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Abstract Sex differences in vertebrate spatial abilities are typically interpreted under the adap-
tive specialization hypothesis, which posits that male reproductive success is linked to larger home 
ranges and better navigational skills. The androgen spillover hypothesis counters that enhanced 
male spatial performance may be a byproduct of higher androgen levels. Animal groups that include 
species where females are expected to outperform males based on life-history traits are key for 
disentangling these hypotheses. We investigated the association between sex differences in repro-
ductive strategies, spatial behavior, and androgen levels in three species of poison frogs. We tracked 
individuals in natural environments to show that contrasting parental sex roles shape sex differences 
in space use, where the sex performing parental duties shows wider-ranging movements. We then 
translocated frogs from their home areas to test their navigational performance and found that the 
caring sex outperformed the non-caring sex only in one out of three species. In addition, males 
across species displayed more explorative behavior than females and androgen levels correlated 
with explorative behavior and homing accuracy. Overall, we reveal that poison frog reproductive 
strategies shape movement patterns but not necessarily navigational performance. Together this 
work suggests that prevailing adaptive hypotheses provide an incomplete explanation of sex differ-
ences in spatial abilities.
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Editor's evaluation
In this important paper, the authors use intensive field monitoring and experimentally induced 
navigational challenges in three species of poison frog to examine two different hypotheses for sex 
differences in spatial ability. The study is simultaneously rich and complex; the results are solidly 
consistent with (but not necessarily definitively or exclusively in support of) the hypothesis that 
androgens may inadvertently affect spatial ability. This paper is of interest to organismal biologists 
and evolutionary scientists who study cognitive and behavioral sex differences including those with 
interests in the evolution of complex spatial behaviors.

Introduction
Sex differences in spatial abilities are well established in mammals, where males tend to have larger 
home ranges and enhanced navigational skill compared to females (Clint et  al., 2012; Gray and 
Buffery, 1971; Jonasson, 2005; Jones et al., 2003). In a series of comparative rodent studies, sex 
differences in space use have been linked to reproductive strategy, where polygamous species show 
sex differences in home range size and spatial abilities, but monogamous species do not (Galea et al., 
1994; Gaulin et al., 1990; Gaulin and FitzGerald, 1986; Gaulin and Fitzgerald, 1989; Sawrey et al., 
1994). In humans, men tend to score higher on spatial tests related to 3D mental rotations, whereas 
women tend to score better on object location memory (Eals and Silverman, 1994; Silverman et al., 
2007; Voyer et al., 1995; reviewed in Clint et al., 2012; Jones et al., 2003). The adaptive specializa-
tion hypothesis has been proposed to explain sex differences in mammals and argues that enhanced 
spatial abilities in males is an adaptive trait, where males with better navigational skills and larger home 
ranges may have increased survival and reproductive success (Gaulin and FitzGerald, 1986; Gaulin 
and Fitzgerald, 1989; Jones et al., 2003). In addition, maternal care in mammals may limit space 
use and exploration in females (Barnett and McEwan, 1973; Sherry and Hampson, 1997; Trivers, 
1972). While the adaptive specialization hypothesis has been widely accepted for decades, empirical 
support outside rodents is often inconclusive and alternative explanations are rarely evaluated.

The widely accepted adaptive explanations of sex differences were challenged by Clint et  al., 
2012. They countered that better spatial abilities in males might be a byproduct of sex differences in 
androgens unrelated to selective pressures on spatial behavior and reproductive strategies (i.e., the 
androgen spillover hypothesis). Cross-cultural studies show that human sex differences in spatial abil-
ities are not universal, but are influenced by cultural and population-specific factors such as mobility 
related to lifestyle (Berry, 1966; Cashdan et al., 2012; Jang et al., 2019; Trumble et al., 2016). 
Higher androgen levels in mammals enhance spatial performance through effects on neural develop-
ment and plasticity (Dawson et al., 1975; Galea et al., 1995; Isgor and Sengelaub, 1998; Joseph 
et  al., 1978; Neave et  al., 1999; Roof and Havens, 1992; Schulz and Korz, 2010; Sherry and 
Hampson, 1997; Stewart et al., 1975; Van Goozen et al., 1995; Williams et al., 1990). In humans, 
female performance in spatial ability tasks correlates positively with androgen levels and improves 
with androgen treatments (Aleman et al., 2004; Burkitt et al., 2007; Driscoll et al., 2005). From 
an adaptationist perspective, this relationship has been viewed as the proximate mechanism for the 
selection on males’ spatial abilities. However, with few exceptions, empirical support for adaptive sex 
differences in spatial abilities is based on research in mammals, where males typically have higher 
androgen levels and larger home ranges than females (but see Mabry et al., 2013; Mysterud et al., 
2001; Ofstad et al., 2016). To disentangle the effect of androgens and life-history traits on sex differ-
ences in spatial behavior, we need comparative research in groups of animals where females have 
more complex spatial behavior and are expected to have better spatial abilities than males.

Outside mammals, sex differences in spatial abilities have been studied in some birds and fishes, but 
the support for the adaptive specialization hypothesis remains equivocal. In brood-parasitic cowbirds, 
where females need to remember and locate multiple host nest sites, females have larger forebrain 
areas associated with spatial learning in comparison to males and non-parasitic relatives (Sherry 
et al., 1993; Reboreda et al., 1996). However, the outcomes of behavioral studies of sex difference 
in cowbirds’ spatial abilities are inconclusive as some (Guigueno et al., 2014), but not others (Astié 
et al., 1998; Astié et al., 2015; Lois-Milevicich et al., 2021), found the expected female advantage in 
spatial tasks. In Blenniid fishes males defend small territories and perform parental care while females 
move between males, and have larger home ranges and larger forebrain areas associated with spatial 
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cognition than males (Costa et al., 2011). However, behavioral testing in one blenny species (Fabre 
et al., 2014) and some other fishes (Keagy et al., 2019; Wallace and Hofmann, 2021) found fewer 
or opposite sex differences than predicted by the adaptive specialization hypothesis. More taxonom-
ically diverse study systems and explicit evaluation of alternative explanations are needed to test the 
adaptive specialization hypothesis and its broader implications for the evolution of vertebrate spatial 
cognition.

