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Abstract: NK/T-cell lymphoma (NKTCL) and vy T-cell non-Hodgkin lymphomas (y5 T-NHL)
are highly aggressive lymphomas that lack rationally designed therapies and rely on repurposed
chemotherapeutics from other hematological cancers. Histone deacetylases (HDACs) have been
targeted in a range of malignancies, including T-cell lymphomas. This study represents exploratory
findings of HDACS6 inhibition in NKTCL and y6 T-NHL through a second-generation inhibitor
NN-429. With nanomolar in vitro HDAC6 potency and high in vitro and in cellulo selectivity for
HDACS6, NN-429 also exhibited long residence time and improved pharmacokinetic properties in
contrast to older generation inhibitors. Following unique selective cytotoxicity towards y5 T-NHL
and NKTCL, NN-429 demonstrated a synergistic relationship with the clinical agent etoposide and
potential synergies with doxorubicin, cytarabine, and SNS-032 in these disease models, opening an
avenue for combination treatment strategies.

Keywords: NKTCL; HDACS6; synergy; combination treatment; small molecule inhibitor

1. Introduction

Peripheral T-cell lymphomas (PTCLs) represent a heterogeneous group of rare dis-
eases, of which many are associated with diagnostic complexities and poor patient survival,
coupled to a lack of targeted therapies [1,2]. Some of the most aggressive entities with the
poorest clinical outcomes encompass the v T-cell non-Hodgkin lymphomas (y5 T-NHL),
including hepatosplenic T-cell lymphoma (HSTL) and monomorphic epitheliotropic in-
testinal T-cell lymphoma (MEITL) as well as NK/T-cell lymphomas (NKTCLs) [3]. With
widely varying clinical presentations, there are a lack of efficient therapies that induce
long-lasting profound remission in 'y T-NHL and NKTCL [4] The current strategies in both
disease groups are predominantly non-targeted conventional or high-dose chemotherapy
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approaches, often repurposed from B-cell lymphoma protocols. However, they often fail
in long-term tumor control and are associated with considerable toxicities. Current com-
monly used chemotherapeutic protocols for v T-NHL and NKTCL include anthracycline-
containing regimens such as CHOP (cyclophosphamide, doxorubicin, vincristine, and pred-
nisone), or combinations of agents such as etoposide, gemcitabine, and platin-derivatives.
A persisting problem in many PTCL is primary or early acquired [1,5,6] chemotherapy
resistance [6]. The most beneficial outcome of a chemotherapy-based first-line treatment of
a PTCL is to achieve a complete remission (CR), which is then followed by a consolidating
high-dose chemotherapy with autologous or allogeneic hematopoietic stem cell transplan-
tation in a curative attempt [1,2,6] However, only about two-thirds of chemo-induced
patients reach such a first CR and only 40-50% of PTCL patients are transplant-eligible
in general [4,6-9].

The lack of targeted therapeutics for PTCLs is not only fueled by disease heterogeneity
and molecular complexities, but also by the challenges of patient recruitment and absence
of robust, translatable pre-clinical disease models. The rarity of yd T-NHL and NKTCLs
makes performing a clinical trial so arduous that trials are infrequently dedicated solely
to these disease entities. A more common phenomenon is the integration of multiple
heterogeneous PTCL patient populations into a single trial [6].

Current attractive investigational agents for subsets of PTCL include JAK inhibitors,
DNA-demethylating agents, and particularly HDAC inhibitors (romidepsin, chidamide,
belinostat) [6,10]. The pan-HDAC inhibitor chidamide combined with the clinical agents
etoposide, carboplatin, and ifosfamide, has shown improvements for 6 T-cell lymphoma
patients with CRs lasting up to 9 months, while standard chemotherapy failed to disrupt
disease progression [9]. HDAC inhibition has shown more effectiveness in T-cell malig-
nancies over B-cell malignancies, with the ability to overcome chemo-resistance [11,12].
To date four HDAC inhibitors (SAHA, belinostat, romidepsin, and panobinostat) have
been approved by the FDA for the treatment of hematological malignancies. All result in
adverse side effects in the clinic due to non-selective inhibition of multiple HDAC isoforms,
warranting the development of isozyme-selective inhibitors [13].

Histone deacetylase (HDAC) enzymes catalyze the deacetylation of histone and non-
histone proteins. The HDAC family consists of 18 human proteins, 11 of which are Zn?*-
dependent metalloenzymes and 7 are NAD*-dependent (known as sirtuins). HDACs are
categorized into 4 groups based on homology to their yeast analogs: class I (HDAC]I,
HDAC2, HDAC3, HDACS), class II (class IIa: HDAC4, HDAC5, HDAC7, HDACSY; class lib:
HDAC6, HDAC10), class III (sirtuins) and class IV (HDAC11) [14]. HDACES is the largest
protein of the HDAC family with 1215 amino acids, two catalytic domains (CD1 and CD2)
and a unique C-terminal zinc-finger ubiquitin-binding domain (ZnF-UBP) [13].

Out of the family of 11 HDAC isozymes, HDAC6 has emerged as a highly attractive
and safe target in drug discovery, because of its imperative roles in cellular function and
survival, and well-tolerated loss of function when inhibited. The cytoplasmic clients of
HDACS6 include an extensive substrate repertoire such as «-tubulin, cortactin, HSP90,
tau and peroxiredoxins. As such, HDACS is involved in cellular processes of cell mi-
gration, cell mobility, stress response, autophagy protein degradation, and intracellular
trafficking [15-19]. Aberrant HDACS activity has been associated with cancer progression,
neurodegenerative diseases, and inflammatory disorders [20,21]. HDACS6 is overexpressed
in multiple cancers cell lines such as ovarian cancer cells, primary oral squamous cells,
primary acute myeloid leukemia blasts and myeloblastic cell lines [22]. In MCE-7 cells,
HDACS6 expression may be upregulated by estrogen and that could influence the metas-
tasis of breast cancer [23]. The upregulation of HDACS6 in a range of tumors suggests a
pleiotropic role in cancer progression.

