–1 58 90.6 

ECOG 2–3 2 3.1 

NA 4 6.3 

Primary tumor sidedness 

Right-sided 13 20.3 

Left-sided 49 76.6 

NA 2 3.1 

T-stage of primary 

T1-2 13 20.3 

T3-4 39 60.9 

NA 12 18.8 
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N-stage of primary 

N0 7 10.9 

N1 9 14.1 

N2 11 17.2 

NA 22 57.8 

Grading of primary 

G1-2 44 68.8 

G3 8 12.5 

NA 12 18.8 

Metastasis     

synchronous 48 75 

metachronous 16 25 

Number of metastatic sites  

1 site 25 39.1 

≥2 sites 39 60.9 

Chemotherapy 

FOLFOXIRI 6 9.4 

plus Bevacizumab 3 4.7 

plus Panitumumab 3 4.7 

FOLFOX 22 34.4 

plus Panitumumab 2 3.1 

plus Bevacizumab 11 17.2 

plus Cetuximab 2 3.1 

FOLFIRI 21 32.8 

plus Bevacizumab 7 10.9 

plus Cetuximab 9 14.1 

Capecitabine 4 6.3 

plus Irinotecan & Bevacizumab 1 1.6 

plus Bevacizumab 2 3.1 

Cetuximab mono 1 1.6 

RAS mutation      

no 37 57.8 

yes 24 37.5 

NA 3 4.7 

BRAF mutation      

no 54 84.4 

yes 3 4.7 

NA 7 10.9 

total 64 100 

3.2. Sequential Mutation Screening 

Pre-therapeutic/primary tumor patient samples (P) from 48 out of 64 patients (75%) 

and 30 post-therapeutic/liver metastasis samples (M, 47%) were available for NGS 

analyses (Figure 1B, Table S2 and S4). The analyses were successfully performed in 87.4% 

and 93.3% of P and M samples, respectively. In addition, the potential of a less-invasive 

approach, namely liquid (blood) biopsies, for molecular pathological characterization of 

untreated mCRCs, as well as their ability for longitudinal mutation monitoring were 

investigated. Therefore, 86 liquid biopsies, including 42 pre- (pre-L) and 44 intra-/post-

therapeutic (i/p-L) liquid biopsies from 45 patients (70%) were successfully analyzed 

(100%) in a high-sensitivity setting (avg. coverage of all samples 16,553, avg. uniformity 

91.6%). Full sample sets (P+pre-L+i/p L+M) were obtained from eight sets with all but M 
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(P+pre-L+i/p L) from fourteen and sets missing only P (pre L+i/p L+M) from six patients. 

Moreover, sequencing data from six matched P and M as well as several single samples 

were analyzed. A detailed summary of the NGS results of all patient samples is visualized 

in Table S4. A typical mutational pattern of the colorectal carcinogenesis cascade [37] 

genes TP53 (mutation frequency: 69%), APC (57.1%), and KRAS (40.5%) was observed in 

P samples (Figure S1A). In addition, cancer-related mutations were found in P in 18 genes, 

including SMAD4 (11.9%), PIK3CA (11.9%), FBXW7 (9.5%), PTEN (7.1%), and BRAF 

(7.1%). These mutation frequencies are comparable to the ones found in the TCGA cohort. 

Similar mutation frequencies were detected in unmatched M tissue samples at 75.9% 

(TP53), 58.6% (APC), and 41.4% (KRAS). Co-mutations of TP53, APC, or KRAS were 

found in 57% of all cases and TP53+APC mutations showed the highest incidence (29.2%) 

(Figure S1B). Simultaneous mutations in all three genes were determined in 15.4%. 

Additional co-mutations to either one or more mutations in the three genes were detected 

in 22 genes, of which SMAD4 (13.8%), PIK3CA (13.8%), FBXW7 (10.8%), PTEN (7.7%), 

ATM (6.2%), and BRAF (6.2%) had the highest occurrence (Figure S1C). 

In matched P and M samples (n = 14), the same mutations were found in nine cases 

(71.4%), whereas in four cases (28.6%), the identical mutational pattern as well as novel 

mutations were found (ATM, case 089-008; TP53, 089-014; 3rd TP53 and 2nd POLE, 089-

017; PIK3CA, 089-019) (Figure 1A,B). In one case, none of the mutations present in P were 

detected in M. Since the PIK3CA mutation (089-019) was also present in the initial liquid 

biopsy at a low AF (3.9%) (Figure 2C), it probably does not reflect a resistance mechanism. 

