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University of Veterinary Medicine Vienna, Vienna, Austria

Alterations  of glutamatergic neurotransmission have been implicated in
neurodevelopmental and neuropsychiatric disorders. Mice lacking the GIuA1 AMPA
receptor subunit, encoded by the Grial gene, display multiple phenotypical features
associated with glutamatergic dysfunction. While the phenotype of adult GluA1
deficient (Gria1=/~) mice has been studied comprehensively, there are relevant
gaps in knowledge about the course and the onset of behavioral alterations in the
Grial knockout mouse model during post-weaning development. Based on former
investigations in young wild-type mice, we exposed female and male adolescent
Grial~/~ mice to a behavioral home-cage based testing battery designed for the
purpose of severity assessment. Data obtained from mice with a constitutive loss of
GluA1 were compared with those from wild-type littermates. We identified several
genotype-dependent behavioral alterations in young Grial=/~ mice. While the
preference for sweetness was not affected by genotype during adolescence, Grial =/~
mice displayed limited burrowing performance, and reached lower nest complexity
scores. Analysis of home-cage based voluntary wheel running performance failed
to confirm genotype-dependent differences. In contrast, when exposed to the open
field test, Gria1=/~ mice showed pronounced hyperlocomotion in early and late
adolescence, and female Gria7~/~ mice exhibited thigmotaxis when prepubescent.
We found increased corticosterone metabolite levels in fecal samples of adolescent
Grial=/~ mice with females exhibiting increased adrenocortical activity already in
prepubescence. Considering the course of behavioral modifications in early and late
adolescence, the results do not support a persistent level of distress associated with
GluA1 deficiency in the line. In contrast, the laboratory-specific readouts indicate
transient, mild impairments of behavioral patterns relevant to animal welfare, and
suggest a mild overall burden of the line.

Keywords: 3R, severity assessment, genetic mouse model, GRIA1, glutamate, schizophrenia, knockout,
glucocorticoids
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INTRODUCTION

There is compelling evidence that alterations of glutamatergic
neurotransmission are implicated in neuropsychiatric disorders
(Sanacora et al., 2012; Uno and Coyle, 2019). In particular,
the incorporation of the L-alpha-amino-3-hydroxy-5-
methylisoxazole-4-propionate (AMPA) glutamate receptor
subunit 1 (GluA1l) into synaptic AMPA receptors is considered
to be a key mechanism of synaptic structural as well as functional
plasticity (Sprengel et al., 1998; Hayashi et al., 2000; Shi et al.,
2001; Malinow and Malenka, 2002; Kopec et al., 2007; Lee et al.,
2010; Huganir and Nicoll, 2013). In humans the AMPA receptor
subunit GluAl is encoded by the GRIAI gene, a locus with
genome-wide association to schizophrenia (Ripke et al., 2013;
Schizophrenia Working Group of the Psychiatric Genomics
Consortium, 2014). Grial deficient mice, harboring the global
loss of GluAl, mimic multiple features of neuropsychiatric
disease states related to glutamatergic dysfunction, among
others, schizophrenia and schizoaffective disorders, attention
deficit hyperactivity disorders (ADHD), bipolar disorders, and
mood disorders (Wiedholz et al., 2008; Fitzgerald et al., 20105
Ben Abdallah et al., 2011; Barkus et al., 2012; Sanacora et al.,
2012; Vogt et al.,, 2014). Data from adult mice suggest that the
global loss of GluAl induces a complex behavioral phenotype,
comprising spatial working memory deficits with an intact
reference memory (Zamanillo et al,, 1999; Reisel et al., 2002;
Schmitt et al., 2003; Bannerman et al., 2004), novelty-induced
hyperexcitability (Wiedholz et al., 2008) and hyperlocomotion
(Vekovischeva et al., 2001; Schmitt et al., 2003; Wiedholz et al.,
2008), as well as a depression-associated phenotype (Chourbaji
et al,, 2008; Austen et al., 2017). While the behavioral phenotype
of adult GluAl deficient mice has been studied extensively,
there is still limited information on the course and the onset
of behavioral modifications during post-weaning development.
Here, we aimed to profile aspects of the behavioral phenotype
of young Grial knockout mice as a genetic loss-of-function
model, exposing female and male Grial =/~ mice to a home-cage
based testing battery during post-weaning development. The
applied behavioral and biochemical composite measure scheme
was derived from an extensive dataset of consortium data for
the purpose of severity assessment in different adult rodent
models (Bleich et al., 2020). Our group has further figured out
the parameters rendering the highest informative value based
on a bioinformatic approach (Keubler et al., 2020; van Dijk
et al., 2020), and we subsequently have evaluated their versatile
applicability in adolescent C57BL/6] wild-type mice (Reiber
et al., 2022). Despite the aspect of ethical responsibility that
researchers bear, animal welfare assessments are mandatory
according to Directive 2010/63/EU. For implementation of the
Directive 2010/63/EU, animal experiments have to be designed
to reduce pain, suffering, distress or lasting harm to a minimum
(Smith et al, 2018). Unfortunately, there are still relevant
gaps in knowledge on evidence-based, validated methods to
determine and grade levels of distress and to decipher the
multidimensional aspects of life-time severity (Keubler et al.,
2020). Particularly in neuroscience research, genetic mouse
models can experience peaks of distress during the course

of post-weaning development (Sukoff Rizzo and Crawley,
2017). GluA1l deficient mice of the strain B6N.129-Grial TM1Rsp
represent a loss-of-function model of neuropsychiatric relevance,
which has been classified to experience “no harm burden.”
However, following the guidelines provided by the German
Centre for the Protection of Laboratory Animals (Bf3R), the
entire developmental phase of the mice between weaning in
late infancy and young adulthood is not necessarily involved
when investigating severity grading of genetically modified lines
(EU, 2010; Bf3R, 2016; Reiber et al., 2022). Ethologically-based
characterization, comprising cross-model, cross-species and
cross-age validations, allow for conclusions about face validity
(Percie du Sert et al., 2020), adequate refinement measures and
welfare-based model prioritization (van Dijk et al., 2020). Our
findings aim to shed light on subtle levels of distress associated
with genetic deficiency, here Grial=/~, and provide further
information for conclusions on cumulative severity grading and
recommendations for refinement of genetic mouse lines.

MATERIALS AND METHODS

Ethics Statement

All animal experiments were conducted and reported in line
with the EU Directive 2010/63/EU, the German Animal Welfare
Act, the ARRIVE (Animal Research: Reporting of In Vivo
Experiments) guidelines, and the Basel declaration’ including
the 3R principle. All animal experiments were approved by
the government of Upper Bavaria (Munich, Germany, license
number ROB-55.2-2532.Vet_02-19-157).