For the last decade, efforts have been made to target the HDAC family of enzymes
for therapeutic intervention. HDAC inhibitors typically consist of a cap group which
interacts with the surface of the enzyme, a zinc binding group (ZBG) that interacts with
the zinc ion in the catalytic pocket, and a linker between these two moieties [24]. The
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most common ZBG used is the hydroxamic acid, which is capable of chelating metal ions
such as Zn(Il) and Fe(Ill). This chelating ability of hydroxamic acids has been exploited
to develop inhibitors for several of the metal-bearing HDAC enzymes [24-26]. Currently,
four pan-HDAC inhibitors (SAHA, romidepsin, belinostat, and panobinostat) have been
approved by the FDA for the treatment of T-cell lymphoma or multiple myeloma, out of
which 3 of them include hydroxamic acids. However, all four drugs present broad spectrum
HDAC activity, resulting in various adverse effects that limit their application to relapsed
cancer patients. Thus, there is escalated interest in the development of isozyme selective
HDAC inhibitors.

Given these clinical needs, particularly for the incurable, aggressive, and rare entities of
v6 T-NHL and NKTCLs, we aimed to design an HDAC6 inhibitor with drug-like properties,
explored here via medicinal chemistry, X-ray crystallography studies, pharmacological and
biochemical methodologies. NN-429 is an improved analog of older generation HDAC6
inhibitor molecules KT-531 and NN-390, with higher in vitro selectivity, target potency and
in vivo half-life [10,27]. We specifically studied our novel HDAC6 inhibitor, NN-429, in a
panel of human PTCL cell lines to explore targeted drug efficacy, finding the highest sensi-
tives in hepatosplenic yd T-NHL and NKTCL derived cell lines. Furthermore, we pioneered
synergy screening with established drugs such as cytarabine, doxorubicin, etoposide, and
SNS-032, which revealed that HDAC6 inhibition combined with chemotherapeutic drugs
can deliver a synergistic benefit in y4 T-NHL or NKTCL.

2. Results
2.1. X-ray Crystallography Study of Precursor Molecule NN-390

The X-ray crystal structure of the HDAC6-NN-390 complex, which was solved at 1.6 A
resolution (Figure 1), displays a similar profile of contacts in the catalytic tunnel when com-
pared to that of HDAC6-ricolinostat complex. Unlike that of the HDAC6-TO-317 complex,
the hydroxamate moiety coordinates to the catalytic Zn?* ion in a bidentate fashion [28]. The
hydroxamate N-O group coordinates to Zn?* with an average separation of 2.2 A and the
hydroxamate C=O group with a distance of 2.34 A. Alongside these contacts, interaction of
NN-390 completes the canonical 5-membered chelate complex via a hydrogen bond network.
The chelate complex involves the side chains Y745 (O—O distance = 2.44 A), H574 (N—N
distance = 2.62 A), and H573 (N—O distance = 2.47 A), the latter of which is unobserved for
TO-317. Furthermore, all of these polar interactions are shorter and closer in contact compared
to those of ricolinostat. The hydroxamate moiety of NN-390 is further able to engage in
hydrophobic interactions with D612, D705, and H614, similar to that of ricolinostat. The H614
side chain makes Van der Waals contacts with the benzyl group of the phenylhydroxamate
moiety and the isopropyl side group in NN-390, the latter of which is mediated via a water
molecule. The benzyl group is sandwiched between F583 and F643 and establishes 7t-7r stack-
ing interactions. The isopropyl side group is closely situated with the F643 side chain and
engages in hydrophobic interactions. The F583 side chain alongside L712 chain also engages
in Van der Waals contacts with one of the oxygen atoms of the sulfonamide moiety. Although
relatively weakly resolved, and likely more dynamic, the tetra-fluorobenzene (TFB) capping
group is observed to make weak interactions with the side chain of H463 and that of S531 and
F583 via distinct water molecules.

2.2. Chemistry

The synthetic pathway used to furnish NN-429 is outlined in Scheme 1. Synthesis
of NN-390 has been previously described [27]. Tert-butyl ester protection of 3-fluoro-
4-methylbenzoic acid (1) led to the generation of tert-butyl 3-fluoro-4-methylbenzoate
(2,70%), which was then brominated at the benzylic position (3, 56%). SN2 reaction of 2,3,4,5-
tetrafluoro-N-isopropylbenzenesulfonamide and the brominated product formed tert-butyl
3-fluoro-4-(((2,3,4,5-tetrafluoro-N-isopropylphenyl)sulfonamido)methyl)benzoate (4, 76%).
Acid-mediated hydrolysis of the carboxylate ester generated the free carboxylic acid product
(5, 92%), which coupled to tetrahydropyranyl (THP) (6, 71%). A final deprotection using
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4 M HCl in dioxane resulted in NN-429, which was purified using preparative HPLC (44%).

Figure 1. Crystal structure of NN-390 in the active site of HDAC6 surrounded by side chains of
interacting residues. A close-up of the catalytic pocket shows the interaction mode of the hydrox-
amate moiety with the Zn?"ion (blue-gray sphere) via a bidentate metal coordination (dashed black
lines) and the surrounding residue side chains.