The same mutation spectra were found in matched P and pre-L samples in 19 out of 

23 (82.6%) patients confirming that at time points close to P resection, sufficient amounts 

of ctDNA (circulating tumor DNA) were present in the blood to be detected by our high-

sensitivity sequencing approach (Figure 2C,D). The positive predictive value (PPV) and 

negative predictive value (NPV) for KRAS mutation screening in pre-L were 1.0 and 0.94, 

respectively. Additional mutations were found in eight cases (34.8%), probably due to the 

higher sensitivity screening and lower AF limit (1% vs. 5%). In three patients (13%), no 

mutations were detected. 

In follow-up liquid biopsies (i-L), pre-treatment mutations were found only in 7 out 

of 30 matched samples (P/pre-L vs. i-L) (23.3%), which can be interpreted as positive 

therapeutic response and/or lack of detectable ctDNA (Figure 2E, Table S4). Additional 

post-therapeutic liquids (p-L) were available from six patients. In two cases, a TP53 (AF 

9.25%) and a KRAS (AF 2%) mutation were detected (Figure S1D,E), respectively, one to 

two months before metastasis resection in p-L (Figure 2E and Table S2), indicating the 

monitory capability of liquid biopsies. 
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Figure 2. Pre-, intra-, and post-therapeutic mutational screening. (A) Mutations and frequencies (%) 

in matched P and M (n = 14). (B) Comparison of P vs. M. (C) Mutations and frequencies in matched 

P and pre-L (n = 30). (D) Comparison of P vs. pre-L. (E) Comparison of P/pre-L vs. i-L and P/pre-L 

vs. post-L. 
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In summary, we observed typical mutational patterns in the REVEAL patient cohort 

and confirmed the potential of liquid biopsy NGS analyses for mutation typing (e.g., RAS 

status) and for monitoring tumor progression or therapeutic response. However, 

mutational screening based on the customized 100-gene panel did not uncover any novel 

resistance mechanism. 

3.3. Identification of a Post-Therapeutic Liver Metastasis CRC Expression Signature 

In order to identify novel potential post-therapeutic biomarkers and mechanisms 

distinctly regulated by therapy in CRCs, we performed a comparative multiplex 

expression analysis utilizing pre-therapeutic primary tumor (P), pre-therapeutic normal 

tumor adjacent (N), and post-therapeutic liver metastasis (M) tissue. The mRNA 

expression of 770 cancer-related genes was measured in available tissues (P, n = 31; N, n = 

31; M, n = 23), including matched P and M samples of 12 patients. After normalization, 

quality control, and data filtering, 26 N, 29 P, 22 M samples (Table S3), and 443 genes were 

chosen for further comparative analyses (Figure 1 and Figure S2A,B). Subsequent GSEA 

of P vs. M showed enrichment of the Hallmark_Epithelial_Mesenchymal_Transition gene 

set (N (n = 26) vs. P (n = 29); false discovery rate (FDR), 0.21; nominal p-value (nom-P), 

0.11; and of the Hallmark_KRAS_Signaling_up gene set (P KRAS wildtype (WT) (n = 17) 

vs. P KRAS mutated (mut) (n = 8); FDR = 0.36; nom-P, 0.04) (Figure S2C-D). In addition, a 

normal CMS (consensus molecular subtype) group distribution was observed in P (n = 29; 

CMS1, 10.4%; CMS2, 37.9%; CMS3, 13.8%; CMS4, 37.9%) (Figure 2A and S2E; Table S4). 

These results demonstrated the plausibility of the REVEAL patient cohort and dataset. 

Next, we aimed to identify differentially expressed genes (DEGs) in P vs. M in unmatched 

(P, n = 29; M, n = 22) and paired (from the same patient: P and M, n = 12) samples. Thirteen 

DEGs were identified in the unmatched (DEG signature A (DEG-A)) and sixteen DEGs in 

the paired (DEG signature B (DEG-B)) analyses (Table 2, Figure 3A,B). Ten DEGs were 

common in both signatures, whereas three and six DEGs were exclusive to DEG-A or 

DEG-B, respectively (Figure 3C). The majority of the DEGs were downregulated in the 

post-therapeutic metastatic setting (DEG-A 9/13; DEG-B 13/16). In both signatures, the 

strongest significant downmodulation (-) was observed for SFRP2 and THBS4, whereas 

the greatest expression increase (+) was found for CREB3L3. Seventeen out of the nineteen 