Amphibians show a remarkable variety of mating strategies and parental sex roles compared to 
mammals and birds, including widespread polyandry and male uniparental care (Duellman, 1989; 
Schulte et al., 2020; Wells, 1977; Zamudio et al., 2016). Such behavioral diversity provides natural 
comparison groups to test alternative hypotheses about sex differences in spatial abilities. In Neotrop-
ical poison frogs (Dendrobatoidea), male and female uniparental care, biparental care, and flexible 
parental roles occur among closely related species (Schulte et  al., 2020; Summers and Tumulty, 
2014; Weygoldt, 1987). Poison frog parental care involves complex spatial behavior, where parents 
navigate the rainforest to transport tadpoles from terrestrial clutches to pools of water (Beck et al., 
2017; Pašukonis et al., 2019; Ringler et al., 2013). Poison frogs show well-developed spatial cogni-
tion and rely on spatial memory to relocate home territories and tadpole deposition sites (Beck et al., 
2017; Liu et al., 2016; Liu et al., 2019; Pašukonis et al., 2014; Pašukonis et al., 2016; Stynoski, 
2009). Male tadpole transport is the ancestral and most common form of parental care in poison frogs 
(Carvajal-Castro et al., 2021; Summers and Tumulty, 2014; Weygoldt, 1987), but female care and 
flexible parental roles have evolved in some species (Fischer and O’Connell, 2020; Ringler et al., 
2015b). In species where females provide care, frogs place their tadpoles in small, resource-poor nurs-
eries. Females frequently return to these pools to supplement the tadpoles’ diet by provisioning with 
unfertilized eggs (Brust, 1990; Summers and Tumulty, 2014). All these parental behaviors require 
well-developed spatial memory and navigation abilities. Therefore, individuals with better spatial 
memory may have increased reproductive fitness, leading to enhanced spatial abilities in the sex that 
performs parental care, as proposed by the adaptive specialization hypothesis. Poison frogs also show 
sex-typical differences in androgen levels, where males have higher androgen levels than females, 
although androgen levels decrease during tadpole transport in males (Fischer and O’Connell, 2020). 
Thus, comparative studies in poison frogs provide a unique opportunity to understand how parental 
roles and reproductive strategies shape sex differences in space use and navigational abilities, and 
how hormones regulate these behaviors.

We conducted extensive field studies on sex differences in spatial behavior across three poison 
frog species with contrasting parental sex roles and reproductive strategies: the Brilliant-Thighed 
Poison Frog Allobates femoralis, an inconspicuous frog with flexible but predominantly male parental 
care, the Dyeing Poison Frog Dendrobates tinctorius, an aposematic frog with obligate male care, 
and the Diablito Poison Frog Oophaga sylvatica, an aposematic species with obligate female care. 
We tracked frogs with miniature tags to quantify sex differences in home range and parental care-
associated space use in their natural environment. We then quantified the sex differences in naviga-
tional performance by experimentally translocating frogs from their home areas and tracking their 
homing behavior. We also used non-invasive methods to measure androgen levels before and after 
translocation. Based on the adaptive specialization hypothesis, we predicted that the tadpole trans-
porting sex (males in D. tinctorius and A. femoralis, females in O. sylvatica) would have wider-ranging 
space use and better navigational performance. Following the androgen spillover hypothesis, we 
predicted that males would show enhanced navigation regardless of species differences in reproduc-
tive strategy.

Results
Sex differences in parental roles predict sex differences in space use
We first quantified the sex differences in space use and the association between movements and 
parental behavior across three species that differ in parental sex roles (Figure 1). In A. femoralis, 
where males do most parental care duties, the average male home range was 153% larger and move-
ment extent 172% larger than females (Figure  1, Table  1, Supplementary file 1, Table  1a). We 
also found that long-term movements based on capture–recapture data were larger in males than in 
females of A. femoralis (LM: βextent male = 0.55, t = 3.1, n = 165, p = 0.002; Figure 1—figure supplement 
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Figure 1. Parental sex roles and behavior drive sex differences in poison frog space use. Male (a, b) and female (c) individuals of each study species 
transporting tadpoles while wearing a tracking tag. White arrows indicate tadpoles and the tag. (d, e) Examples of representative space use patterns of 
one individual of each species and sex show different measured space use parameters. We calculated the daily travel as the cumulative distance (line) 
between all relocations (points) per day; the movement extent (gray shaded area); and the home range representing more intensely used areas (darker 

Figure 1 continued on next page
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1). In D. tinctorius, where males perform parental care, we found no significant sex differences in 
home range size or movement extent based on tracking data, but males showed wider-ranging long-
term movements based on capture–recapture data (LM: βextent male = 0.43, t = 2.62, n = 154, p = 0.01; 
Figure 1—figure supplement 1). In O. sylvatica, where females perform parental care, the average 
male home range was 56% smaller and movement extent 57% smaller than in females. There was no 
sex difference in the O. sylvatica daily travel at the natural site (LMM: βdaily male = −0.27, t = −1.6, n = 
93, p = 0.1) nor within enclosures (LMM: βdaily male = −0.11, t = –1, n = 287, p = 0.3), but short-term 
movement extent was larger in females than in males of O. sylvatica at both the natural site (LM: βextent 

male = −0.38, t = −2.4, n = 37, p = 0.02) and within enclosures (LM: βextent male = −0.42, t = −2.9, n = 29, 
p = 0.007; Figure 1—figure supplement 2).

Sex influenced the daily travel of A. femoralis, where the best-fit model included sex, behavior, 
daytime temperature, and random factors, but not in D. tinctorius and O. sylvatica. A. femoralis males 
moved more on days of parental care than on mating days (lsm contrast: β = 1.8, p < 0.001) and other 
days (lsm contrast: β = 1.9, p < 0.001), but equally between mating days and other days (lsm contrast 
p = 0.75; Figure 1). A. femoralis females moved more on days of mating than other days (lsm contrast: 
β = 0.6, p < 0.001) and were only observed transporting tadpoles once (Figure 1). D. tinctorius males 
also moved more on days of parental care than on mating days (lsm contrast: β = 1.3, p < 0.001) and 
other days (lsm contrast: β = 1.5, p < 0.001), but moved equally between mating days and other days 
(lsm contrast p = 0.85, Figure 1). Daily travel of D. tinctorius females did not differ on days of mating 
from other days (lsm contrast p = 0.4, Figure 1), and females were never observed in the pools or 
with tadpoles. Daily travel of O. sylvatica males did not differ between mating days and other days 
(lsm contrast p = 0.95, Figure 1) and males were never seen transporting tadpoles, but were regularly 
found near the breeding pools often located inside their territories. Females of O. sylvatica moved 
more on days of parental care than on other days (lsm contrast: β = 0.4, p = 0.004; Figure 1), but 
there was no difference between mating days and parental days (lsm contrast p = 0.8) or other days 

hatched area). Frog positions are classified to represent three types of behaviors associated with daily movements: parental behavior (green diamonds), 
mating behavior (yellow triangles), and other (purple circles). Light blue circles represent pools used for tadpole deposition. Note that the scale is 
different in the panel for (f) O. sylvatica. Boxplots show sex differences in home range size (g), and daily travel between days when parental behavior, 
mating, or neither were observed (h). Plot rectangles indicate the lower and upper quartiles with the median line, whiskers extend to 1.5 times the 
interquartile limited by value range, and dots indicate individuals. As frogs were tracked for multiple days, average values per individual per behavioral 
category are shown. Days were categorized as pool visits or mating days if the corresponding behavior was observed at least on one relocation of that 
day. y-Axes are loge-transformed. Statistical significance levels are indicated as **p < 0.01, ***p < 0.001.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Comparison of sex differences in movement extent between long-term recapture data and short-term tracking.