Animals
Grial knockout (Grial~/~) mice (line B6N.129-Grial ™M1Rsp/y,
available at The Jackson Laboratory: Strain #019011, Mouse
Genome Informatics ID: MGI:2178057) were generated as
described previously (Zamanillo et al,, 1999), and have been
backcrossed into C57BL6/N background for more than 10
generations at the animal facility of Heidelberg University (IBF,
Heidelberg). Experimental animals were bred at the Institute of
Pharmacology, LMU Munich, from Grial heterozygous (HET)
x HET parents (19 HET females, 7 HET males), which were
obtained from the IBE, Heidelberg. Offspring animals were
divided into the experimental group carrying the genetic Grial
deficiency, referred to as “Grial~/~ mice” in the following
(n = 18, female: male, n = 10:8), and the wild-type control group,
referred to as “wild-type mice” in the following (n = 20, female:
male, n = 10:10). Offspring animals were genotyped prior to
weaning by ear punch biopsy as described previously (Zamanillo
et al, 1999). The genotypes of experimental animals were
confirmed by a second PCR after completion of the experiments.
Breeding animals were housed in Makrolon type III cages
(Ehret GmbH & Co. KG, Emmendingen, Germany), enriched
with bedding material (Lignocel Select, ]. Rettenmaier &
Sohne GmbH & Co. KG, Rosenberg, Germany), Enviro Dri
nesting material (Enviro Dri, Claus GmbH, Limburgerhof,

Thttps://www.basel-declaration.org
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Germany), two nestlets (Ancare, Bellmore, NY, United States),
and one square animal house (Zoonlab GmbH, Castrop-
Rauxel, Germany).

From weaning at postnatal day (P) 21 onward, experimental
animals were housed in groups of two, according to their Grial-
genotype and sex, as one experimental unit (n = 2). Experimental
units (n = 19) were housed under controlled environmental
conditions (22-24°C, 45-60% humidity) in a 12-h dark-light
cycle with ad libitum access to food (Ssniff Spezialdidten GmbH,
Soest, Germany) and tap water, in Makrolon type III cages
(Ehret GmbH & Co. KG, Emmendingen, Germany), provided
with bedding material (Lignocel Select, J. Rettenmaier & Sohne
GmbH & Co. KG, Rosenberg, Germany), two nestlets (Ancare,
Bellmore, NY, United States) and one square animal house
(Zoonlab GmbH, Castrop-Rauxel, Germany) per cage. The order
of cages was randomized’. Animals received a fresh cage once
per week. During 4 days each in the phases of prepubescence
and sexual maturity, experimental units were housed in home-
cage systems with continuous video recording (PhenoTyper,
Noldus, Wageningen, Netherlands), combined with the video
analysis tracking software EthoVision XT 15 (EthoVision XT,
SCR_000441). Each PhenoTyper cage was supplemented with
200 g bedding material (Lignocel Select, J. Rettenmaier & Séhne
GmbH & Co. KG, Rosenberg, Germany), two nestlets (Ancare,
Bellmore, NY, United States), an infrared translucent shelter
(Noldus, Wageningen, Netherlands) and two drinking bottles
(Noldus, Wageningen, Netherlands).

Experimental Design

Mice were investigated at different ages during the phase of
murine adolescence, in line with a sub-classification of the
adolescence phase as suggested by Brust et al. (2015): (1)
prepubescence (P23 onward), (2) pubescence (P35 onward),
and (3) sexual maturity (P48 onward). In addition, we assessed
the condition of the litter/newborns based on the suggestions
by the Bf3R (Bf3R, 2016). We use the term “sexual maturity”
when referring to the period of late adolescence in which
fully fertile animals start to disperse (Brust et al., 2015). Since
several of the tests were conducted in the animals’ home cages,
respective tests were analyzed per experimental unit (n = 2),
as indicated in Figure 1. Moreover, age ranges of the animals
(n = 38; experimental units: n = 19) passing the testing battery
are illustrated in Figure 1, providing an overview of the
experimental scheme.

Behavioral Home-Cage Assessment
Saccharin Preference

The saccharin preference test was applied twice during
adolescence, in prepubescent mice and once again when they
had reached sexual maturity. The preference for sweetness can
be interpreted to reflect anhedonia-associated behavioral traits
in laboratory rodents (Crawley, 2006; Klein et al., 2015). As
described previously (Reiber et al., 2022), mice received two water
bottles filled with 200 g tap water on the first and third day during
the two observation periods in order to assess the water intake

2www.randomizer.org

over 24 h. On day 2 and 4, one water bottle was filled with 200 g
of a 0.1% saccharin solution (Aldrich Saccharin > 98%, Sigma-
Aldrich Chemie GmbH, Taufkirchen, Germany). The other bottle
contained 200 g of tap water. The side of the bottle containing
the saccharin solution in the cage was alternated on day 2 and
4. We performed the analysis following a protocol by Klein and
colleagues (Klein et al., 2015).

Burrowing

Since we have detected relevant levels of burrowing activity
in adolescent wild-type mice once the animals reached sexual
maturity (Reiber et al., 2022), we applied the burrowing test
in sexually mature mice only. We analyzed the burrowing
performance assessing the weight of food pellets burrowed by the
animals in their home cages during a 2-h light-phase session and
thereafter once again during the dark phase overnight. Overnight
and light-phase burrowing performance were assessed in sexually
mature mice on two consecutive days. An empty water bottle
(length: 20 cm, diameter of the bottleneck: 3.5 cm; Zoonlab
GmbH, Castrop-Rauxel, Germany) was filled with 200 &= 1 g food
pellets (Ssnift Spezialdidten GmbH, Soest, Germany) and placed
into the home-cage approximately 2 h prior to the beginning of
the dark phase. After exactly 2 h, the weight of the bottle with
the remaining pellets was measured. Pellets distributed on the
floor of the cage from the previous 2-h test session were removed.
The bottle was then placed back in the cage for the assessment
of overnight burrowing performance. Directly after the end of
the dark phase on the next day, the weight of the bottle with the
remaining pellets was measured.

Nest Building

As described previously (Reiber et al, 2022), we assessed
nest building performance in the home-cage, analyzing the
complexity and shape of the nest over an observation period
of 4 days each in prepubescent and sexually mature mice. Mice
received two pressed cotton squares per home cage. Pictures of
the nest were taken on a daily basis in the morning, including
a top-down view and two side views at an angle of 90 and
approximately 45 degrees. The image-based evaluation of nest
complexity was carried out using a slightly modified version of
the protocol provided by Jirkof et al. (2013). The scoring of the
images was carried out by a person unaware of group allocation.
For further information on the applied scoring scheme, see the
Supplementary File.