DEGs identified in both analyses were associated with 1) EMT/MET/Wnt 

regulation/signaling (SFRP2 (−), WNT5A (−), WNT2B (−), FZD8 (−), SPP1/OPN (+)), 2) 

extracellular matrix (ECM) modulation (MMP3 (−), COL11A1 (-), FLNC (−), FGF7 (−), 

COL1A1 (−), COL1A2 (−)), 3) endoplasmic reticulum (ER) stress/apoptosis (THBS4 (−), 

CACNA1H (−), BNIP3 (+), CREB3L3 (+)), and 4) NOTCH signaling/metabolism (PCK1 (+), 

LIF (−)). Moreover, IL1RAP, related to oncogenic signaling and NGFR, displaying an 

ambivalent role in tumor progression, were upregulated in M. 
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Figure 3. Identification of a post-therapeutic liver metastasis CRC expression signature. (A,B) 

Expression comparison in P and M tumor tissues in unmatched/all samples ((A) P, n = 29; M, n = 22) 

and paired samples ((B) P, n = 12; M, n = 12). Data were generated by moderated t-test with limma 

(padj, padjusted) and displayed by volcano plots. Differentially expressed genes (DEGs) are 

indicated by red dots. FC, fold change; n.s., not significant. padj, p adjusted. (C) Venn diagram 

indicating the number of overlapping genes in DEG signatures A (unmatched) and B (paired). 
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Table 2. Significant DEGs identified in all samples (DEG A) and paired samples (DEG B). 

Gene DEG Log2 FC 
Avg 

Expr 
p Value Padj FC %Change Program/Pathway/Function 

SFRP2 
A −3.46 5.81 1.77 × 10−5 0.0016 0.09 −90.91 

EMT/MET/WNT 
B −4.33 4.94 5.85 × 10−6 0.00065 0.05 −95.03 

THBS4 A −3.44 4.55 3.98 × 10−7 8.81 × 10−5 0.09 −90.79 
ER stress, tumor suppressor CRC 

 B −4.52 4.05 7.26 × 10−7 0.00016 0.04 −95.64 

MMP3 
A −2.94 4.24 6.56 × 10−7 9.69 × 10−5 0.13 −86.97 

ECM modulating/related 
B −4.11 3.76 1.99 × 10−6 0.00029 0.06 −94.21 

COL11A1 
A −1.84 5.89 0.00012 0.0065 0.28 −72.07 

ECM modulating/related 
B −2.17 5.73 2.21 × 10−5 0.002 0.22 −77.78 

WNT5A 
A −1.53 5.66 1.28 × 10−5 0.0014 0.35 −65.37 

EMT/MET/WNT 
B −1.97 5.41 0.00022 0.0098 0.26 −74.47 

FLNC 
A −1.33 5.90 9.01 × 10−5 0.0065 0.40 −60.22 

ECM modulating/related 
B −1.85 5.73 5.75 × 10−5 0.0042 0.28 −72.26 

WNT2B 
A −1.17 3.93 0.00022 0.011 0.44 −55.56 

EMT/MET/WNT 
B −1.24 3.61 7.2 × 10−5 0.0046 0.42 −57.66 

CACNA1H 
A −1.05 5.80 0.00011 0.0065 0.48 −51.70 

ER stress, inh. of proliferation 
B −1.32 5.66 0.0013 0.038 0.40 −59.95 

FZD8 
A −0.98 4.53 0.00071 0.031 0.51 −49.30 

EMT/MET/WNT 
B −1.62 4.30 0.00022 0.0098 0.33 −67.47 

FGF7 B −1.65 4.00 0.00067 0.025 0.32 −68.14 ECM modulating/related 

COL1A1 B −1.07 11.31 0.00093 0.032 0.48 −52.37 ECM modulating/related 

COL1A2 B −1.04 8.57 0.0017 0.047 0.49 −51.37 ECM modulating/related 

LIF B −0.75 6.01 0.0013 0.038 0.59 −40.54 NOTCH inihibition 

IL1RAP A 0.61 4.78 0.0012 0.042 1.53 52.63 Oncogenic signaling 

BNIP3 B 1.41 5.32 0.00038 0.015 2.66 165.74 ER stress, apoptosis, autophagy 

NGFR A 1.45 4.98 0.0012 0.042 2.73 173.21 Ambivalent, tumor suppressor CRC 

PCK1 A 1.6 4.37 0.00092 0.037 3.03 203.14 NOTCH, metabolism 

SPP1/OPN B 1.76 9.70 0.00021 0.0098 3.39 238.70 EMT/MET/WNT 

CREB3L3 
A 2.16 2.13 3.33 × 10−8 1.48 × 10−5 4.47 346.91 

ER stress, transcription factor 
B 2.78 2.54 5.23 × 10−10 2.32 × 10−7 6.87 586.85 