Figure supplement 2. Comparison of sex differences in daily travel and movement extent of O.sylvatica tracked in enclosures and a natural population.

Figure 1 continued

Table 1. Home range size model summaries.

A. femoralis loge (home 
range)

D. tinctorius loge (home 
range)

O. sylvatica loge (home 
range)

Predictors Estimates (CI) p Estimates (CI) p Estimates (CI) p

(Intercept) 3.15
(1.1 to 5.2)

0.004 5.3
(4.0 to 6.6)

<0.001 2.5
(1.6 to 3.4)

<0.001

Sex [male] 0.9
(0.2 to 1.7)

0.015 0.2
(−0.9 to 1.3)

0.68 −0.8
(−1.3 to 0.4)

0.001

Tracking duration 0.06
(−0.1 to 0.2)

0.46 −0.02
(−0.1 to 0.06)

0.62 0.04
(−0.04 to 0.1)

0.36

Observations 25 19 29

R2/R2 adjusted 0.28/0.21 0.02/0.0 0.40/0.35

Summary of three linear models with loge-transformed home range size in A. femoralis, D. tinctorius, and O. 
sylvatica as the response variable, sex as the predictor, and tracking duration (in days) as a covariate. Statistical 
significance with p < 0.05 is highlighted in bold.

https://doi.org/10.7554/eLife.80483
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(lsm contrast p = 0.3). In summary, we found sex differences in space use that reflect sex differences 
in parental roles across species, and that parental care is associated with the longest movements in 
all three species.

Sex differences in parental care do not predict navigational 
performance
We tested if there were sex differences in navigational performance that reflected sex differences in 
parental roles and space use across species. When translocated 50 m, A. femoralis males were more 
likely to return home (81% males, 44% females), but both sexes of D. tinctorius (94% males, 94% 
females) and O. sylvatica (80% males vs. 70% females) were equally likely to return (Figure 2 and 
Table 2). When translocated 200 m, only males of A. femoralis (75% males, 0% females) and both 
females and males of D. tinctorius (56% males, 39% females), but no O. sylvatica were able to return 
home (Figure 2 and Table 2). One O. sylvatica male could not be located after 6 days and was found 

Figure 2. Species and sex differences in movement trajectories of translocated poison frogs. Homeward normalized movement trajectories of (a, d) 
A. femoralis, (b, e) D. tinctorius, and (c, f) O. sylvatica translocated approximately 50 m (a–c) or 200 m (d–f) from home. All trajectories are normalized 
to a common start location (center of the plot) and home direction (top of the plot). The approximate home area is indicated by a gray circle. Each 
line corresponds to a different individual with male trajectories in teal and female in red. The proportion of each sex that showed homing behavior is 
indicated on inserted bar plots. Frogs were considered homing if they completed at least 70% of the distance from the release site to the home center 
within 3 or 6 days for 50 and 200 m, respectively.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Sex differences in angular deviation from home direction.

Figure supplement 2. Temporal patterns of homing.

https://doi.org/10.7554/eLife.80483
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back home 2 days later. A. femoralis were less likely to return home with higher daytime tempera-
ture, but the daytime temperature had no effect on homing success in D. tinctorius and O. sylvatica 
(Table 2). Frog weight had no effect on homing success. When translocated 50 m, A. femoralis males 
explored larger areas than females, but we observed no sex difference in D. tinctorius and O. sylvatica 
(Figure 3, Supplementary file 1A, Table 1b). When translocated 200 m, males of all three species 
were more explorative than females (Figure 3 and Table 3). In addition, A. femoralis explored less 
with higher daytime temperature, but the daytime temperature did not affect the explored area in D. 
tinctorius or O. sylvatica (Table 3, Supplementary file 1, Table 1b). Frog weight positively influenced 
the explored area only in D. tinctorius translocated 200 m (Table 3).

After 50-m translocation, A. femoralis males returned more directly and faster than females 
(Figure 3, Table 4 and Supplementary file 1, Table 1c). After moving ~20% of the translocation 
distance from the release site, A. femoralis males but not females were significantly oriented toward 
home (50 m: male Rayleigh p < 0.001, female Rayleigh p = 0.15; 200 m: male Rayleigh p < 0.001; 
Figure 2—figure supplement 1). We also found a sex difference in the distribution of angular devia-
tions in A. femoralis (F(22) = 3.9, p = 0.03). In D. tinctorius, females returned in more direct paths than 
males from 200 m (Figure 3 and Table 4). Both males and females of D. tinctorius were significantly 
oriented when translocated 50 m (male Rayleigh p = 0.007, female Rayleigh p < 0.001; Figure 2—
figure supplement 1), but not when translocated 200 m (male Rayleigh p = 0.4, female Rayleigh p = 
0.85; Figure 2—figure supplement 1). There were no sex differences in the distribution of angular 
deviations in D. tinctorius. In O. sylvatica, we found no sex difference in trajectory straightness, 
homing duration, or the distribution of angular deviations. After moving ~20% of the translocation 
distance, males but not females of O. sylvatica were significantly oriented when translocated 50 m 
(male Rayleigh p = 0.015, female Rayleigh p = 0.18; Figure 2—figure supplement 1), but not after 
200 m translocation (male Rayleigh p = 0.9, female Rayleigh p = 0.9; Figure 2—figure supplement 1). 
A. femoralis and O. sylvatica returned in less direct paths and slower with higher daytime temperature. 
Dendrobates tinctorius returned slower with higher daytime temperature, but temperature had no 
effect on trajectory straightness (Table 4, Supplementary file 1, Table 1c). Frog weight did not affect 
the homing duration.

To sum up our navigation experiments, we found that A. femoralis males navigate home faster and 
more accurately than females, D. tinctorius females navigate more accurately than males from long 
distances, and males across species display more exploration-related movement compared to females 
regardless of sex differences in parental care roles.

Table 2. Homing success model summaries.

A. femoralis 50 m homing 
success

D. tinctorius 200 m homing 
success

O. sylvatica 50 m homing 
success

Predictors Log-Odds (CI) p Log-Odds (CI) p Log-Odds (CI) p

(Intercept) 107.8
(34.7 to 242.3)

0.02 18.7
(−23.9 to 65.4)

0.4 152.65
(−127.6 to 543.3)

0.35

Sex [male] 5.2
(1.7 to 12.4)

0.03 1.05
(−1.2 to 3.6)

0.38 1.4
(−1.0 to 4.6)

0.29

Temp. −4.8
(−10.8 to 1.8)

0.020 −0.8
(−2.7 to 0.85)

0.35 –6.5
(−23.3 to 5.5)

0.35

Weight 4.7
(−1.9 to 13.0)

0.19 0.2
(−1.0 to 1.5)