Voluntary Wheel Running and Bench-Top
Assessment

Mice had free access to running wheels when prepubescent and
once sexually mature over a period of 4 days each. We assessed
voluntary wheel running performance in the animals’ familiar
home-cage environment as described previously (Reiber et al.,
2022). In short: the PhenoTyper cages were provided with a
freely accessible running wheel (diameter: 15 cm, width: 7 cm;
PhenoWheel, Noldus, Wageningen, Netherlands) for 24 h per
day. Analysis was carried out using the software EthoVision XT
15 (EthoVision XT, RRID:SCR_000441), based on the counts
(one rotation of the wheel) registered per minute.
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FIGURE 1 | Overview of the experimental scheme. FCMs refers to fecal corticosterone metabolites, * refers to behavioral tests conducted in the animals’ home
cages. Age ranges of test conduction [postnatal days (P)] are provided in the brackets.

Bench-top assessment (Baran et al., 2022) focusing on activity
patterns was conducted in the PhenoTyper cages using the
tracking software Ethovision XT 15. On the third day after the
mice were introduced to the PhenoTyper cages (adaptation time
approximately: 60-64 h), we analyzed parameters of activity
(distance, velocity) during a time slot of exactly 60 min shortly
after the beginning of the dark phase. We started the analysis
approximately 30 min after the beginning of the dark phase,
since animals showed high levels of activity then. In addition,
the location of the mice in their home cages was tracked
simultaneously. We analyzed the durations mice spent in three
zones: (1) the area surrounding the feeder rack (zone “feeding”),
(2) the area surrounding the drinking bottles (zone “drinking”),
and (3) the center of the cage (zone “center”). We started the
analysis approximately 30 min after the beginning of the dark
phase, since animals showed high levels of activity then. The
tracking duration lasted exactly 60 min. Analysis was performed
during prepubescence and once again during sexual maturity.
Parameters indicating features of social interaction displayed by
the two animals per home-cage were analyzed simultaneously
with the analysis of activity patterns. Hereby, the duration of body
contact and the mean distance between the two subjects were
analyzed using the software Ethovision XT 15.

Open Field

We applied the open field test assessing exploratory behavior
and locomotor activity with a monitoring duration of 15 min.
As described previously (Reiber et al., 2022), male animals were
tested prior to female animals. Animals were placed individually
in a white, circular shaped open field arena (diameter: 60 cm;
lighting condition: 20 lux) 10 cm away from and facing the
wall. The open field arenas were cleaned with 0.1% acetic acid
after each trial. For analysis the arena was subdivided into the
zone “wall,” comprising the outer 17% of the arena, and the
zone “center;’ comprising the inner 45% of the arena. Analysis
was carried out using the tracking software EthoVision XT 8.5
(EthoVision XT, RRID:SCR_000441). The frequency of “rearing”
positions and “jumps” against the arena wall were assessed
manually by a person blinded for group allocation.

Irwin Score
As described previously (Reiber et al., 2022), we applied the
traditional Irwin scoring system (Irwin, 1968) to assess the

general condition of the mice and to obtain information
about general behavioral, neurological, and vegetative changes.
Irwin scoring of handling-associated parameters was carried out
directly after the open field test between 07:00 a.m. and 01:00 p.m.
The time interval per assessment per mouse was approximately
2 min. Irwin scoring was split into three consecutive parts,
followed by rectal body temperature measurement. Irwin scoring
was conducted by the same person for all assessments and
the assessor was unaware of group allocation. For detailed
information on the applied modified scoring system, see the
Supplementary File.

Body Weight

We closely monitored the development of body weight from
weaning onward during late infancy and adolescence on
the following postnatal days: P21, P23, P25, P27, P30, P36,
P42, P49, and P55.

Fecal Corticosterone Metabolites

We analyzed adrenocortical activity in prepubescent and sexually
mature mice as described previously (Reiber et al, 2022).
Individual fecal samples for the analysis of corticosterone
metabolites were collected directly after the open field
paradigm. For detailed information on collecting, processing,
and biochemical analysis, see the Supplementary File.

Statistics

Statistical analysis was conducted using GraphPad Prism 5.04
for Windows (GraphPad Prism Software, San Diego, CA,
United States) and R version 4.0.2 (R Core Team, 2020).
Graphical illustration was conducted with GraphPad Prism 5.04.
We analyzed group differences by parametric two-way analysis
of variance (ANOVA) or non-parametric aligned rank transform
(ART) ANOVA (Wobbrock et al., 2011; Elkin et al., 2021)
using ARTool (version 2.1.2, Washington, DC, United States)
with genotype and sex as factors. Main effects were further
investigated applying false discovery rate (FDR) correction with
the Benjamini-Hochberg method to adjust p values. In cases of
a significant genotype by sex interaction, Bonferroni multiple
comparison post hoc tests were applied. A p-value < 0.05
was considered statistically significant. For nest complexity
scores, the median is shown. All other data are expressed as
mean =+ standard error of the mean (SEM).
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RESULTS

Behavioral Home Cage Assessment
Saccharin Preference

Analyses of saccharin preference did not reveal a significant
effect of genotype in prepubescent and in sexually mature mice.
Data from female and male mice did not differ in a significant
manner and genotype by sex interactions were not significant
(Supplementary Figure 1).

Burrowing

The assessment of burrowing performance in sexually mature
mice revealed a significant effect of genotype with Grial ™/~ mice
burrowing smaller amounts of pellets overnight than wild-type
littermates in the first test session (Figure 2A, ANOVA: genotype
Fy.15 = 20.07, p = 0.0004, FDR-adjusted p = 0.003) and in the
second test session on the consecutive day (Figure 2B, ANOVA:
genotype F; 15 = 10.24, p = 0.006, FDR-adjusted p = 0.03).
Analyses indicated no significant effects of sex and no significant
genotype by sex interaction for both overnight sessions. The
assessment of burrowing performance during the two 120-min
light sessions demonstrated a low mean performance without
significant group differences (Figures 2C,D).