Avg expr, average expression (log2); ECM, extracellular matrix; EMT, epithelial to mesenchymal 

transition; ER, endoplasmic reticulum; FC, fold change; MET, mesenchymal to epithelial transition. 

Padj, adjusted p value. Genes found in DEG A and B are highlighted in bold. 

3.4. Association of the Expression Profile with Cellular Programs and Pathways 

To further elucidate the biological differences in primary tumor and post-therapeutic 

metastatic specimens, we performed gene ontology (GO) analysis, GSEA, and CMS 

classification utilizing the complete 443 gene expression data. When comparing P vs. M 

(all unmatched samples), typical CRC gene sets such as EMT/Wnt/stem cell/NOTCH-

related were significantly enriched in P (Figure S3). In contrast, EMT/Wnt (FDR = 0.0452) 

and stem cell proliferation (FDR = 0.0382) displayed negative associations in M (Figure 

4A). Moreover, a negative correlation of the ECM (FDR = 0.00357) and positive enrichment 

of the inflammatory response (FDR = 0.0474), receptor complex (FDR = 0.0461), and ER 

lumen (FDR = 0.0461) gene sets was observed. Analyses of the paired sample expression 

sets revealed enrichment of the immune receptor activity (FDR = 0.221) and cytokine 

receptor activity (FDR = 0.242) as well as of two autophagy associated (FDR = 0.143 and 

0.197) gene sets in M (Figure 4A).  

A similar trend was also determined in the unmatched setting (Figure S3). Consistent 

with EMT/ECM downmodulation, in 4 (33.3%) of the 12 paired P+M samples, a change 
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from CMS4 (‘mesenchymal’) in P to CMS2 (‘canonical’) or CMS3 (‘metabolic’) (2 patients 

each) in M was observed. However, in two patients (16.7%), a switch from CMS2 (P) to 

CMS4 (M) was found (Figure 4B). A change from CMS3 to CMS1 (‘MSI, immune’) was 

noticed in one patient (8.3%), whereas no change in CMS classification was observed in 

five (41.7%) patients. In addition, a STRING (Search Tool for the Retrieval of Interacting 

Genes/Proteins) investigation based on the fold change of the 19 signature genes revealed 

amongst others (Table S5) a significant enrichment of the interaction datasets related to 

cellular metabolic process (12 genes, FDR = 0.00013), endoplasmic reticulum (8 genes, FDR 

= 0.0016), extracellular region (13 genes, FDR = 2.26 × 10−6), MAPK signaling pathway (4 

genes, FDR = 0.0009), PI3K/AKT signaling pathway (8 genes, FDR = 2.73 × 10−8) and WNT 

signaling pathway (4 genes, FDR = 0.00011) (Figure 4C). Furthermore, we found 43 GO 

sets, including at least 10 out of the 19 signature genes significantly enriched within the 

large biological process section. Ten of the sets were related to response to stimuli/stress, 

and eight of them were associated with metabolic processes (Table S5). These results 

further support a downmodulation of EMT/Wnt signaling and ECM regulation in post-

therapeutic metastatic CRCs. Moreover, immune and autophagy related mechanisms and 

metabolic processes seemed to be altered in this setting. 

 

Figure 4. Association of the post-therapeutic liver metastasis CRC expression signature with cellular 

programs and pathways. (A) Gene ontology (GO) analyses of unmatched and paired samples 
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utilizing all 443 gene expressions. (B) Changes in CMS classification from P to M in paired samples 

(n = 12). (C) STRING analysis based on the fold change of the 19 identified signature genes in M. 

Known and predicted interactions as well as examples of significantly enriched cancer related 

pathways are shown. 