2.2. Chemistry

The synthetic pathway used to furnish NN-429 is outlined in Scheme 1. Synthesis of
NN-390 has been previously described [27]. Tert-butyl ester protection of 3-fluoro-4-
methylbenzoic acid (1) led to the generation of tert-butyl 3-fluoro-4-methylbenzoate (2,
70%), which was then brominated at the benzylic position (3, 56%). SN2 reaction of 2,3,4,5-
tetrafluoro-N-isopropylbenzenesulfonamide and the brominated product formed tert-bu-
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2.2. Chemistry

The synthetic pathway used to furnish NN-429 is outlined in Scheme 1. Synthesis of
NN-390 has been previously described [27]. Tert-butyl ester protection of 3-fluoro-4-
methylbenzoic acid (1) led to the generation of tert-butyl 3-fluoro-4-methylbenzoate (2,
70%), which was then brominated at the benzylic position (3, 56%). SN2 reaction of 2,3,4,5-
tetrafluoro-N-isopropylbenzenesulfonamide and the brominated product formed tert-bu-
tyl 3-fluoro-4-(((2,3,4,5-tetrafluoro-N-isopropylphenyl)sulfonamido)methyl)benzoate (4,
76%). Acid-mediated hydrolysis of the carboxylate ester generated the free carboxylic acid
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HDACS6 selectivity of at least 312-fold over all HDAC isoforms, NN-429 was an evidently
more attractive inhibitor than precursors KT-531 and NN-390 (Figure 3) [10,27]. In the
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Figure 2. Htrugture of NN-429. Synthesis of NN-429 available in Supporting Info Scheme S1.
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Given such encouraging target potency and a striking preference for HDACS, further
biochemical and biophysical evaluations of NN-429 were conducted. To probe the selec-
tivity across the whole family of HDAC proteins, a functional inhibitory selectivity screen
(EMSA, Nanosyn, CA, USA) was conducted against 10 isoforms as well as a comparison
to citarinostat (Figure 3a—c). Citarinostat demonstrated modest selectivity for the target
isoform (HDAC®6), with obvious inhibition of HDAC2, HDAC3, and HDACS as well (Fig-
ure 3a). In contrast, NN-429 showed no significant activity towards any of the other
HDAC isoforms up to 1 uM (highest concentration evaluated) (Figure 3b,c). NN-429 has
a commendable in vitro HDACS6 selectivity of >312-fold across the HDAC family.

Figure 3. (2): DlarereaiRmnee GHINGS dghiassiiing the percent inhibition of citarinestat against
HDAC2, HDAC3, HDAC4, HDAC6 and HDACB via EMSA. (b). Dose=tesponse curves representing
the percent inhibition of NN-429 against HDAC1-10 via EMSA (Nanosyn, CA, USA). (c). In vitro
HDAC inhibition ICzj vallues of citarinostat and NIN-429 against HDAC1-10.

In cellulo target engagement was assessed via Western blotting of HDAC6 substrate
e-tubulin, and HDAC Class I substrate histone H3 in muiltiple myeloma (MM.1S) cells
and acute myeloid leukemia (AML) eells (MV4-11; Figuse 4). A dose-dependent increase
in the acetylation of a-tubulin was eBserved at as lew as 0.1 1M of NN=429, with visible
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ADME/PK analyses were conducted to assess the pre-clinical tractability of NN-429 (Figure 6).
Cell permeability was explored via a PAMPA experiment, where NN-429 possessed good

permeability with a permeability coefficient (—-Log Pe) of 5.42 (-LogPe < 6 is considered
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A fluorescence polarization (FP) assay was employed as an orthogonal bioc
assay to validate EMSA activity findings. NN-429 displayed an ICso of 28.8 nM, v
tarinostat had a 3-fold lower binding affinity (ICso of 90.2 nM) (Figure 5a). Altho
inhibitory activities towards HDAC6, through the EMSA assay, were similar for tk
compounds (ICso nn-429 = 3.22 nM, ICso citarinostat = 2.21 nM) (Figure 3), the FP assay r
a divergence in binding affinity.

THigune 3. (a). Dose-response curves of NN-429 and citarinostalt agaiinsit recomibiiramnitzHDACS using
fllmoneswarce pusd bzt tiom . Ahoresssereeppdbatizatoon] (s diete et ZHIDACS iis poowiitied . (@). n
cdililoreesideneaiitae pidelesttdorapraidndo MDA LY o sergetcngagen ent-inl Jd ebAscatadiansi-
SythexpeasabsddRAGEN Al A rnath e reieRedrleResidoncs timeianalyiisRlodcn;
RiResgh MR RRY. 256N N3RS FAfhowithin live cells.
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extended HDACS residence time and improved PK profiles makes NN-429 a much more
attractive preclinical candidate for HDAC6-reliant diseases.
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2.4. NN-429 Displays Efficacy in NKTCL
2.4.1. Selective Cytotoxicity of NN-429 in Peripheral T-Cell Lymphomas (PTCL)