Nest Building
In prepubescent mice, analyses of nest complexity scores
confirmed a significant effect of genotype for each of the four
observation days following the offer of new nesting material,
except for the second day: Nests from Grial~/~ mice reached
lower scores than those from wild-type littermates (Figure 3A,
ART ANOVAs: day 1: genotype F; 15 = 18.04, p = 0.007; day
2: genotype Fy 15 = 7.78, p = 0.01, FDR-adjusted p = 0.06; day
3: genotype Fy 15 = 10.07, p = 0.006, FDR-adjusted p = 0.03;
day 4: genotype F; 15 = 8.29, p = 0.01, FDR-adjusted p = 0.049).
Significant effects of sex were absent, and there was no significant
genotype by sex interaction, except for the assessment on the
first observation day (Figure 3A, ART ANOVA: day 1: sex
Fi,15 = 5.86, p = 0.03, genotype by sex interaction F; ;5 = 5.86,
p = 0.03) indicating that on the first day nests from female
Grial~/~ mice reached lower complexity scores than those from
female wild-type littermates (Bonferroni post hoc test: p = 0.007).
Nest complexity scores in sexually mature mice were
significantly affected by genotype on each of the four observation
days reflecting that nests from Grial =/~ mice reached lower
complexity scores than those from wild-types (Figure 3B, ART
ANOVAs: day 1: genotype Fy 15 = 18.62, p = 0.0006, FDR-
adjusted p = 0.004; day 2: genotype Fy 15 = 99.54, p < 0.0001;
day 3: genotype F; 15 = 61.20, p < 0.0001, FDR-adjusted
p < 0.0001; day 4: genotype F; 15 = 51.96, p < 0.0001, FDR-
adjusted p < 0.0001). The analysis in sexually mature mice
indicated a significant genotype by sex interaction on the
second observation day (ART ANOVA: day 2: genotype by
sex interaction Fy ;5 = 7.15, p = 0.02) with nests from female
Grial~/~ mice reaching lower scores than those from female
wild-type littermates (Bonferroni post hoc test: p = 0.0001).
Independent of the genotype, sex effects on nest complexity
scores from sexually mature mice were not significant.

Considering sum scores, calculated from the complexity
scores of the individual days, there was a significant effect of
genotype for the assessment during prepubescence (Figure 3C,
ART ANOVA: genotype Fp 15 = 10.19, p = 0.006, FDR-
adjusted p = 0.029) and sexual maturity (Figure 3D, ART
ANOVA, genotype Fi 15 = 46.58, p < 0.0001, FDR-adjusted
p < 0.0001), but genotype did not interact with sex in both
cases. Sum complexity scores did not differ between sexes for
both age phases.

Voluntary Wheel Running

Analyses of the distance moved in the running wheel failed to
demonstrate a significant effect of genotype in prepubescent and
sexually mature mice, and genotype by sex interactions were
absent in both measurements (Figures 4A,B). Independent of
genotype, there was a significant effect of sex on the distance
run by sexually mature mice (ANOVA: sex F; ;5 = 13.31,
p = 0.002, FDR-adjusted p = 0.01) with females running greater
distances than males.

Bench-Top Assessment
The analyses of the durations prepubescent mice spent in
the zone “drinking” indicated a significant genotype by sex
interaction (Figure 5A, ANOVA: genotype F; 34 = 3.75, p = 0.06,
sex F1 34 = 6.27, p = 0.02, genotype by sex interaction Fy 34 = 4.2,
p = 0.048) with male Grial~/~ mice spending more time in
the zone “drinking” than male wild-type littermates (Bonferroni
post hoc test: p < 0.05). The analyses of durations in the zone
“drinking” for sexually mature mice showed that genotypes
and sexes were statistically similar (Figure 5B). Considering
durations mice spent in the zone “feeding, we detected a
significant effect of genotype in prepubescent mice (Figure 5C,
ANOVA: genotype F; 34 =8.75, p = 0.006, FDR-adjusted p = 0.03)
and in sexually mature mice (Figure 5D, ANOVA: genotype
Fi.34 = 45.59, p < 0.0001, FDR-adjusted p < 0.0001) indicating
that Grial~/~ mice spent significantly more time in the zone
“feeding” than wild-type littermates. The time spent in the zone
“center” did not significantly differ between genotypes and sexes
in both prepubescent and sexually mature mice, and there were
no relevant genotype by sex interactions (Figures 5E,F).

Monitoring of the overall activity did not confirm a group
difference in prepubescent mice (Figure 6A), but showed a
significant effect of genotype in sexually mature mice (Figure 6B
ANOVA: genotype Fi 34 = 33.87, p < 0.0001, FDR-adjusted
p < 0.0001) indicating that Grial~/~ mice moved a greater
distance than wild-type littermates. However, the velocity of
movement did not differ between genotypes in prepubescent
and sexually mature mice (Figures 6C,D). Genotype effects
of distance and velocity did not interact with sex in any
measurement. Regardless of genotype, there was a sex difference
in prepubescent mice indicating that females moved with higher
speed than males (ANOVA: sex F; 34 = 13.32, p = 0.0009,
FDR-adjusted p = 0.006). In contrast, data on distance
and velocity from sexually mature mice did not confirm a
significant effect of sex.

Considering social interaction displayed by the experimental
units (two animals per cage), body contact durations were
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FIGURE 2 | Burrowing performance. The assessment of burrowing revealed a significant effect of genotype on the amount of burrowed pellets in the first overnight
test session (A) and in the second overnight session on the consecutive day (B). The analysis of burrowing performance during the 2-h light session showed
significant group differences neither in the first test session (C) nor in the second session on the consecutive day (D). ANOVA, followed by FDR correction. n = 4-5
per genotype per sex. *p < 0.05. Error bars indicate the standard error of the mean (SEM).

statistically similar between genotypes in prepubescent mice and
in sexually mature mice (Supplementary Figure 2). Analyses
of the mean distance between two subjects per cage showed
a significant effect of genotype neither in prepubescent mice
nor in sexually mature mice (Supplementary Figure 2). Sex
differences and interactions were absent for all measurements of
social interaction.

Open Field

Monitoring of the overall activity during the entire duration of
15 min revealed a significant effect of genotype in prepubescent
and sexually mature mice. The analyses in prepubescent mice
showed a significant effect of genotype on the total distance
moved (Figure 7A, ANOVA: genotype F; 34 = 195.60, p < 0.0001;
sex F1 34 = 1.77, p = 0.2; genotype by sex interaction F; 34 = 5.02,
p = 0.03) and the velocity of movement (Figure 7C, ANOVA:
genotype Fq 34 = 191.60, p < 0.0001; sex Fq 34 = 2.07, p = 0.2;
genotype by sex interaction F; 34 = 4.645, p = 0.04): female
and male Grial =/~ mice moved a greater distance (Bonferroni
post hoc test: p < 0.0001 and p < 0.0001, respectively) and with
increased velocity (Bonferroni post hoc test: p < 0.0001 and
p < 0.0001, respectively) as compared to wild-type littermates.
In sexually mature mice, analyses demonstrated a significant