3.5. The Expression Pattern of the Post-Therapeutic Signature Genes Classifies Primary Tumor 

and Liver Metastasis of CRCs 

After identification of the post-therapeutic signature genes and associated cellular 

programs, we investigated whether the expression pattern of these genes can correctly 

distinguish primary tumors and progression/metastatic samples of CRCs. As expected, we 

obtained a perfect separation by unsupervised hierarchical clustering and principal 

component analysis (PCA) of the paired samples when using the paired signature DEG-B 

(Figure 5B,D). By clustering of all samples utilizing the unmatched DEG-A genes, a perfect 

classification of the primary tumors (positive predictive value (PPV) = 1) was observed, 

whereas five metastases were wrongly classified (negative predictive value (NPV) = 0.85) 

(Figures 5A,C and S5E). Application of the paired DEG-B signature to all samples resulted 

in a PPV of 0.81 and a NPV of 0.91 (Figure S4B,D,E). To confirm the capability of the 

REVEAL signature genes in classifying primary tumors and metastatic colorectal tissue, 

we performed PCAs with two independent datasets (GSE131418: P, n = 333; M (liver), n = 

137 and GSE81582: P, n = 23; M, n = 19) with the DEG-A and B genes (Figures 4E,F and 

S4F,G). Application of both signatures resulted in a clear separation of the primary tumors 

and metastatic samples. However, a better prediction (GSE131418) was obtained with 

DEG-A (area under the curve (AUC) = 0.964) compared with DEG-B (AUC = 0.693). These 

results indicate that the expression pattern of the DEG-A and B genes can classify primary 

tumors and (post-therapeutic) metastatic colorectal tissue. 

 

Figure 5. The post-therapeutic signature genes classifies primary tumor and liver metastasis. 

Comparison of P and M tumor tissue using DEG signature A (unmatched/all samples; (A,C)) and B 



Cancers 2022, 14, 3631 15 of 24 
 

 

(paired samples; (B,D)). (A,B) unsupervised heatmaps. Clustering of P and M samples is indicated. 

(C–F) Principal component analyses (PCA) utilizing genes included in DEG signature A (C,E) and 

B (D,F). (C,D) REVEAL data set. (E,F) GSE131418 data set. 

3.6. Markers for the Sidedness of CRCs 

Patients with CRCs originating on the right side of the colon have a worse prognosis 

than patients with left-sided CRCs [38,39]. To find sidedness markers in the REVEAL 

cohort the expression pattern in left-sided primary tumors (L, n = 18) was compared with 

right-sided cancers (R, n = 8) (Figure 6). Seven genes displayed a significantly differential 

expression including the left–right asymmetry determination marker LEFTY1 [40]. The 

expression pattern of three additional genes was confirmed in an independent dataset 

GSE14333 (Dukes’ D; L, n = 36; R, n = 23) (Figure 6C). Namely, expression of EFNA2 (p = 

0.0039) and, interestingly, of one of our signature genes PCK1 (p = 0.0117) were associated 

with left whereas DKK4 (p = 0.0235) with right-sidedness. This association was also 

observed in only sigmoid colon-derived cancers (n = 11) but not in cancers of rectal origin 

(n = 6) in the REVEAL cohort, supporting distinct molecular characteristics of sigmoid 

colon and rectal cancer [41]. 

 

Figure 6. (A) Primary tumor localization of samples available for CRC sidedness association 

analyses. (B) Differentially expressed genes (DEGs) in primary CRCs of left- or right-sided origin. 
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(C) Confirmation of side association of PCK1, EFNA2, and DKK4 expression in the independent 

data set GSE14333 (only Dukes’ D stage). (B,C) Significance levels were calculated by moderated t-

test with limma. *, p < 0.05; **, p < 0.01; ***, p < 0.001; ns, not significant. 

3.7. Identification of Potential Biomarkers for Post-Therapeutic Metastatic CRCs 

To search for genes with potential biomarker function, we initially analyzed the 

expression trend of the signature genes in two independent CRC gene expression datasets 

containing expression analyses of primary tumors and metastases (Figure 7). The 

expression pattern determined in our patient cohort was confirmed in the datasets 

GSE131418 and GSE81582 in 11 out of 19 genes, namely genes involved in (1) 

EMT/MET/Wnt FZD8, SFRP2, SPP1, WNT2B, WNT5A, (2) ECM modulation COL11A1, 

COL1A1, (3) ER-stress CACNA1H, CREB3L3, (4) NOTCH/metabolism PCK1 and NGFR 

(Figure 7, Table S6). Moreover, expression of the majority of the genes (CACNA1H, 

COL1A1, COL11A1, FZD8, NGFR, SFRP2, WNT2B, and WNT5A) was associated with the 

‘mesenchymal’ CMS group 4 in the TCGA (The Cancer Genome Atlas) Colorectal 

Adenocarcinoma dataset [42] (Figure S5). SPP1 was correlated with CMS1 and CMS4, 

whereas no clear association was observed for PCK1 and CREB3L3. All of the CMS4-

associated genes except NGFR and SPP1 were downregulated in the metastases of the 

REVEAL cohort and functionally associated with EMT/WNT or ECM modulation, further 

supporting a reversion of the mesenchymal/EMT phenotype. These findings confirm and 

further characterize the identified 11 signature genes and suggest that they may represent 

potential biomarkers for progressive/metastatic CRCs. 