A wide collection of mature and immature T-cell lymphoma (TCL) cell lines encom-
passing eight distinct T cell cancer groups, comprising a total of sixteen authenticated anglof 20

mycoplasma-iree cell lines derived from individual patients, were analyzed tO assess Cy-
totoxic death induction of NN-429 (Figure 7).
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ca cuil;ae’lcle)(lf fsr%)'m drug response analysis of NN-390, KT-531 and citarinostat available in Supporting
Informafion ]alﬁgfayed a unique selective cytotoxicity profile in TCL (Figure 7). Particu-
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of y4 T-NHL and NKTCL, while lines from other mature TCL such as cutaneous TCL
(CTCL) and anaplastic large cell lymphomas (ALCLs) displayed unresponsiveness to the
inhibitor (Figure 7). In contrast to the mature TCL, immature TCL cell models such as Jurkat
and KOPT-K1 displayed moderate sensitivity to the highly selective HDACS6 inhibitor. In
the HSTL derived cell line DERL-2, a dose-dependent increase in cells undergoing apoptosis
was observed with NN-429 (Supporting Information Figure S2). Flow-cytometry based,
annexin V/PI staining revealed that 15% of cells were undergoing early-stage apoptosis
(annexin V+/PI—) after 18 h treatment with 0.1 uM of NN-429, and 56% of cells were in

early-stage apoptosis following a 5 M treatment.

2.4.2. Combination Studies of NN-429 with Clinical Agents in v T-NHL and NKTCL

To avoid and overcome resistance, a significant challenge in PTCL, novel drug combi-
nations of components that target more than one cellular pathway represent a key strategy
to be investigated more intensely in these tumors [31-33]. Furthermore, combination treat-
ments have allowed alleviation of drug-induced toxicity and adverse effects, by enabling
administration of each drug at lower doses [32,34]. Here, we explored the rational design
of pairwise drug combination evaluation via a range of functional screening assays.

Cytarabine, doxorubicin, and etoposide are standard chemotherapeutic agents that
are components of widely used regimens in PTCL, including v6 T-NHL and NKTCLs.
Following our findings of selective cellular cytotoxicity in the NK lymphoma cell line
YT (Figure 8), NN-429 was individually combined with each of these drugs and tested
on YT cells to investigate synergistic interactions (Figure 8). To analyze the efficacy of
drug combinations, the web application SynergyFinder was utilized [35,36]. The zero
interaction potency (ZIP) synergy model designed by Yadav et al. was employed to capture
the drug interaction relationships, which compares the change in potency of the dose-
response curves between mono-agent drugs versus their combinations [37]. ZIP scores
were obtained from the analysis of dose-response matrix experiments, where two agents
were tested at various dose pairs in a serially diluted manner. A positive ZIP score indicated
a synergistic relationship, while a negative value suggested an antagonistic interaction.
Each drug combination consists of an overall ZIP synergy score which is the score for all
tested concentrations. Additionally, a most synergistic area (MSA) score is also provided
representing the ZIP score for a 3-by-3 concentration range with the highest ZIP.
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YT and DERL-7 cells showed a similar profile as NN-429 in AML (MV4-11) cells and
multiple myeloma (MM.1S) cells (Figures 4 and 9, and Supporting Information Figure 54).
Western blotting with varying concentrations of NN-429, NN-429 + 0.1 uM cytarabine,
NN-429 + 0.1 pM doxorubicin and NN-429 + 0.1 uM etoposide were conducted in YT and
DERL-7 cells (Figure 9 and Supporting Information Figure S4, respectively). No observable
changes in the mechanism of inhibition were imposed upon drug combinations in any of
the cell lines, by any of the combinatory agents. As such, there was no significant change
in the acetylation of HDACS6 substrate «-tubulin, and HDAC Class I substrate histone H3
following the addition of cytarabine, doxorubicin, etoposide and SNS-032 (see Supporting
Information Figure S5). This is consistent with the established mechanisms of action of the
clinical agents, which portray no overlapping pathways with HDAC6 function.
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sustamed duration of action against HDACS6, with an in cellulo residence time of 135 min,
in contrast to 97 min for NN-390. Excitingly, NN-429 had a commendable half-life in CD-1
mice (t; /p = 3.53 h), with a Cnax 0of 3193 ng/mL and AUC,g; of 9856 h*ng/mL. With limited
brain bioavailability, NN-429 was deemed suitable for hematologic indications.
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Unique selective cytotoxicity towards yd T-NHL and NKTCL cell line systems was
observed from exploring eight different T-cell cancer types and a total of sixteen different
patient-derived cell line models. Furthermore, we carried out synergy screens involving
NN-429 and routinely used chemotherapeutic agents in these PTCL lines. Drug combina-
tions were explored, particularly with cytarabine, doxorubicin, etoposide and SNS-032, by
implementing a ZIP scoring method via SynergyFinder. The overall synergy score was
calculated as a deviation of phenotypic response compared to expected values, over the full
dose-response matrix of the two drug combinations. The NN-429-etoposide combination
exhibited the strongest synergy observed in YT cells, with an average most synergistic area
score of 12.57 (>10 is synergistic). The combination of NN-429 with doxorubicin, cytarabine,
and SNS-032 illustrated an overall additive effect with overall synergy scores between
1 and 10, although clear areas of synergies could be further explored, especially around
the dose regions of the maximum synergy score. Given the many negative side effects
of chemotherapeutics, e.g., vascular damage, secondary malignancies, infertility, future
studies might explore other drug categories to be combined with HDACS6 inhibitors, such
as tyrosine kinase inhibitors or other epigenetic blockers. However, chemotherapeutic
combination therapy with a targeted agent such as our HDACS6 selective blocker is gen-
erally more rapidly translatable. Furthermore, considering cancer treatment costs, this
strategy would also be comparably cheaper than targeted therapy combinations, which
were considerations for us to go into more comprehensive testing.