effect of genotype on distance (Figure 7B, ANOVA: genotype
Fi.33=232.5,p < 0.0001, FDR-adjusted p < 0.0001) and velocity
(Figure 7D, ANOVA: genotype Fy 33 = 232.40, p < 0.0001, FDR-
adjusted p < 0.0001) indicating that Grial~/~ mice moved a
greater distance and with increased velocity than wild-types.
The total duration of immobility was significantly affected by
genotype during prepubescence (Figure 7E, ANOVA: genotype
Fy.34 = 10030, p < 0.0001, FDR-adjusted p < 0.0001) and
sexual maturity (Figure 7F, ANOVA: genotype F; 33 = 25.43,
p < 0.0001, FDR-adjusted p < 0.0001) reflecting that Grial =/~
mice showed lower levels of immobility than wild-type
littermates. Considering the duration animals spent in the zone
“wall,” there was a significant effect of genotype interacting
with sex in a significant manner observed in prepubescent mice
(Supplementary Figure 3, ANOVA: genotype Fi 34 = 16.98,
p = 0.0002; genotype by sex interaction F; 34 = 5.161, p = 0.03),
indicating that female Grial~/~ mice showed higher levels
of thigmotactic behavior than female wild-types (Bonferroni
post hoc test: p < 0.0001). Analyses of the time mice spent in
the zone “center” demonstrated a significant effect of genotype in
prepubescent mice (Supplementary Figure 3, ANOVA: genotype
Fi 34 = 40.54, p < 0.0001, FDR-adjusted p < 0.0001) and
in sexually mature mice (Supplementary Figure 3, ANOVA:
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FIGURE 3 | Nest building performance and nest complexity. The assessment of nest building performance during the 4-day observation period showed that in
prepubescent (A) and sexually mature mice (B) mice, a significant effect of genotype on nest complexity scores was detected for several of the four observation
days. Genotype significantly interacted with sex, reflecting decreased nest scores in female Gria7~/~ mice when compared to female wild-type littermates on the
first day in prepubescent mice (A) and on the second day in sexually mature mice (B). The analysis of nest complexity sum scores revealed significantly decreased
scores in prepubescent (C) and sexually mature (D) Grial~/~ mice as compared to wild-type littermates. ART ANOVA, followed by FDR correction or Bonferroni
multiple comparison post hoc tests. n = 4-5 per genotype per sex. *p < 0.05 and #p < 0.05 (females). (A,B) lllustrate the median, in (C,D) error bars indicate the

standard error of the mean (SEM).

FIGURE 4 | Voluntary wheel running. The analysis of voluntary wheel running performance, assessed in prepubescent (A) and again in sexually mature mice (B),
showed no significant effects of genotype on the total distance moved. ANOVA. n = 4-5 per genotype per sex. Error bars indicate the standard error of the mean
(SEM).
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FIGURE 5 | Bench-top assessment focusing on cage zones. We analyzed home-cage based activities per zone, assessing the duration the animals spent in
predefined areas of the home cage. Concerning the zone “drinking,” there was a significant effect of genotype and a relevant genotype by sex interaction in
prepubescent mice (A), showing that male Gria7~/~ mice spent more time in the zone “drinking” than age-matched male wild-types. In sexually mature mice (B),
we did not detect significant group differences for the time spent in the zone “drinking.” Prepubescent Grial~/~ mice spent significantly more time in the zone
“feeding” than age-matched wild-types (C). This was also the case for sexually mature Gria7~/~ mice (D). Considering the duration spent in the center of the cage,
genotypes were statistically similar in prepubescent (E) and in sexually mature (F) mice. ANOVA, followed by FDR correction or Bonferroni multiple comparison

post hoc tests. n = 8-10 per genotype per sex. *p < 0.05. Error bars indicate the standard error of the mean (SEM).

genotype F 33 = 13.21, p = 0.0009, FDR-adjusted p = 0.005)
with lower “center” resting times in Grial~/~ mice than in
wild-types, but this did not interact with sex, and there were
no relevant sex effects for both measurements. Analysis of the
frequency of the posture “rearing” revealed a significant effect of
genotype only in sexually mature mice indicating that sexually
mature Grial ~/~ mice showed more rearing positions than wild-
type littermates (Supplementary Figure 4, ANOVA: genotype
Fi,34 = 9.04, p = 0.0049, FDR-adjusted p = 0.03). Analyses of
the frequency of “jumps” against the arena wall indicated a
significant effect of genotype only in prepubescent mice with
Grial~/~ mice showing fewer “jumps” than wild-type littermates
(Supplementary Figure 4, ANOVA: genotype Fi 34 = 10.18,
p =0.003, FDR-adjusted p = 0.02).

Measurement of activity during the first 5 min when exposed
to the open field provides information about exploratory
behavior. In prepubescent mice, analyses of the durations mice

spent in the zone ‘wall’ showed a significant genotype by sex
interaction (Figure 8A, ANOVA: genotype Fy 34 =9.72, p = 0.004,
sex F1 34 =0.014, p = 0.9, genotype by sex interaction F; 34 = 6.25,
p = 0.02) indicating that female Grial~/~ mice spent more
time in the zone “wall” than female wild-types (Figure 8A,
Bonferroni-post hoc test: p < 0.001). In sexually mature mice,
the analysis of the time spent in the zone “wall” did not
indicate significant group differences (Figure 8B). Analyses of the
duration mice spent in the zone “center” revealed a significant
effect of genotype only in prepubescent mice (Figure 8C,
ANOVA: genotype Fj 34 = 12.29, p = 0.001, FDR-adjusted
p = 0.007) reflecting that Grial~/~ mice spent less time in
the zone “center” than wild-type littermates, while sex effects
and interaction were not significant for both measurements.
The durations sexually mature Grial =/~ mice and wild-type
mice spent in the zone “center” were statistically similar
(Figure 8D).
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FIGURE 6 | Bench-top assessment focusing on overall activity. We analyzed the overall activity focusing on the total distance moved and the velocity of movement
in the PhenoTyper cages. The distance moved by prepubescent (A) and sexually mature (B) mice during the 60-min observation interval was significantly affected by
genotype only in sexually mature mice. For the velocity of movement in prepubescent (C) and sexually mature (D) mice, a significant effect of genotype could not be
confirmed. ANOVA, followed by FDR correction. n = 8-10 per genotype per sex. *p < 0.05. Error bars indicate the standard error of the mean (SEM).