 

Figure 7. Expression of signature genes that showed the same significant trend (up/down regulation 

in M) in the REVEAL, GSE131418 and GSE81582 data sets. Associated cellular programs/pathways 

for each gene are indicated. Significance levels were calculated by moderated t-test with limma. *, 

padj < 0.05; **, padj < 0.01; ***, padj < 0.001; ns, not significant. 
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3.8. Clinical Association of the Identified Signature Genes 

Next, we investigated the clinical importance and potential prognostic association by 

survival analyses in relation to the expression levels of the signature genes in primary 

tumors. An impact on overall survival was estimated only for SFRP2 (secreted frizzled-

related protein 2) and SPP1/OPN (secreted phosphoprotein 1/osteopontin) with SFRP2low 

(low, n = 8, OS = 12.62m; high, n = 21, OS = 36.47m; HR = 0.363; 95% CI = 0.103–1.277; p = 

0.114) and SPP1high (low, n = 9, OS = 47.86m; high n = 20, OS = 25.14; HR = 4.268; 95% CI = 

0.953–19.121; p = 0.040) (Figure 8A,B). To validate the survival in a larger patient cohort, 

the prognostic relevance of the identified 11 signature genes was analyzed in the FIRE-3 

trial [43] expression dataset (ALMAC’s Xcel™ gene-expression array, n = 403). This trial 

investigated standard first line chemotherapy with FOLFIRI in conjunction with either 

cetuximab or bevacizumab. Significant overall survival associations were observed for 

SFRP2low (low, n = 208, OS = 23.66m; high, n = 195, OS = 26.25m; HR = 0.81; 95% CI = 0.659–

0.997; p = 0.047) and SPP1high (low, n = 92, OS = 31.67; high, n = 311, OS = 23.62m; HR = 

1.417; 95% CI = 1.104–1.819; p = 0.006) (Figure 8C,D). 

Since high SPP1 expression in primary CRC tumors was previously associated with 

poor prognosis [44] and SFRP2 promoter methylation resulting in reduced SFRP2 

expression was considered a CRC biomarker [45], the expression during the course of 

cancer progression was analyzed in paired normal (N), P and M samples of the REVEAL 

study (n = 9) (Figure 8E,F). A continuous increase in SPP1 from N to P (p < 0.01) to M (p < 

0.05) was observed in seven patients (77.77%), whereas a decrease from N to P (n.s.) to M 

(p < 0.01) was measured for SFRP2 in six patients (66.66%). These results further support 

the roles of SFRP2 and SPP1 as CRC biomarkers. 

 

Figure 8. Prognostic role of the identified signature genes. (A–D) Overall survival (OS) of patients 

of the REVEAL (A,B) and FIRE-3 (C,D) cohorts expressing high (red curve) or low (blue curve) 
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levels of SFRP2 (A,C) or SPP1 (B,D); p values were calculated by log-rank test. (E,F) Expression of 

SFRP2 and SPP1 in paired normal tissue (N), primary tumor (P), and metastasis (M) (n = 9). *, p < 

0.05; **, p < 0.01; ***, p < 0.001, ns, not significant. 

4. Discussion 

Here we report results from the prospective observational biomarker study REVEAL 

(ReEVAluation of Liver metastasis). This study aimed to identify molecular alterations 

and resistance mechanisms acquired during standard first-line treatment against mCRC 

in primary tumor and post-treatment metastatic tissues. Furthermore, we used circulating 

tumor DNA (ctDNA) prepared from liquid biopsies to monitor treatment response and 

emerging alterations conferring resistance against systemic treatment. 