In summary, the highly selective HDAC6 inhibitor NN-429 exhibited strong selective
cytotoxicity as a single agent, and synergy with clinical agents cytarabine, doxorubicin,
etoposide, and SNS-32 in cellular models of y6 T-NHL and NKTCL. Although the HDAC6
substrate and off-target Western blots have confirmed no drug-drug interactions or overlap
in mechanism, similar studies must be replicated for the biological pathways of cytarabine,
doxorubicin and etoposide. Selective HDAC6 inhibitors may therefore have clinical utility
in 5 T-NHL and NKTCL, and this warrants further investigations towards clinical transla-
tion. Our selective HDACS6 inhibitor can be further improved with medicinal chemistry
efforts and future trials might be possible with a top lead compound to be explored in rare
T- or NK cell leukemias/lymphomas in line with the clinical need to find less toxic and
more specific drugs.

4. Materials and Methods
4.1. Protein Expression

The gene (NCBI: XP_009302026.1) corresponding to HDAC6 from Danio rerio (ze-
brafish; catalytic domain 2, S440-R798) was codon-optimized, synthesized, and cloned into
a pET-28b(+) vector using restriction enzymes Nhel and Xhol with a N-terminal His-SUMO
tag. Molecular cloning was performed by GenScript. BL21 (DE3) RILP cells were trans-
formed with the generated plasmid (containing His-SUMO-HDACS6) and single colonies
were selected and cultured in 5 mL of Super broth containing kanamycin (50 pug-mL~1)
and chloramphenicol (34 pg-mL~1). The cultures were grown with continuous shaking at
37 °C for 4 h and used to inoculate 1 L of Super broth containing 10 mM MgSOy 0.1% (w/v)
glucose, kanamycin (50 pg-mL~!) and chloramphenicol (34 pg-mL~!). Following culture
growth (ODgqp = 2.0), the incubation temperature was reduced to 18 °C, and the media was
supplemented with 0.5 mM zinc chloride solution, 3% (v/v) ethanol, and 0.5 mM IPTG.
The cells were harvested after 18-20 h and stored at —80 °C.

4.2. Protein Purification and Crystallization

HDACS6 cell pellets were lysed via sonication in 20 mM Tris-HCI pH 8.0, 100 mM
arginine, 100 mM glutamic acid, 5 mM (-mercaptoethanol, 5 mM imidazole, 0.2% [v/7]
Triton-X, 0.1% [v/v] Nonidet P-40 substitute, 10% [v/v] glycerol, 2 mg/mL deoxycholic acid,
1 mg/mL lysozyme, 5 mM 6-aminocaproic acid, 5 mM benzamide and 1 mM phenylmethyl-
sulfonyl fluoride). The cell lysate was centrifuged at 14,800 x g for 30 min to remove insolu-
ble particles and the supernatant was filtered and loaded onto a 5 mL Ni?*-nitrilotriacetic
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acid (NTA) affinity column pre-equilibrated with 20 mM Tris-HCI pH 8.0, 150 mM NacCl,
5 mM imidazole, 10% [v/v] glycerol, 5 mM p-mercaptoethanol. The lysate was passed
through the column by gravity and washed with 10 CV of wash buffer 1 (20 mM Tris-HCl
pH 7.4, 500 mM NaCl, 5 mM imidazole, 10% [v/v] glycerol, 5 mM -mercaptoethanol), fol-
lowed by 5 CV of wash buffer 2 (20 mM Tris-HCl pH 7.4, 500 mM NaCl, 45 mM imidazole,
10% [v/v] glycerol, 5 mM (-mercaptoethanol). The His-SUMO-HDACS6 protein was eluted
from the nickel column using elution buffer (20 mM Tris-HCl pH 7.4, 150 mM NaCl, 500 mM
imidazole, 10% [v/v] glycerol, 5 mM -mercaptoethanol). The eluted fractions containing
His-SUMO-HDACS6 protein were diluted two-fold with dilution buffer (20 mM Tris-HCI
pH 7.4, 150 mM NaCl, 10% [v/v] glycerol, 5 mM (3-mercaptoethanol) and was cleaved with
His-Ulp1 protease. The cleaved protein was concentrated using a 10 kDa cutoff centrifugal
concentrator, and further purified with a gel filtration column in 50 mM HEPES pH 7.5,
100 mM KCl, 5% glycerol (v/v), 0.1 mM TCEP and immediately supplemented with final
5 uM compound (50% DMSO stock). Fractions were pooled, (1 mM TCEP was added) and
concentrated to 10-15 mg/mL and further mixed with 1 mM compound. Samples were
incubated at 4 °C for 1 h and plated onto crystallization plates.

Crystals of compound bound HDACS6 protein were grown for 7-10 days in 0.2 M
potassium thiocyanate, 12% (w/v) PEG3350 at 4 °C. Crystals were harvested from the
drops, briefly soaked in 25% ethylene glycol and stored in liquid nitrogen.

4.3. Data Collection with Structure Solution and Refinement

X-ray diffraction data for HDAC6 was collected on NE-CAT beamline 24-ID-C at the
Advanced Photon Source; data was collected on a Pilatus 6M detector with 0.2 s exposure
and 0.2° oscillation per frame (A = 0.979 A). Diffraction images were processed using the
Xia2 [53] and the structure was solved by molecular replacement with Phaser-MR [54-58]
using 6CSR (PDB) as the search model. The structures were refined within Phenix [59], with
manual examination/rebuilding of |2F,| — |F.| and | F,| — | F. | maps using Coot [58].
Stereochemical quality of the final refined structures was analyzed via MolProbity [60], and
deposited in the PDB as 7UK2 with the corresponding statistics provided in Supplementary
Table S2. Structures were visualized through Pymol.