0.74 NA

Observations 32 32 18

R2 Tjur 0.59 0.07 0.10

Summary of three logistic regression models with homing success in A. femoralis, D. tinctorius, and O. sylvatica 
as the response variable, sex as the predictor, and average daytime temperature (Temp.) and frog weight as 
covariates. We did not perform statistical comparisons conditions A. femoralis 200 m because only males 
successfully returned; for O. sylvatica 200 m because no frogs returned and for D. tinctorius 50 m because both 
sexes return at an equal rate. Weight was excluded for O. sylvatica to achieve model convergence. Statistical 
significance with p < 0.05 is highlighted in bold.

https://doi.org/10.7554/eLife.80483
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Androgens correlate with navigation-associated behavior
We also investigated the relationship between androgen levels and spatial behavior during the navi-
gation task described above. There was high interindividual variation of androgen levels in both sexes 
of all species, but on average, males showed higher androgen levels in all three species (Figure 4, 
Supplementary file 1A, Table 1d). There were no significant differences between baseline and back-
home samples in all three species. Baseline levels did not influence exploration, homing duration, nor 
trajectory straightness in A. femoralis (Figure 4, Supplementary file 1A, Table 1e). Baseline androgen 
levels, together with sex, translocation distance, and frog weight significantly predicted exploration in 
D. tinctorius, but did not influence homing duration or trajectory straightness (Figure 4, Supplemen-
tary file 1A, Table 1f). Baseline levels significantly predicted trajectory straightness, but not explora-
tion or homing duration in O. sylvatica (Figure 4, Supplementary file 1, Table 1g). The explored area 

Figure 3. Sex differences in poison frog exploration and navigational performance. (a) Schematic representation of the parameters measured during 
navigation experiments (numbers in parentheses), which are plotted in panels (b–d). Explored area (b), trajectory straightness (c), and homing duration 
(d) were measured for successful homing, while only explored area (b) were measured for frogs that did not return home. Boxplots show sex differences 
in (b) explored area (loge-transformed), (b) homing trajectory straightness, and (c) homing duration (a). Filled and empty circles indicate individuals that 
were homing or not. Plot rectangles indicate the lower and upper quartiles with the median line, whiskers extend to 1.5 times the interquartile limited by 
the value range, and dots indicate individuals. Statistical significance levels are indicated as *p 0.05–0.01, **p < 0.01, ***p < 0.001.

https://doi.org/10.7554/eLife.80483
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had a significant positive effect and successful homing a significant negative effect on delta androgen 
levels in A. femoralis, but not in D. tinctorius and O. sylvatica (Supplementary file 1, Table 1h).

Discussion
Sex differences in spatial behaviors are typically interpreted through the lens of the adaptive special-
ization hypothesis, where larger home ranges and better navigational abilities in males are seen as 
adaptive traits (Jones et al., 2003). This has been countered with the androgen spillover hypothesis, 
which suggests that enhanced spatial abilities in males may be a byproduct of higher male androgen 
levels rather than an adaptation (Clint et al., 2012). However, there are no comparative studies where 
females and males of closely related species have reversed spatial behavior and are expected to 
show a reversal in spatial abilities. Here, we linked the reproductive strategies, space use, naviga-
tional performance, and androgen levels in three species of frogs that differ in which sex performs 
spatially relevant parental care tasks that tie spatial accuracy to reproductive fitness (Figure 5). We 
found that parental care shapes sex differences in space use, but no evidence that sex differences in 

Table 3. Explored area model summaries.

A. femoralis 200 m loge 
(explored area)

D. tinctorius 200 m loge 
(explored area)

O. sylvatica 200 m loge 
(explored area)

Predictors Estimates (CI) p Estimates (CI) p Estimates (CI) p

(Intercept) 28.0
(8.7 to 47.4)

0.006 5.6
(−7.65 to 18.9)

0.39 30.85
(−97.0 to 158.7)

0.61

Sex [male] 1.5
(0.9 to 2.1)

<0.001 1.5
(0.8 to 2.2)

<0.001 0.8
(0.02 to 1.7)

0.045

Temp. −1.0
(−1.8 to 0.2)

0.017 −0.04
(−0.6 to 0.5)

0.87 −0.9
(−6.4 to 4.5)

0.72

Weight 1.0
(−0.5 to 2.5)

0.19 0.6
(0.2 to 0.9)

0.004 −1.4
(−3.2 to 0.3)

0.10

Observations 30 32 15

R2/R2 adjusted 0.56/0.51 0.41/0.35 0.38/0.21

Summary of three linear models with loge-transformed explored area in A. femoralis, D. tinctorius, and O. sylvatica 
as the response variable, sex as the predictor, and average daytime temperature (Temp.) and frog weight as 
covariates. Statistical significance with p < 0.05 is highlighted in bold.

Table 4. Homing trajectory straightness model summaries.

A. femoralis 50 m 
homing straightness

D. tinctorius 50 m 
homing straightness

D. tinctorius 200 m 
homing straightness

O. sylvatica 50 m 
homing straightness

Predictors Estimates p Estimates p Estimates p Estimates p

(Intercept) 28.7
(12.6 to 
44.9)

<0.001 2.0
(−18.9 to 
22.9)

0.85 8.9
(−0.7 to 
18.5)

0.069 111.0
(25.9 to 
196.0)

0.011

Sex [male] 0.7
(0.1 to 
1.3)

0.017 −0.05
(−0.8 to 
0.7)

0.89 −0.5
(−0.9 to 0.02)

0.039 0.5
(−0.4 to 
1.3)

0.30

Temp. −1.1
(−1.8 to 0.5)

0.001 −0.04
(−0.9 to 
0.8)

0.93 −0.4
(−0.75 to 
0.03)

0.071 −4.8
(−8.4 to 1.1)

0.011

Observations 17 22 15 13

R2 0.35 0.001 0.39 0.44

Summary of four beta regression models with homing trajectory straightness in A. femoralis, D. tinctorius, and O. 
sylvatica as the response variable, sex as the predictor, and average daytime temperature (Temp.) as a covariates. 
Statistical significance with p < 0.05 is highlighted in bold.
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navigational performance are linked to the reproductive strategy. Importantly, we found that females 
did not outperform males in O. sylvatica, the species with more complex female spatial behavior 
and larger home ranges associated with female parental care. We also found that males of all three 
species tended to be more explorative than females and had higher androgen levels. Moreover, 
increased androgen levels were associated with higher exploration in two species with male care and 

Figure 4. Relationships between androgen levels and spatial behavior. Boxplots show sex differences in water-borne androgen concentration 
measured before and after the navigational task in (a) A. femoralis, (e) D. tinctorius, and (l) O. sylvatica. The coefficient plots indicate the effect size and 
confidence intervals of androgen level difference between sexes and the two sampling points for (b) A. femoralis, (f) D. tinctorius, and (m) O. sylvatica 
and the influence of androgen levels and other factors on exploration (c, j, n) and homing trajectory straightness (d, k, o) in each species. The plot 
title represents the response variable of the respective regression model with its predictors on the y-axis, and fixed effect estimates (black dots) ± 95% 
confidence interval (error bars) on the x-axis. For categorical predictors such as ‘sex’, the estimates are always shown for the reference factor (its label 
in parenthesis), which is compared to the other factors represented by the intercept. The overlap of the error bars with the zero-reference line indicates 
lack of a significant effect on the response variable. All continuous predictors were centered and standardized. Androgen concentrations are natural 
loge-transformed. Statistically significant levels are indicated as *p 0.05–0.01, **p < 0.01, ***p < 0.001.
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navigational accuracy in the species with female care, leaving open the possibility that sex differences 
in spatial behavior might result from sex differences in androgen levels independent of the differences 
in parental sex roles.