Analyses of genetic alterations in primary tumor samples before treatment (P) 

revealed a typical mCRC mutational pattern as previously observed in other studies 

[8,9,20]. Comparative analyses of matched P and tumor specimens from liver metastases 

after standard first-line treatment (M) showed the same mutations in 71.4% of the patients, 

whereas in 28.6%, metastasis private mutations were found in M. Of note, these additional 

mutations in the ATM, TP53, POLE genes do not reflect typical resistance mutations in 

solid tumors. Other studies described a similar mutational pattern in primary tumors and 

metastases of colorectal origin as well [8,9]. Notably, most of these studies compared 

untreated primary tumors and metastases. Nevertheless, our study confirms that 

standard treatment does not mainly change the metastatic genome. 

By utilization of a high sensitivity massive parallel sequencing (MPS) approach, we 

also investigated pre-, intra-, and post-therapeutic liquid biopsies (L). The same mutation 

spectra were observed in 83% of matched P and pre-L samples, reflecting the results of 

another study in mCRC [19]. This confirms the feasibility of liquid biopsy screening with 

high-sensitivity MPS analyses. In addition, our results support the still-understudied 

value of blood-based RAS typing for guiding anti-EGFR therapy in metastatic CRC 

patients [16,19]. The PPV (1.0) and NPV (0.94) for KRAS mutations utilizing our approach 

were comparable to the values reported by Schmiegel et al. [19,46]. In addition, we 

measured therapeutic responses in intra- and post-therapeutic liquid biopsies as indicated 

by lack of mutation detection in those samples. However, this may also be mediated by 

decreased shedding of genomic DNA fragments from tumor cells during treatment and 

inadequate sensitivity of the used approach: all well-known limitations of ctDNA 

monitoring [46]. 

We could not determine novel candidate resistance mechanisms to standard 

treatment of mCRC based on mutational analysis. Therefore, we subsequently analyzed 

transcriptional changes in 770 cancer-associated genes in the remaining primary tumor 

and metastatic tissue samples with sufficient material for RNA analyses. The analyses of 

all available and matched pair samples revealed, in total, 19 significantly differentially 

expressed genes (DEGs) between P and M. The DEGs are known to be associated with 

extracellular matrix (ECM) modulation, epithelial–mesenchymal transition 

(EMT)/mesenchymal–epithelial transition (MET) regulation, endoplasmic reticulum (ER) 

stress, and metabolism regulation, as well as oncogenic signaling via MAPK-, NOTCH-, 

PI3K/AKT- and WNT-pathways. We observed a negative enrichment of the EMT gene set 

and altered expression of five DEGs involved in EMT/Wnt signaling in M, corroborating 

previous findings of EMT reversion in metastases [10,47]. This was further supported by 

the downmodulation of ECM-regulating factors in the REVEAL cohort and other studies 

[47]. Moreover, we observed a positive correlation of immune/cytokine receptor, 

inflammatory response, and autophagy gene sets in the M group. In the past decade, the 

involvement of the microenvironment and especially the role of the immune system and 

inflammation triggering aggressiveness, metastasis, and therapy response of cancer cells 

have been highlighted [48–50]. Recent metastases expression profiling studies utilized 

multiple design approaches and further underlined the importance of immune signatures 

and even further differentiation of metastatic subtypes. Comparison of metastatic and 
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non-metastatic primary tumors established a 115 gene metastatic expression signature 

and emphasized the importance of Wnt and TGFβ signaling [51]. Another study identified 

several coding and non-coding genes differentially expressed in primary tumors and 

cytotoxic therapy-naïve metastases associated with endocytosis, cell cycle, PI3K/AKT, and 

TGFβ signaling [11]. Kamal et al. identified two mCRC metastasis subtypes characterized 

by an EMT/inflammatory and a proliferative signature in a comprehensive analysis of two 

large patient cohorts [10]. Currently, the prognostic and therapeutic value of immune 

signatures for various tumors is being investigated in clinical trials. Our results further 

support the need for diagnostic surveillance of tumor samples during the course of 

systemic treatment for changes in the immune/inflammatory response to potentially 

support clinical decision making. 