4.4. HDAC Target Engagement (Nanosyn, CA, USA)

In vitro HDAC inhibition assays (EMSA) were carried out by Nanosyn using a mi-
crofluidic electrophoresis instrument (Caliper LabChip® 3000, Caliper Life Sciences/Perkin
Elmer) which was used to detect the concentrations of both de-acetylated and acetylated
FAM-labelled peptide substrates following an activity-based assay. The deacetylation of
the peptide substrates alters the electrophoretic mobility. HDAC proteins were pre-diluted
in the assay buffer (100 mM HEPES, pH 7.5, 0.1% BSA, 0.01% Triton X-100, 25 mM KCl)
and 10 pL of HDAC protein was added per well to a 384-well plate. Compounds were
serially pre-diluted in DMSO and introduced to the HDAC protein samples using Labcyte
Echo acoustic dispensing system, and the DMSO concentration was adjusted to 1% (v/v)
in the protein-compound mixture. TSA, JNJ-26481585, and MS-275 were used as positive
controls, whereas the absence of inhibitor (DMSO only) and the absence of enzyme were
used as the negative controls representing 0% and 100% inhibition, respectively. Addition
of 10 puL of the FAM-labelled substrate allows the reaction to start, which is followed by an
incubation period. A change in the relative intensity of the acetylated peptide substrate and
deacetylated product is used to determine the activity (product to sum ratio, PSR) using
the following equation:

(PSR): P/(S+P)

where P is the peak height of the product, and S is the peak height of the substrate.
Percent inhibition (P;,;,) was determined as follows:

Pinh = (PSRo%inh — PSRcompound)/ (PSRoo%inn — PSR100%inn) % 100
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where PSR ompound, PSRo%inn, and PSRyggoinn are the product to sum ratios in the presence
of inhibitor, absence of inhibitor and absence of enzyme, respectively.

The ICs5 values of all inhibitors were calculated by plotting compound concentration
versus Pjy, fitted to a 4-parameter sigmoid dose-response model on XIfit software (IDBS).

4.5. Western Blotting

Cells (MV4-11 AML, MM.1S multiple myeloma, or YT cells) were incubated with
inhibitors prior to washes (2x) with cold phosphate-buffered saline (PBS) and cell lysis
with radioimmunoprecipitation assay (RIPA) buffer (20 mM Tris pH 7.4, 150 mM NaCl,
0.5% deoxycholate, 1% Triton X-100, and 0.1% sodium dodecyl sulfate (SDS)). Total protein
content was determined through a bicinchoninic acid (BCA) assay (ThermoFisher Scientific,
Waltham, MA, USA). The cell lysate proteins were separated via a 4-20% polyacrylamide
SDS gel and transferred to a PVDF membrane (Bio-Rad, Hercules, CA, USA). Non-specific
binding of the antibody to the membrane was reduced by blocking the membranes with
a 5% (w/v) solution of Bovine Serum Albumin powder in TBS-T. This was followed by
incubation at 4 °C (overnight) with the following antibodies: acetylated x-tubulin mouse
monoclonal (sc-23950, Santa Cruz, Santa Cruz, CA, USA), acetylated Histone H3 (Ac-
Lys18, 07-354, Sigma), (3-Actin mouse monoclonal (AC-15, sc-69879, Santa Cruz), and
Heat Shock Complex 70 HSC70 (sc-7298, Santa Cruz). Following overnight incubation,
horseradish peroxidase (HRP)-conjugated goat anti-mouse IgG secondary antibody (7076,
Cell Signaling) or HRP-linked anti-rabbit IgG secondary antibody (7074, Cell Signaling)
was applied to the membrane in a 1:5000 dilution for 1 h. The bands were visualized using
clarity Western ECL substrate luminal /enhancer solution and peroxide solution. Western
blotting analysis was carried out using Image lab software (Bio-Rad).

4.6. Permeability Determination by PAMPA

1.8% solution (w/v) of lecithin in dodecane was added to each acceptor plate well
(top), followed by application of the artificial membrane and addition of 300 nuL of PBS
(pH 7.4) solution to each well of the acceptor plate. Compounds were added to the donor
plate and incubated at 25 °C, 60 rpm for 16 h. After incubation, aliquots of 50 pL from each
acceptor well and donor plate were transferred into a 96-well plate, vortexed at 750 rpm
for 100 s and centrifuged at 3220 x g for 20 min. The concentration of the compounds was
determined by LC-MS/MS.

The effective permeability (P,), in units of cm/s, was calculated using the following
equation:

[drug]acceptor
[drug]quilibrium I
where: C=VD x VA/[(VD + VA) x t x A]; VD = volume of donor compartment (0.30 mL);

VA = volume of acceptor compartment (0.30 mL); A = filter area (0.24 cm? for Multi-Screen
Permeability Filter plate); and t = incubation time (in seconds).

log P, =log {C x [-In(1—

4.7. Fluorescence Polarization (FP) Assay

The FP assay was conducted in a Greiner Bio-one black 384-well, nonbinding mi-
croplate (Cat 781900) as previous described [61,62]. These studies were performed in FP
buffer (20 mM HEPES pH 8.0, 137 mM NaCl, 3 mM KCl, 1 mM TCEP, 5% DMSO). Binding
experiments were performed in the presence of 50 nM FITC-M344 synthesized as described
by Mazitschek et al. [63] and titrated with 0-3 uM HDAC6. Competition assays were
performed by titrating 0-100 uM inhibitor to 300 nM HDAC6 CD2 and preincubating the
samples for 10 min prior to addition of 50 nM FITC-M344 in FP buffer. The assay mixture
was incubated for an additional 10 min before FP measurement. Polarization measurements
were collected using Infinite M1000-Tecan (ex/em = 470 nm /530 nm) and data were plotted
and fitted using Prism GraphPad 6 built-in function, log(inhibitor) vs. response—variable
slope (four parameters).
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4.8. Intracellular Target Engagement Residence Time Assay (nanoBRET)