Irwin Score

The analyses of Irwin sum scores revealed a significant effect
of genotype in prepubescent mice (Figure 9A, ART ANOVA:
genotype Fj 34 = 9.22, p = 0.005, FDR-adjusted p = 0.02):
interestingly, prepubescent wild-types reached higher sum scores
than age-matched Grial~/~ mice. Sum score analyses in
pubescent mice indicated no group differences (Figure 9B). Sum
scores in sexually mature mice were significantly affected by
genotype and showed a significant genotype by sex interaction
(Figure 9C, ART ANOVA: genotype F; 34 = 6.85, p = 0.013, sex
F1 34 =11.33, p = 0.002, genotype by sex interaction F; 34 = 6.89,
p = 0.01). However, post hoc analyses failed to show a significant
group difference in female and male mice (Bonferroni post hoc
test p = 0.06 and p = 0.997, respectively). The analyses of
single parameters revealed significant genotype effects of three
handling-associated components: vocalization, urination, and
defecation. Considering vocalization, there was a significant
genotype effect in prepubescent mice (Supplementary Figure 5,
ART ANOVA: F; 34 = 18.29, p = 0.0001, FDR-adjusted p = 0.001)
indicating that wild-type mice reached higher scores than
Grial~/~ littermates. Analyses of handling-associated urination
scores showed a significant genotype effect in prepubescent mice
(Supplementary Figure 5, ART ANOVA: genotype Fy 34 =12.54,

p = 0.001, FDR-adjusted p = 0.007) showing that Grial=/~
mice had lower urination scores than wild-type littermates.
Analysis of handling-associated defecation scores showed a
significant genotype effect and a significant genotype by sex
interaction in sexually mature mice (Supplementary Figure 5,
ART ANOVA: genotype Fi 34 = 4.41, p = 0.04, genotype by
sex interaction Fy 34 = 9.55, p = 0.004) indicating that female
Grial~/~ mice had higher defecation scores than female wild-
type littermates (Bonferroni post hoc test: p = 0.03). The analysis
of body temperatures in prepubescent, pubescent and sexually
mature mice failed to demonstrate significant group differences
(Supplementary Figure 6).

Fecal Corticosterone Metabolites

Analyses of fecal corticosterone metabolite (FCMs) showed
a significant effect of sex and a significant genotype by
sex interaction in prepubescent mice (Figure 10A, ANOVA:
genotype Fi 30 = 1.08, p = 0.3, sex Fy 30 = 4.721, p = 0.04,
genotype by sex interaction Fj 3 = 7.929, p = 0.009)
indicating that female Grial~/~ mice reached higher metabolite
concentrations than female wild-type littermates (Bonferroni
post hoc test: p < 0.05). Analyses of FCMs in sexually mature
mice indicated a significant effect of genotype, while the main
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FIGURE 7 | Open field test — total monitoring duration. During the total observation period of 15 min, Gria7~/~ mice moved a greater distance than wild-type
littermates during prepubescence (A) as well as once sexually mature (B). Considering velocity of movement, Gria7~/~ mice moved with increased speed as
compared to age-matched wild-types during prepubescence (C) and once sexually mature (D). Considering states of immobility displayed by the mice, there were
significant effects of genotype demonstrating that Gria7=/~ mice showed a shorter immobility duration than wild-type littermates during prepubescence (E) and
once sexually mature (F). ANOVA, followed by FDR-correction. n = 8-10 per genotype per sex. *o < 0.05. Error bars indicate the standard error of the mean (SEM).

effect of sex and interaction with sex were both not significant
(Figure 10B, ANOVA: genotype F; 33 = 8.34, p = 0.007, FDR-
adjusted p = 0.03, sex F; 33 = 7.01, p = 0.01, FDR-adjusted
p = 0.052, genotype by sex interaction F; 33 = 0.05, p = 0.8286):
levels of FCMs were higher in Grial~/~ mice than in wild-
type littermates.

Body Weight

Monitoring of body weight development revealed a significant
effect of genotype on all 9 days of weight assessment: hereby,
Grial~/~ mice showed reduced body weights when compared
to wild-type littermates (Figure 10C, ANOVAs: P21 genotype
Fy 34 = 14.81, p = 0.0005, FDR-adjusted p = 0.003; P23 genotype
Fy.34=24.73,p < 0.0001, FDR-adjusted p < 0.0001; P25 genotype
F1,34=20.2, p < 0.0001, FDR-adjusted p < 0.0001; P27 genotype
F1,34=16.84,p < 0.0001, FDR-adjusted p < 0.0001; P30 genotype
Fi.34 =329, p <0.0001, FDR-adjusted p < 0.0001; P36 genotype
Fi,34=36.16, p < 0.0001, FDR-adjusted p < 0.0001; P42 genotype
F1,34=38.75,p < 0.0001, FDR-adjusted p < 0.0001; P49 genotype
F1,34=50.86,p < 0.0001, FDR-adjusted p < 0.0001; P55 genotype

Fi.34 = 66.35, p < 0.0001, FDR-adjusted p < 0.0001). Genotype
by sex interactions did not become significant for any of the nine
weight control days. Regardless of genotype, sex differences were
detected from P30 onward with females reaching lower body
weights than males (ANOVAs: P30 sex Fy 34 = 23.09, p < 0.0001,
FDR-adjusted p < 0.0001; P36 sex F; 34 = 71.29, p < 0.0001,
FDR-adjusted p < 0.0001; P42 sex F) 34 = 76.82, p < 0.0001,
FDR-adjusted p < 0.0001; P49 sex Fy 34 = 102.5, p < 0.0001,
FDR-adjusted p < 0.0001; P55 sex Fj 34 = 143.1, p < 0.0001,
FDR-adjusted p < 0.0001).

DISCUSSION

In line with our aim, we have identified behavioral and
biochemical alterations in the Grial knockout mouse model
during the course of post-weaning development. Furthermore,
we could demonstrate validity and feasibility of the newly
designed composite measure scheme for the use in young
mice of a loss-of-function genetic model of neuropsychiatric
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FIGURE 8 | Open field test — monitoring of the first 5 min. Analysis of the first 5 min after exposure to the open field arena revealed that there was a significant effect
of genotype and a significant genotype by sex interaction in prepubescent mice indicating that female Gria7=/~ mice spent more time in the zone “wall” than female
wild-type littermates (A). In sexually mature mice, groups were statistically similar in the duration spent in the zone “wall” (B). Considering the duration prepubescent
(C) and sexually mature (D) mice spent in the zone “center” of the arena, there was a significant effect of genotype in prepubescent mice demonstrating that
prepubescent Grial~/~ mice spent less time in the zone “center” than wild-type littermates. ANOVA, followed by FDR correction or Bonferroni multiple comparison
post hoc tests. n = 8-10 per genotype per sex. *p < 0.05. Error bars indicate the standard error of the mean (SEM).