Reproductive strategy shapes species and sex differences in space use
We show that parental care in poison frogs increases the mobility of the caring sex and thus shapes the 
sex differences in space use. In D. tinctorius and A. femoralis, males transport tadpoles outside their 
territory and provide no further care. As we predicted, A. femoralis males have a much wider space 
use than females. Male long-distance movements were primarily observed during tadpole transport 
and occasional territory shifts, while female space use extent was mainly driven by mate-seeking. This 
sex difference was less pronounced in D. tinctorius, where males did not differ from females in short-
term space use based on tracking. Males, however, moved over a wider range based on long-term 
capture–recapture data. The apparent difference between short-term tracking and long-term recap-
ture data in D. tinctorius could be due to real sex differences only emerging in longer-term space use 
patterns, or the limited statistical power to detect a slight sex difference with a much smaller sample 
size in the tracking dataset. D. tinctorius males also moved the longest distances on tadpole trans-
port days. During tadpole transport, males often climbed vertically to reach water-filled tree holes 
high above the ground, which they are known to use for tadpole deposition (Fouilloux et al., 2021). 
Our space-use data do not capture these vertical movements and thus might considerably underesti-
mate D. tinctorius male mobility and associated sex differences in vertical space use qualitatively and 
quantitatively. We could not identify what drove wide-ranging horizontal movements in D. tinctorius 
females, but seeking better foraging sites has been suggested among the movement drivers in D. 
tinctorius (Born et al., 2010).

Including a species with female uniparental care whose spatial movements are tied to reproductive 
fitness allowed us to ask whether enhanced mobility could be an adaptive trait linked to parental care. 

Figure 5. Summary of sex and species differences in life-history traits, predicted, and observed space use and navigational performance. Pink and teal 
circles represent the space use extent for females and males, respectively, and dotted arrows represent homing success after translocations. Arrows 
pointing to home range represent successful homing and arrows pointing away present lost frogs, based on the overall pattern of homing success. 
Note that possible differences in homing accuracy and duration are not represented. Yellow frame highlights the observed outcomes that differed from 
the predictions and in all of these cases we found no sex differences where differences were expected. *Sex difference only observed in long-term 
movements and qualitatively in vertical space use.
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O. sylvatica females must remember and revisit tadpole nurseries dispersed over tens of meters to 
provision their young with trophic, unfertilized eggs (Stynoski, 2009; Summers, 1992; this study). 
As predicted, tracking revealed larger female home ranges in O. sylvatica. Females typically moved 
between several reproductive pools and moved most when visiting or switching between the pool 
sites. Like D. tinctorius males, O. sylvatica females regularly climbed vertically to water-filled plants 
up to 10 m above the ground, but these vertical movements are not captured in our space-use data. 
Therefore, our data underestimated the mobility of O. sylvatica females and the resulting magnitude 
of the sex difference. In contrast, males did not climb above 2 m, and their movements were restricted 
to exceedingly small calling territories. It remains unknown if males explore larger areas over the long 
term, particularly when searching for new territories. Overall, O. sylvatica showed more restricted 
movements than the two species with predominantly male parental care. Several previous studies in 
poison frogs indicate that species with extended female care, which includes tadpole provisioning, 
show more restricted space use than closely related species with male uniparental care (Brown et al., 
2009; Donnelly, 1989; McVey et  al., 1981; Murasaki, 2010; Pašukonis et  al., 2019; Summers, 
1992). Our data confirm that sex and species differences in space use across poison frogs can be 
largely explained by species differences in the care-providing sex and the intensity of parental care.

Research on sex differences in space use has typically focused on differences in mating strategies. 
For example, male bias in larger home ranges is well documented in rodents, where polygamous 
species tend to have greater sex differences than monogamous species (reviewed in Clint et  al., 
2012; Jones et al., 2003). In lizards, a meta-analysis of home range size in 60 species found that 
males have larger home ranges than females, and suggested that this sex difference is related to the 
mating system and access to females (Perry and Garland, 2002). Our study shows that parental care 
can directly influence the space use of the caring sex resulting in sex differences in space use. Parental 
care has been hypothesized to reduce mobility in the caring sex because the research has focused 
on maternal care in lactating mammals (Barnett and McEwan, 1973; Sherry and Hampson, 1997; 
Trivers, 1972). In contrast, moving with the offspring or for offspring provisioning is taxonomically 
widespread in vertebrates and invertebrates (Choe and Crespi, 1997; Clutton-Brock, 1991; Royle 
et al., 2012) and can increase mobility in the caring sex, thereby shaping sex differences in space use 
patterns in taxonomically diverse groups.

Understanding sex differences in spatial behavior requires sampling at different spatial and 
temporal scales. The home range (where the animal spends most of the time) and the full movement 
extent (which includes less frequent excursions) showed the same pattern of sex and species differ-
ences. However, we observed fewer sex differences in the daily travel distances than in measures 
of the area extent used. For example, O. sylvatica males and females travel similar daily distances, 
but male movement is restricted to small territories. Females, in contrast, move over larger areas 
resulting in larger home ranges, which are used less intensely than male territories. Higher mobility 
in a restricted area, such as seen in territorial males of O. sylvatica, might implicate more fine-scale 
spatial knowledge, which our study does not test. On the other hand, a larger extent of the area used 
may implicate better-developed long-distance navigational skills, which were the target of our study. 
Sampling method and period also have a strong influence on the measured space use patterns. For 
example, sex difference in movement extent of D. tinctorius only became apparent when looking at 
the long-term capture–recapture data. Obtaining long-term movement patterns under natural condi-
tions is among the top future challenges to fully appreciate the sex- and species-specific selective 
pressures on animal movement and spatial abilities.

Species differ in navigational and movement strategy
All three species showed well-developed homing ability, which is consistent with previous studies in 
amphibians, including various anurans (Arcila-Pérez et al., 2020; Dole, 1968; McVey et al., 1981; 
Navarro-Salcedo et  al., 2021; Navarro-Salcedo et  al., 2022; Pašukonis et  al., 2014; Pašukonis 
et al., 2018; Pichler et al., 2017; Shaykevich et al., 2021; Sinsch, 1987; Sinsch, 1992) and caudates 
(Diego-Rasilla et al., 2005; Grant et al., 1968; Joly and Miaud, 1989; Phillips et al., 1995; Sinsch, 
2007; Twitty et al., 1964; reviewed in Ferguson, 1971; Sinsch, 2006; Wells, 2010). Despite limited 
movement capacity and sedentary lifestyle, many amphibians appear to share a general ability to 
navigate home after translocations from distances exceeding their routine movements (Sinsch, 1990; 
Sinsch, 2014). Moreover, the fact that species showing such tremendous variation in life history share 
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this capacity suggests that well-developed navigational abilities play a fundamental role in amphibian 
reproduction and survival. Like many other tropical anurans, poison frogs rely on moving between 
small and scattered water bodies for reproduction, which might have selected for particularly highly 
developed navigational abilities in this group.