NanoBRET target engagement intracellular HDAC assay was purchased from Promega
(Cat.# N2080) and performed according to protocol. HeLa cells were grown in Dulbecco’s
modified Eagle’s medium (DMEM) supplemented with 10% fetal bovine serum (FBS)
(Sigma-Aldrich, St. Louis, MO, USA). In general, HeLa cells were cultivated, trypsinized,
and resuspended to a density of 2 x 10° cells/mL in assay medium (Opti-MEM I reduced
serum media, no phenol red (Life Technologies Cat.# 11958-021)). To 20 mL the resuspended
cells, 10 pg/mL of lipid complex consisting of 9:1 ratio of transfection carrier DNA to
NanoLuc fusion DNA and 30 pL. FuGENE HD transfection reagent (Promega, Cat.# E2311)
in 1 mL assay medium was added. The cells were left to incubate overnight at 37 °C, 5%
CO; to generate a transient transfection containing NanoLuc-HDACS6 full length. The
transiently transfected cells were treated with compound, and cells were centrifuged at
200x g for 5 min to pellet cells. Post incubation with substrate, the cell pellets were washed
once with 1x PBS and dispensed on a white, nonbinding 96-well plate (Corning, Cat.#
3600) followed by 2x substrate + inhibitor solution and 20X tracer solution. The plate
was shaken for 30 s at 750 rpm. Full occupancy control was performed in the absence of
inhibitor and background control was performed in the absence of tracer (10 uL tracer
dilution buffer only). NanoBRET measurements were collected using BioTek Cytation 3
(em =450/50 nm, 610/LP nm, integration time =1 s, delay = 100 ms) in 2 min interval.
NanoBRET ratio was calculated using the equation below:

BRET Ratio (mBU) — (Acceptor sample  Acceptor background

1000
Donor sample Donor background ) x

The BRET ratio was then plotted over time and fitted on Prism GraphPad 6 using the
equations below to obtain residence time calculation:

Y =Y, + (Plateau — Y) x (1 — e—kobsxt
t1/2 = 0.693 x residence time

4.9. FACS Apoptosis Detection Assay

DERL-2 cells were seeded, dosed with inhibitors, incubated for 18 h, and washed
with ice cold 1x PBS. The resulting cell pellets were resuspended in 1x Binding Buffer
(1 x 10° cell/mL) from the FITC Annexin V Apoptosis Detection Kit I (BD Pharmingen).
Subsequently, the dyes Annexin V (5 pL) and Propidium Iodide (PI, 5 pL) were added to
2.5 x 10° cells (250 uL). The suspension was thoroughly mixed and incubated in the dark
for 15 min. Following the addition of 250 pL of 1 x binding buffer the cells were analyzed
by flow cytometry within 1 h using Cytoflex S (Beckman Coulter, Brea, CA, USA).

4.10. In Vivo PK Study in CD-1 Male Mice (Pharmaron, MA, USA)

In vivo mouse studies were performed at Pharmaron in CD-1 male mice in triplicate.
The test compounds were formulated within a 4 mg/mL solution (10% DMA, 65% PEG400,
25% saline). CD-1 mice were administered the test compound (50 mg/kg, I.P) once, and
blood samples were obtained from each mouse at 0.25, 0.5, 1, 2, 4, 8, and 24 h post-dose.
The mice had free access to food and water, were inspected for clinical signs and were
weighted once prior to dosing. The working solutions of 5 uL at different concentrations
(2,4, 10, 20, 100, 200, 1000, 2000 ng/mL) were added to CD-1 mouse plasma (10 pL) to
generate calibration standards of 1, 2, 5, 10, 50, 100, 500, and 1000 ng/mL. Four quality
control (QC) samples at 2, 5, 50, and 800 ng/mL for plasma were prepared independently
of calibration curves. Standards, QC samples, and unknown samples (total volume 15 pL)
were added to acetonitrile (200 pL) containing IS (2 ng/mL Verapamil, and 50 ng/mL
Dexamethasone) for precipitation of protein. Samples were vortexed and centrifuged (4 °C,
3900 rpm, 15 min), and the supernatant was diluted 3x with ultra-pure water. Diluted
supernatant was injected into the LC-MS/MS system for quantitative analysis.
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4.11. Cell Lines