FIGURE 9 | Irwin Score. The assessment of Irwin sum scores, calculated by adding up the score from all single parameters, revealed a significant group difference in
prepubescent mice (A) with wild-type mice reaching higher sum scores than Gria7 =/~ mice. In pubescent mice (B) and sexually mature mice (C), significant group
differences were absent. ANOVA, followed by FDR correction or Bonferroni multiple comparison post hoc tests. n = 8-10 per genotype per sex. *p < 0.05. Error
bars indicate the standard error of the mean (SEM). *o < 0.05. Error bars indicate the standard error of the mean (SEM).
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FIGURE 10 | Fecal corticosterone metabolites (FCMs) and development of body weight. In prepubescent mice, there was a significant effect of genotype and a
relevant interaction with sex, indicating higher metabolite levels in the female Gria7~/~ group as compared to female wild-type littermates (A). Grial~/~ mice
exhibited higher metabolite levels than wild-type littermates once sexually mature (B). Monitoring of body weight (C) confirmed a significant effect of genotype on all
days of weight assessment with Gria7~/~ mice reaching lower body weights than wild-type littermates. n = 6-10 per genotype per sex. ANOVA, followed by FDR
correction or Bonferroni multiple comparison post hoc tests. *p < 0.05. Error bars indicate the standard error of the mean (SEM).

relevance. In this context, it is of importance that home-
cage based approaches attracted increasing attention since
they provide a non-intrusive, continuous, observer-independent,
and, to a large extent, objective tool to uncover spontaneous
activities (Pernold et al., 2019; Voikar and Gaburro, 2020).
Investigations under standardized housing conditions reinforce
reproducibility and external, inter-facility validity (Percie du Sert
et al., 2020), and make practical implementation in the majority
of conventional animal facilities possible. However, as applied
here, the frequent presentation of novel objects in the home-cage,
frequent handling of the young mice and the sequential testing
situation represent confounding factors, which can essentially
impact many of the readouts.

Among the parameters analyzed in the familiar environment
of the mice, we examined the preference for saccharin, which
we have previously introduced as a behavioral assay for severity
assessment in laboratory rodents (e.g., Boldt et al., 2021). The
innate preference for sweetness displayed by laboratory rodents
can be considered to determine depression-related phenotypical
traits (Crawley, 2006). The reduced preference for a sweet
solution may indicate a reduced ability or inability to experience

pleasure, which represents a key symptom of depression (Klein
et al,, 2015). Our previously generated baseline data from young
wild-type mice (Reiber et al., 2022) suggest that the saccharin
preference test can be applied in young mice from a prepubescent
age onward. We have previously detected increased baseline
preferences for saccharin in prepubescent and pubescent female
mice, and a decline in sweetness preference becoming evident
with reaching sexual maturity, which corresponds to sweetness
preference in humans as reported in a scoping review by Venditti
et al. (2020). In contrast, an earlier study conducted in rabbits
reported a reduced sweetness preference displayed by younger
animals (Reiber et al., 2022). Moreover, another more recent
study on sucrose preference in young mice has successfully
examined relevant strain differences in adolescent mice (Eltokhi
etal., 2021). While there is no information available on sweetness
preference in adolescent Grial~/~ mice, respective data from
adult Grial~/~ mice draw an ambiguous picture so far: Austen
and colleagues (Austen et al., 2017) reported that Grial =/~ mice
aged 11-30 weeks showed reduced licking rates, but, in line with
our findings in early- and late-adolescent deficient mice, normal
sucrose consumption levels. Moreover, Strickland et al. (2021)
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suggest that GluAl is not implicated in hedonic value, based
on investigations in approximately 17- to 34-week-old mice.
In young mice, higher intake of a sweet solution can also be
considered as a mechanism to compensate energy loss or higher
metabolic needs, especially in light of reduced post-weaning body
weights indicating signs of developmental delay.

Toward examination of spontaneous activities, monitoring
of burrowing activity and non-maternal nest building behavior
have been introduced as approaches reflecting complex behaviors
of laboratory rodents in their everyday environment (Deacon,
2006a,b). Since mice show high levels of intrinsic motivation
for these “non-essential” activities, they can be viewed as
a “positive indicator of well-being” (Jirkof, 2014). Inversely,
observed aberrations may therefore indicate even slight signs
of discomfort or a reduced ability to experience pleasure.
Since burrowing and nesting both represent complex tasks,
requiring persistent, goal-oriented, concentrated execution, they
can provide a more in-depth understanding of normal behavioral
function (Jirkof, 2014). Moreover, nest building has been
suggested as a tool to evaluate sensory gating impairments
in mice (Kraeuter et al, 2019). Sensory and motor gating
deficits have been described as a clinically relevant phenotypical
feature in adult Grial~/~ mice (Bannerman et al, 2004).
A study analyzing nest building and burrowing performance
in adult Grial knockout mice revealed impaired nest building
activity in male Grial~/~ mice as compared to male wild-
type littermates, while burrowing performance was not affected
by the Grial genotype (Bannerman et al., 2004). In addition,
Pedersen et al. (2014) have reported limited burrowing
performance in an adult sub-chronic phencyclidine mouse model
of schizophrenia.

Considering nest building activity in young mice, there are two
relevant studies examining the ability of young mice to build nests
which show diverging results: An earlier report from Moy et al.
(2004) found relevant levels of nest building activity in mice aged
3-4 weeks, while Eltokhi et al. (2020) detected no relevant nesting
behavior in adolescent mice. However, a range of interfering
factors have to be considered when interpreting nesting data,
among others, body weight, strain and housing conditions (Bult
and Lynch, 1997; Martin et al., 2016; Robinson-Junker et al,,
2017; Schwabe et al., 2020). Considering burrowing activity,
earlier studies indicated relevant burrowing activity in adolescent
mice (Hart et al., 2012; McLinden et al., 2012; Eltokhi et al.,
2020). Here, we observed a significant relation between GluAl
deficiency and nest building performance in adolescent female
and male mice. In addition, we found a reduction of overnight
burrowing performance in sexually mature adolescent mice
significantly related to the GluAl deficiency. Limited nesting
and burrowing performance observed in Grial =/~ mice may be
interpreted as a consequence of novelty-induced hyperactivity
associated with the genetic deficiency (Sanderson et al., 2008;
Aitta-Aho et al, 2019). In addition, recent evidence suggests
increased activity of the hippocampus in GluAl deficient mice
(Bannerman et al, 2014) as a cause of poorer adaptation
and impaired short-term memory (Taylor et al., 2011; Barkus
et al., 2014; Aitta-Aho et al., 2019). When exposed to the new
stimuli of nesting and burrowing material, hyperactive mice

may face difficulties with paying attention to a specific task and
targeted action.