The scale and strategy of navigation varied between species and were related to species differ-
ences in home range size and reproductive strategy. For example, O. sylvatica did not return from 
longer translocation distances, in line with their much smaller home ranges relative to A. femoralis and 
D. tinctorius. This apparent correlation between home range size and homing performance further 
supports the hypothesis that poison frogs rely on exploration and spatial learning for navigation 
(Pašukonis et al., 2014; Pašukonis et al., 2016; Pašukonis et al., 2018). Surprisingly, the distances 
from which poison frogs navigate back home exceed the extent of observed routine movements 
(Pašukonis et al., 2014; Pašukonis et al., 2018; this study) leaving many open questions about the 
possible cues learned and used for orientation. Since we did not scale the translocation distances in 
the navigation task to the home range size of each species, species with smaller home range, such as 
O. sylvatica, were translocated much longer distance in relation to their routine movements. Given 
the much smaller movement extent of O. sylvatica compared to the other two species, their behavior 
after the short distance translocation might be better compared to the long-distance translocation in 
the other two species.

While species differences must be interpreted with caution, our results indicate that naviga-
tional and movement strategies can differ strikingly even between closely related species (Figure 2, 
Figure 2—figure supplement 2). After translocation, A. femoralis tended to stay close to the release 
site for prolonged periods and then navigate back home via a direct path. Non-homing individuals 
moved very little and remained close to the release site. However, D. tinctorius showed wide-ranging 
exploratory movements and usually returned home through an indirect and lengthy route. Similarly, 
even though O. sylvatica returned home only from shorter distances, they also showed some wide-
ranging exploratory behavior that was never observed in A. femoralis. We hypothesize that some of 
these species differences could be linked to movement strategy differences selected under different 
predation pressure. D. tinctorius and O. sylvatica are brightly colored species that forage actively 
to acquire their alkaloid-based chemical defenses from the invertebrate diet (Santos et al., 2016; 
Santos and Cannatella, 2011). Aposematic coloration may reduce predation pressure and the cost of 
movement while potentially increasing exploration (Carvajal-Castro et al., 2021; Pough and Taigen, 
1990; Speed et al., 2010; Summers, 2019; Toft, 1981), allowing different navigational strategies. A. 
femoralis, on the other hand, is cryptically colored, non-toxic, and a generalist sit-and-wait forager. 
The only two predation events observed during tracking occurred in A. femoralis and we have regu-
larly observed predation and predation-related injuries during the long-term capture–recapture moni-
toring in A. femoralis, but not in D. tinctorius. Thus, the predation pressure is likely to be much higher 
and the movement more costly for cryptic species, potentially selecting more efficient orientation 
strategies. These differences between closely related species provide a remarkable system for future 
work on the selective pressures shaping the animal movement and navigational strategy.

Navigational performance provides no evidence for adaptive sex 
differences
The adaptive specialization hypothesis is the leading hypothesis to explain variation in home range size 
and spatial memory between species and sexes in mammals. It predicts that adaptive sex differences 
in navigational ability are linked to life-history traits. We found no evidence for adaptive sex differ-
ences in navigational ability in poison frogs. Contrary to our prediction, we found no sex difference in 
the navigational performance of D. tinctorius, a species with male uniparental care. Not only did males 
not outperform females, but females even showed slightly more accurate homing trajectories than 
males when navigating long distances. However, the lack of sex differences in the navigational perfor-
mance of D. tinctorius somewhat fits the limited sex differences in space use observed in this species. 
Crucially, although females of O. sylvatica have larger space use and perform tadpole transport and 
egg provisioning, we found no sex differences in the navigational performance. Previous research 
on amphibians has also shown patterns inconsistent with sex differences in spatial abilities being an 
adaptive trait linked to reproductive strategy. Place discrimination tasks have not revealed consistent 
sex differences in Engystomops pustulusos, a frog species where females seek for and move between 
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males (Liu and Burmeister, 2017; Ventura et al., 2019). Using translocation and recapture methods, 
one recent study in Andinobates bombetes, a poison frog with male uniparental care, found no sex 
differences in homing rates after translocation (Arcila-Pérez et al., 2020). Another recent recapture 
study in the glass frog Ikakogi tayrona, a species with prolonged maternal care and male territoriality, 
found that only males, but not females, showed homing after translocations (Navarro-Salcedo et al., 
2022). Together, our findings and the growing literature on amphibian navigation parallel findings in 
mammals, where males typically outperform females in spatial tasks or no sex differences are found.

The only species with marked sex differences in navigational performance was A. femoralis, where 
males were more likely to return home, returned from longer distances, and returned faster and more 
accurately than females. This finding is partially unexpected because A. femoralis females commute 
between males for reproduction (Fischer et al., 2020; Ringler et al., 2012) and remember the exact 
locations of their clutches (Ringler et al., 2016b). However, our task did not test for place learning 
but for large-scale navigation and our space-use data clearly show that males move over a larger 
extent than females in both the short and long term. As non-homing A. femoralis females typically 
stay stationary, it is difficult to disentangle the lack of motivation from their inability to return home. 
We expected that A. femoralis females would be motivated to return home because they show site 
fidelity (Fischer et al., 2020; Ringler et al., 2009; this study) and monitor the presence of their mating 
partners to eventually take over tadpole transport in case of male absence (Ringler et al., 2015b). 
Indeed, females returned, albeit slower from shorter translocation distances, indicating that they were 
motivated to return in a sufficiently familiar area. In addition, homing females showed less directed 
homing, suggesting a sex difference in orientation accuracy. However, males may be more motivated 
to return home quickly because they risk losing both their territory and all current offspring due to 
territorial takeovers and potential cannibalism by other males (Ringler et al., 2017). We believe that 
male A. femoralis likely have better navigational abilities than females, but the motivational state 
linked to each individual’s current reproductive or parental status may explain some of the sex and 
interindividual differences observed in homing performance.