Recently, multiple studies addressed the prognostic impact of consensus molecular 

subtypes (CMS) and their predictive effects on different combinatorial treatments of 

mCRCs [43,52,53]. In contrast to the clinical association of CMS groups previously 

reported in early-stage cohorts [54] in mCRCs, CMS2 and CMS3 predicted best overall 

survival [43,52,53]. The REVEAL patient cohort showed a similar CMS group distribution 

in primary tumors compared with other studies [54]. Interestingly, a switch to a different 

CMS group was observed from P to M in 58.3% of the matched samples. Molecular 

subtype shifting was also reported in metastases [10] and in the budding/EMT region of 

primary tumors [55]. Additionally, it is well-known that chemotherapy and targeted 

approaches significantly affect gene expression and thus the molecular classification of 

CRCs [10,49,56]. This suggests that CMS groups are adaptable according to the stage of 

the tumor cells (primary tumor/EMT/MET/metastasis) and are influenced by standard 

treatment. Thus, a re-evaluation of CMS groups during/after treatment may be taken into 

consideration in future clinical trials. 

We evaluated the clinical relevance of identified DEGs between P and M by 

correlating gene expression with patient survival. Within the REVEAL cohort, a trend was 

observed for SFRP2 (secreted frizzled-related protein 2) and a significant correlation for 

SPP1/OPN (secreted phosphoprotein 1/osteopontin). Due to the restricted number of 

patients, we expanded the survival analyses to the larger FIRE-3 patient cohort. The FIRE-

3 study compared standard first-line chemotherapy with either cetuximab or 

bevacizumab, as previously described [4]. In agreement with the second-strongest 

downregulation of SFRP2 in metastases in the REVEAL trial, low SFRP2 expression was 

significantly correlated with a reduced OS. SFRP2 is a secreted key inhibitor of non-

canonical Wnt signaling and is considered a tumor suppressor gene depending on the 

organ/cellular context [57]. SFRP2 expression is downregulated in cancer cells by 

promoter hypermethylation. Therefore, SFRP2 methylation may also represent a 

promising biomarker for CRC in blood and stool samples [57]. Although SFRP2 was 

shown to act as tumor suppressor in CRC cell lines and SFRP2 methylation is a hallmark 

of CRC tumor cells, the clinical prognosis of SFRP2 methylation is contradictory. Some 

studies estimated a poor and other studies a favorable clinical outcome in CRCs with 

hyper-methylated SFRP2 [57]. This difference may be due to variable SFRP2 secretion 

from stroma cells [58]. We observed a continuous reduction from normal to primary 

tumor to metastatic tissues in the majority of our matched samples and a worse prognosis 

in patients of the FIRE 3 cohort with low SFRP2 expression. These findings support the 

importance of SFRP2 as a tumor-suppressing biomarker, the loss of which leads to poor 

prognosis. However, the influence of the tumor microenvironment should also be 

considered in future studies, as well as a predictive relevance regarding targeted therapy. 

Moreover, higher SPP1 expression was associated with poor survival. Similar 

observations were made in other trials based on investigations of primary tumors and 

blood plasma [44,59]. Interestingly, we determined a continuous upregulation of SPP1 

from normal tissue to primary tumors and ultimately to metastases, which helps to 

explain the association of SPP1 plasma levels with post-operative metastasis [59]. 

SPP1/OPN encodes a secreted integrin- and CD44-binding factor that mediates PI3K/AKT, 
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NF-κB, and MAPK signaling and thus drives CRC progression and chemoresistance [60]. 

Therefore, our study further emphasizes the role of SPP1 not only as a prognostic factor 

that can be quantified from body fluids but also as a potentially druggable target, 

supporting the development of inhibitors targeting the SPP1/integrin axis. 

The prospective multicentric REVEAL study has limitations. A restricted number of 

patient samples was available for mutational and gene expression analyses. Especially, 

the number of whole sets of matched samples was limited partly due to material 

restrictions (sufficient tissue for DNA and RNA preparation was required) and patient’s 

rejection of additional liver biopsies in case of progression during first-line treatment. To 

compensate for inequal recruitment, we analyzed matched as well as unmatched tumor 

samples and validated our results in two independent datasets and in the large phase III 

trial FIRE-3. However, the power of statistical analyses was limited and further sub-

grouping by e.g., different treatment regimens or mutational subtypes was not possible. 

5. Conclusions 

The REVEAL study indicates that serial mutational and gene expression analysis is 

feasible and a promising approach to elucidate metastatic progression, treatment effects, 

and drug resistance. Consequently, future studies should examine larger cohorts of 

matched samples. Particularly, the analysis of metastases during and after first-line 

treatment, including CMS classification, might be a promising approach for guiding 

second-line therapies. Moreover, the detection of immune/inflammatory expression 

signatures and the potential of SFRP2 as prognostic biomarker and SPP1 as potentially 

druggable target warrants future studies with larger cohorts. 
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