Home-cage monitoring of activity provides information
throughout the circadian rhythm (Pernold et al., 2019).
Considering voluntary wheel running activity, an innate and
self-rewarding behavior displayed by laboratory rodents, Higer
et al. (2018) have demonstrated a high sensitivity for severity
grading in mice. We have previously detected relevant levels of
wheel running activity in young female and male wild-type mice
from prepubescent age onward (Reiber et al., 2022). Considering
wheel running in GluA1 deficient mice, there exist two studies
analyzing the performance of adult Grial =™/~ mice (Maksimovic
et al, 2014; Ang et al, 2021). In line with our findings in
adolescent Grial~/~ mice, Maksimovic et al. (2014) found
no significant genotype-related difference during adulthood
considering the distance run in the wheel. Ang et al. (2021)
reported moderately reduced levels of overall wheel running
activity in Grial~/~ mice with a significant activity reduction
during the dark phase, suggesting relevant circadian rhythm
impairments. Interestingly, a correlation between saccharin
preference — which likewise represents a highly self-rewarding
behavior - and voluntary wheel running activity has been
described for wild-type mice, which reduced their intake of
sucrose when simultaneously offered a freely accessible running
wheel (Maksimovic et al., 2014).

Considering bench-top assessment, GluAl deficient adult
mice have been observed to show normal locomotor activity
during continuous light/dark phase monitoring (Fitzgerald et al.,
20105 Procaccini et al., 2011). However, as recently reported by
Ang et al. (2021), Grial =/~ mice displayed significantly reduced
locomotor activity in the dark phase and increased locomotor
activity in the light phase as compared to the wild-type control
group, indicating relevant circadian rhythm abnormalities related
to the genetic deficiency. Thus, although hyperlocomotion and
increased resting durations in the zone ‘feeding’ observed in
adolescent Grial~/~ mice may be linked to lower post-weaning
body weights, the activity levels measured are likely to be biased
due to the selected short observation interval. In addition,
relevant strain differences have been reported by Loos and
colleagues (Loos et al., 2014), and there exists a number of
external factors interfering with home-cage activity levels such as
the presentation of novel objects and acclimatization to the cages.

When exposed to an open field arena in early and late
adolescence, GluAl deficient mice of both sexes displayed
significant hyperlocomotion during both tests. This corresponds
to earlier findings in adult Grial~/~ mice, which displayed
pronounced hyperlocomotion after short-term exposure to a
novel environment (Bannerman et al., 2004; Wiedholz et al,,
2008; Fitzgerald et al., 2010; Procaccini et al., 2011; Aitta-Aho
etal, 2019; Angetal., 2021). After exposure to a novel home-cage
environment, hyperlocomotion was found to decrease to baseline
levels within 5-6 h (Procaccini et al., 2011). Notably, we observed
pronounced thigmotaxis in female prepubescent Grial ~/~ mice.
Thigmotaxis, in particular the tendency to remain close to the
arena walls, was introduced by Simon et al. (1994) to grade
levels of anxiety in mice. Since we applied a dimmed lighting
level with low lux values during the open field test, increased
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durations in the wall zone can also point to deficits in goal-
directed exploration of the entire arena.

Analysis from classical neurobehavioral scoring in mice as
originally described by Irwin (1968) draws an ambiguous picture.
Although alterations of handling-associated parameters were
detected, we did not see an increase of sum scores associated with
the genetic deficiency. Since Irwin scoring primarily provides
methodological guidance on the standardized investigation of
behavioral changes in preclinical drug assessment (Irwin, 1968;
Moscardo et al., 2007; Lynch et al., 2011), it may show relatively
poor results for severity grading in mouse lines burdened mild
to moderately. Nevertheless, when repeatedly applied, Irwin
scoring may provide a complementary tool to detect and track
conspicuous changes of the autonomous nervous system over the
developmental course.

The assessment of adrenocortical activity may depict slight
signs of discomfort on a non-invasive basis in laboratory
rodents (Touma et al.,, 2004; Palme, 2019). Nascent evidence
from investigations in young wild-type mice suggests that
determination of fecal corticosterone metabolites may provide
sensitive information on preceding distress in laboratory mice
during post-weaning development (Kolbe et al., 2015; Reiber
et al., 2022). Increased levels of adrenocortical activity detected
in prepubescent female Grial =/~ mice and in sexually mature
Grial~/~ mice may indicate higher levels of distress experienced
by the deficient mice in their home-cage environment. However,
higher levels of FCMs can be biased because of higher
metabolic needs, e.g., as a consequence of hyperlocomotion,
and do not directly allow for conclusions about discomfort
(Koolhaas et al, 2011). Regarding the first time point of
sampling during prepubescence, it has to be considered that
increased adrenocortical levels may be influenced by disturbing
influences such as weaning and new group constellation as
demonstrated by Kolbe et al. (2015).

Considering post-weaning weight assessment, we could
demonstrate reduced body weights significantly related to the
GluAl deficiency. The reduction of body weight at certain
postnatal days can represent signs of developmental delay. As
stated by Talbot et al. (2020), body weight loss can provide
a sensitive criterion in the context of severity assessment,
once combined with further model-specific criteria in a
behavioral approach.

In summary, we could demonstrate behavioral modifications
during post-weaning development in mice with global GluAl
depletion. The behavioral readouts argue against a persistent or
long-lasting level of distress in adolescent GluA1 deficient mice.
The findings rather support mild temporarily-limited behavioral
impairments, relevant to evidence-based welfare assessment.
In particular, reduced burrowing behavior in late adolescence
and reduced nesting performance in early and late adolescence
indicate behavioral aberrations in the mice carrying the genetic
deficiency, which can reflect a transient, mild level of burden.
Activity patters, however, draw an ambiguous picture so far:
while open field data point to hyperactivity and transient
thigmotactic behavior, data from continuous home-cage based
wheel running do not support an overall increase of activity.
Moreover, activity patterns should be interpreted in light of

the integrity of circadian rhythm, and confounding factors
such as novelty of experimental setting and direct animal-
observer-interaction should be carefully considered, this also
applies to home-cage based testing batteries. In addition, sex-
specific differences emphasize the relevance for the inclusion of
both sexes for behavioral welfare-assessments in genetic mouse
lines. Taken together, the transient, mild behavioral impairments
support a classification of the overall harm burden of the line as
“mild.” This laboratory-specific suggestion should be regarded as
arecommendation, and animal husbandry-related factors should
not be ignored. Moreover, further investigations in genetically
modified mouse lines of neuropsychiatric relevance are necessary
in order to confirm the robustness and generalizability of the
candidate parameter selection.
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