Even though our data do not fit the generic predictions of the adaptive specialization hypothesis, it 
also do not rule it out. Interestingly, we found sex differences only in the non-toxic A. femoralis, which 
likely faces much higher predation pressure than the two aposematic species. It is possible that adap-
tive sex differences in navigational ability emerge only under strong predation pressure, explaining 
the lack of selective pressure and sex difference in aposematic O. sylvatica and D. tinctorius. Further-
more, our spatial task specifically tested for large-scale navigation. While there is clear evidence that 
poison frogs rely on learning for spatial orientation (Beck et al., 2017; Liu et al., 2016; Liu et al., 
2019; Pašukonis et al., 2014; Pašukonis et al., 2016; Pašukonis et al., 2019), the exact cognitive 
mechanisms remain unknown. It is possible that smaller scale spatial tasks specifically testing for place 
learning and recall (e.g., Liu et al., 2019) would reveal sex differences in specific spatiocognitive abili-
ties, which is particularly relevant for locating clutches and breeding pool in poison frogs (Beck et al., 
2017; Pašukonis et al., 2014; Ringler et al., 2016a; Stynoski, 2009). In human studies, naturalistic 
navigation tasks, such as pointing to a distant location, reveal fewer sex differences (Cashdan et al., 
2012; Jang et  al., 2019; Trumble et  al., 2016) than tasks testing specific spatiocognitive ability, 
such as three-dimensional rotation or object location memory (Silverman et al., 2007; Voyer et al., 
1995). Sex differences are also task specific in cowbirds (Astié et al., 1998; Astié et al., 2015; Lois-
Milevicich et  al., 2021) and cichlid fish (Wallace and Hofmann, 2021). Therefore, understanding 
the specific ecological context of each species is key to identify the spatiocognitive abilities poten-
tially under selection and formulating testable hypotheses. Naturalistic experiments targeting several 
cognitive abilities in poison frogs and other animals will be crucial to test the adaptive specialization 
and other alternative explanations.

Males explore more than females
Males are bolder and more explorative in several species and taxa (e.g., fish: Harris et al., 2010; King 
et al., 2013; bird: Schuett and Dall, 2009) and multiple adaptive hypotheses have been proposed 
to explain increased exploration (reviewed in Schuett et al., 2010; Trivers, 1972). Sex differences in 
exploration tendency could be connected to the sex-biased dispersal observed in different mating 
strategies, where male-biased dispersal is common in polygamous mammals while female-biased 
dispersal is common in monogamous birds (Greenwood, 1980; Li and Kokko, 2019; Mabry et al., 
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2013). However, in birds and mammals, sex, mating systems, and parental care are tightly linked, 
making it difficult to disentangle factors shaping sex differences in exploratory behavior. In the present 
study, males of all three species tended to be more explorative than females, particularly when trans-
located longer distances and, therefore, in less familiar environments. Even in O. sylvatica, a species 
where females perform parental care and have wider space use, males tended to be more explorative 
after translocations. Male-biased dispersal and higher male exploration rates have also been observed 
in some frogs without parental care (Engystomops pustulosus: Lampert et  al., 2003; Bufo bufo: 
Ogurtsov et al., 2018; Xenopus tropicalis: Videlier et al., 2015). Thus, regardless of parental care 
strategies, different life histories, and sex differences in home range size, male amphibians tend to be 
more exploratory, suggesting that other factors, such as male-biased dispersal and high intrasexual 
male competition may be associated with the sex difference in exploration.

Linking androgens to exploration and navigation
Androgens have been linked to spatial abilities in mammals for several decades (Dawson et al., 1975; 
Galea et al., 1995; Isgor and Sengelaub, 1998; Joseph et al., 1978; Schulz and Korz, 2010; Sherry 
and Hampson, 1997; Stewart et al., 1975; Williams et al., 1990). Clint et al., 2012 proposed that 
the often-observed male superiority in spatial navigation might be a side effect of sex difference in 
androgen levels rather than an adaptation to direct selective pressures on males’ spatial abilities. 
Our results are somewhat in line with this hypothesis as females did not outperform males when 
expected based on adaptive predictions. Additionally, although we did not observe a correlation 
between homing success and androgen levels, we found three associations between androgen levels 
and spatial behavior.

Higher baseline androgen levels predicted more exploration after translocation in D. tinctorius, 
and the amount of exploration during the navigation task was associated with an increase in androgen 
levels in A. femoralis. We also found that males, on average, had higher androgen levels and higher 
exploration rates despite the variation in the parental sex roles and high interindividual variation. 
Exploration underlies the development of most spatiocognitive abilities (McNaughton et al., 2006; 
O’keefe and Nadel, 1978), including spatial memory, presumably used by poison frogs for navigation 
(Beck et al., 2017; Liu et al., 2016; Liu et al., 2019; Pašukonis et al., 2014; Pašukonis et al., 2016; 
Pašukonis et  al., 2019). Therefore, the association of explorative behavior with androgen levels, 
especially during the development of spatial memory, might have cascading effects on sex differ-
ences in spatial behavior and abilities. Quantifying or manipulating androgen levels during ontogeny 
and learning, rather than during the spatial task performance, might provide a better understanding 
of the link between individual differences in the navigational performance observed in our study 
and androgen levels. We also found that baseline androgens correlated with homing accuracy in 
O. sylvatica in both sexes, further supporting a potential link between androgens and navigational 
performance. While experimental androgen manipulations are needed to understand the interplay 
between hormone levels and spatial behavior, some of our findings are in line with the androgen spill-
over hypothesis of sex differences in spatial cognition.

Conclusions
We found that parental behavior drives space use patterns but not navigational performance in poison 
frogs. Most observed sex differences indicated more developed navigational ability and increased 
exploratory tendency in males, even in species where females show wider-ranging movement for 
parental care and mate-seeking. Indeed, most previous literature on sex differences in vertebrate 
spatial abilities shows either no sex differences or better performance in males. We also found higher 
average androgen levels in males of all three species despite the marked species differences in 
parental sex roles and aggressive female behavior. However, there was a high interindividual variation 
in androgens and a large overlap between sexes. Some of this interindividual variation in androgen 
levels was related to individual differences in exploration and homing accuracy, suggesting an inter-
play between androgens and spatial behavior. Therefore, our findings are more consistent with the 
androgen spillover hypothesis than the widely accepted adaptive specialization hypothesis based on 
sex difference in home range size or the complexity of spatial behavior. We speculate that sex differ-
ences in spatial abilities could be a byproduct of selective pressures on sexual traits such as aggres-
siveness and the associated increase in androgen levels. However, the indirect effects of androgens, 
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such as increased male exploration tendency, are likely to be adaptive and maintained in the context 
of male territoriality and widespread male parental care in poison frogs.