The TCL cell lines, KHYG-1, SNK6, MTA, DERL-2, DERL-7, Mac2a, SU-DHL-1, Myla,
Hut78, SeAx, HH, MOTN-1, KOPT-K1, Jurkat and Loucy were maintained in RPMI-1640
supplemented with 10% FBS, 0.06 g/L penicillin/0.1 g/L streptomycin (Pen/Strep, Gibco,
New York, NY, USA), and 2 mM L-glutamine (Gibco). Culture media of KHYG-1, SNK6,
MOTN-1 and DERL-2/7 cells was additionally supplemented with 2.5 ng/mL recombinant
human IL-2 (ImmunoTools GmbH, Friesoythe, Germany), whereas media of SeAx cells
was supplemeted with 5 ng/mL IL-2 and 5 ng/mL IL-4 (ImmunoTools GmbH, Friesoythe,
Germany). The culture media for YT cells was Iscove’s Modified Dulbecco’s Medium
(IMDM) supplemented with 20% heat inactivated FBS and 20ng/mL human IL-2. The
authenticity of the TCL cell lines was confirmed by analysis of highly polymorphic short
tandem repeat loci (STR) using the PowerPlex 16 HS System (Promega; performed by
Microsynth AG, Diibendorf, Switzerland). Hut78 cells were obtained from CLS Cell Lines
Service GmbH, Germany. SU-DHL-1, HH, DERL-2/7, KHYG-1 and, YT cell lines were
obtained from the Deutsche Sammlung von Mikroorganismen and Zellkulturen GmbH
(DSMZ, Braunschweig, Germany). Jurkat cells were a generous gift from Dr. Florian
Grebien (University of Veterinary Medicine Vienna, Vienna, Austria). SNK6 cells were
kindly provided by Dr. John Chan (City of Hope Medical Center, Duarte, CA, USA). SeAx
and Myla cells were a generous gift from Dr. Keld Kaltoft (University of Aarhus, Aarhus,
Denmark). MTA cells were a kind gift from Dr. Raphael Koch (University Medical Center
Goettingen, Goettingen, Germany). Mac2a cells were a generous gift from Dr., Marshall
Kadin (Brown University, Providence, RI, USA). MOTN-1 cells were kindly provided by
Dr. Emmanuel Bachy(Lyon Sud Hospital, Lyon, France). KOPT-K1 cells were a kind gift
from Dr. Koshi Akahane (University of Yamanashi, Kofu, Japan). Loucy cells were kindly
provided by Dr. A. Thomas Look (Dana-Faber Cancer Institute, Boston, MA, USA). Cell
lines were regularly tested for mycoplasma using the MycoAlert mycoplasma detection kit
(Lonza Group AG, Basel, Switzerland). All cell lines were cultured at 37 °C in a humidified
atmosphere containing 5% CO,. Experiments were performed within 20 passages after cell
resuscitation. None of the above-mentioned cell lines are listed in the register of cell lines
that are known to be misidentified through cross-contamination.

4.12. Cytotoxicity Assays

KHYG-1, SNK6, MTA, YT, DERL-2, DERL-7, Mac2a, SU-DHL-1, Myla, Hut78, SeAx,
HH, MOTN-1, KOPT-K1, Jurkat, and Loucy cells were plated in 96-well flat-bottom sterile
culture plates with low-evaporation lids (Costar #3997). The inhibitors and a vehicle control
(0.5% DMSO) were added to the cells following 24 h. After 72 h, Cell Titer-Blue® (Promega
#GB808A) was added to each well (20 uL), and the fluorescence was measured at 560/590 nm
using a Cytation S63 spectrophotometer (BioTek) or on the GloMax® Discover Microplate
Reader (Promega, Madison, WI, USA). ICs5p values were determined using non-linear
regression analysis with GraphPad Prism 6.0 (GraphPad Software Inc., San Diego, CA,
USA). IC5q values represent the effective drug concentration at which cell’s viability is
reduced by 50%. ICgy concentrations were calculated based on the equation below:

IC(F) =[(100 — F)/F]1/HS x ICsx
where F = desired percent response (i.e., 80 for 80% reduction in cell viability), HS = Hill Slope.

4.13. Synergy Studies

10,000 YT cells/well were plated in a clear, flat-bottom, sterile 96-well plate (Costar
#3997) with complete media and incubated overnight at 37 °C and 5% CO;. The inhibitors
were diluted to 4 x starting concentration in complete medium. Inhibitor 1 (at 4 x starting
concentration) was serial diluted in complete media in a clear, U-bottom, sterile 96-well
plate, diluting horizontally (column 3-10). Repeated procedure for inhibitor 2 in a separate
96-well plate, diluting vertically (row A-H). Volume from plate 2 (inhibitor 2) was trans-
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ferred to plate 1 (inhibitor 1). Bortezomib is diluted to 100 uM (2 x starting concentration)
in complete media and plated in plate 1 in column 11. Media is plated in control wells (col-
umn 2) in plate 1. See Supporting Information Figure S6 for plate layout. Cells were treated
with inhibitor combinations from plate 1 for 72h. Wells were treated with Cell Titer-Blue
(Promega #G808A) and fluorescence was recorded at 560/590 nm using a Cytation S63
spectrophotometer. A surface plot approach based on the scoring enabled the visualization
of the landscape of drug interaction over all the tested dose pairs, providing rich data on
the particular dose optimizations that exhibit strong synergy.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ph15111321/s1, Scheme S1: Reagents and conditions to synthesize
NN-429; Figure S1: Confirms NN-429 fails to cross blood-brain barrier; Table S1: ICs values (uM)
calculated from drug response analysis of NN-390, KT-531 and citarinostat; Figure 52: Confirms
dose-dependent increase in cells undergoing apoptosis was observed with NN-429 in DERL-7
cells; Figure S3: Table of overall ZIP synergy score and most synergistic area (MSA) score for four
separate runs of the NN-429 combinations; Figure S4: Western blot of NN-429 combinations in
DERL-7 cells immunoblotted with acetylated -tubulin, acetylated Histone H3 and HSC70 antibodies;
Figure S5: Western blot of NN-429 as a single agent and in combination with SNS-032 in YT cells, cells
immunoblotted with acetylated o-tubulin, acetylated Histone H3 and HSC70 antibodies; Figure Sé6:
Synergy plate set-up.
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