Materials and methods
Study species
We studied three poison frog species with different life histories and parental sex roles: the Brilliant-
Thighed Poison Frog (A. femoralis [Boulenger 1884], Aromobatidae), the Dyeing Poison Frog (D. tinc-
torius [Cuvier 1797], Dendrobatidae), and the Diablito Poison Frog (O. sylvatica [Funkhouser 1956], 
Dendrobatidae). A. femoralis and D. tinctorius occur in syntopy in the Guiana Shield, but A. femoralis 
has a wider range across Amazonia (Grant et  al., 2006). O. sylvatica is endemic to the Chocoan 
Rainforest of the Pacific Coast of Ecuador and Colombia (Grant et al., 2006). All three species are 
diurnal, breed throughout the local rainy season, and shuttle tadpoles from terrestrial clutches in the 
leaf litter to aquatic tadpole nurseries (Grant et al., 2006; Silverstone, 1975; Silverstone, 1976). In 
A. femoralis, groups of up to ~20 tadpoles are predominantly transported by territorial males and 
deposited in terrestrial pools (Ringler et  al., 2013; Roithmair, 1992). Females take over tadpole 
transport when males disappear (Ringler et al., 2015b). In D. tinctorius, males transport one or two 
tadpoles at a time (but see Fischer and O’Connell, 2020; Rojas and Pašukonis, 2019 for reports of 
female transport) to terrestrial and arboreal pools (Fouilloux et al., 2021; Rojas, 2014; Rojas, 2015; 
Rojas and Pašukonis, 2019). After tadpole deposition into pools, no further parental care is provided 
in A. femoralis and D. tinctorius. In contrast, in O. sylvatica, females transport one or two tadpoles at 
a time and deposit them into water-filled plants (Silverstone, 1973; Summers, 1992; Zimmermann 
and Zimmermann, 1981). Tadpoles feed on unfertilized eggs, which the mother returns to provide 
every ~3–7 days (this study and personal observation by E. Tapia communicated to LAC). In all three 
species, males and females show site fidelity, but the levels of aggressiveness and territoriality vary. In 
A. femoralis and O. sylvatica, males vocally advertise and aggressively defend small territories, while 
females visit males for mating and show no aggressive behavior (Fischer et al., 2020; Ringler et al., 
2009; Roithmair, 1992; Silverstone, 1973; Summers, 1992; this study). In D. tinctorius, both males 
and females show intrasexual aggression as part of territoriality and/or mate guarding, but males do 
not vocally advertise (Born et al., 2010; Rojas and Pašukonis, 2019; this study).

Study sites
Data for A. femoralis and D. tinctorius were collected over five field seasons between 2016 and 2020 
in two different plots at the Nouragues Ecological Research Station (4°02′ N, 52°41′ W) in the Nature 
Reserve Les Nouragues, French Guiana. One plot consists of ~25 ha of lowland rainforest bordering 
the Arataï river where both A. femoralis and D. tinctorius naturally occur. The other plots consist of a 
5-ha island in the Arataï river where A. femoralis and D. tinctorius were absent, but an experimental 
population of A. femoralis was successfully introduced in 2012 (Ringler et  al., 2015a). The island 
population relies primarily on an array of artificial pools for breeding but otherwise lives under natural 
conditions (Ringler et al., 2018). Data for O. sylvatica were collected at two sites in Ecuador: Sapo-
parque La Florida (0°15′ S, 79°02′ W) in 2017 and Reserva Canandé (0°32′ N, 79°13′ W) in 2019. The 
La Florida study area (enclosure site hereafter) consisted of a free-ranging population of O. sylvatica 
introduced and kept in two forest enclosures of ~0.25 ha each inside their natural habitat. The natural 
breeding pools in the enclosures were supplemented by a high density of small artificial plastic pools 
and suitable plants. The Reserva Canandé study site (natural site hereafter) consisted of a natural O. 
sylvatica population, relying only on natural pools (water-filled plants). For summarized study site and 
different dataset information see Supplementary file 1 (Table 1i and j).

Frog tracking
We used two previously described tracking methods: harmonic direction-finding (HDF) with passive 
transponders for A. femoralis and O. sylvatica (for more details see Beck et al., 2017; Fischer et al., 
2020; Pašukonis et al., 2014) and radio-tracking with Very High Frequency (VHF) transmitters for the 
larger D. tinctorius (for more details see Pašukonis et al., 2018; Pašukonis et al., 2019). For HDF, we 
used a handheld transceiver (R8 and R9, Recco AB, Lindigö, Sweden) to detect miniature transpon-
ders (custom-made and commercial transponders R-30CL, Recco AB) attached to frogs with a silicone 
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waistband. The tags with waistbands weighed ~0.1 g and constituted ~5% of adult A. femoralis and 
O. sylvatica body weight. D. tinctorius were equipped with miniature VHF transmitters (BD2X, Holohil 
Systems Ltd, Carp, ON, Canada; NTQ2, Lotek Wireless, Newmarket, ON, Canada; PicoPip, Biotrack, 
Wareham, UK; V5, Telemetrie-Service Dessau, Dessau-Rosslau, Germany). Frogs were located using 
a portable radio-tracking receiver (Sika, Biotrack Ltd) and a flexible Yagi-antenna (Biotrack Ltd). The 
tags weighed 0.35–0.4 g and constituted 6–12% of adult D. tinctorius body weight. Frogs were shortly 
handled every few days to check the tag fit, and the tag was adjusted or removed as necessary. 
Antennas occasionally tangled and snagged on the vegetation, in which case we intervened to release 
the frog. Five out of 311 frogs died during the study: one due to experimenter error, one due to an 
antenna snagged on the vegetation, two due to predation, and one for unknown reasons. Some 
frogs (16%) experienced skin damage ranging from superficial abrasions to deep open wounds from 
attachment. The prevalence of wounds varied between species (A. femoralis 6%, O. sylvatica 18%, D. 
tinctorius 25%) and field seasons. Fast recovery of skin injuries was observed in the frogs that were 
recaptured after removing the tag.

We tagged and tracked 311 frogs, located each frog multiple times a day (see further below), and 
recorded its position and any observed behavior. To record the behavior, we tried to visually spot 
the frog with every recorded position, although this was not always possible due to dense habitat. 
In these cases, we narrowed the location to approximately 1 m. All study plots were mapped using 
precision compasses and laser distance meters, establishing a network of labeled reference points 
(for method details, see Ringler et al., 2016a). To map frog movements, we measured distance and 
direction from these reference points and recorded data on digital maps with the GIS software ArcPad 
10 (ESRI, Redlands, USA) on handheld devices (Vanquisher SV-86 rugged Windows tablet, Sinicvision 
Technology Co, Shenzhen, China; WinTab 9, Odys, Willich, Germany; MobileMapper10; SpectraPreci-
sion, Westminster, CO, USA). Occasionally, when frogs moved out of the mapped area, we recorded 
their location by averaging at least 30 GPS points with a GPS device MobileMapper 10. All data were 
collected as GIS spatial points with associated behavioral information, checked point-by-point at least 
twice, and corrected for errors such as wrong frog identities, duplicates, and impossible locations by 
one of the experimenters in GIS software QGIS (versions 2.14 and 3.18, ​QGIS.​org, 2022) and ArcMap 
(various versions, ESRI, Redlands, USA). All suspect points where frog identity or location could not be 
unambiguously confirmed and corrected were removed.

Quantification of space use
To quantify space use, we tagged 36 A. femoralis, 31 D. tinctorius, and 83 O. sylvatica, which we local-
ized 6682 times and tracked for periods ranging from <1 to 45 days per individual. A subset of these 
data was used in previous publications on female space use in A. femoralis (Fischer et al., 2020) and 
tadpole transport in D. tinctorius (Pašukonis et al., 2019). When a frog lost its tag, we attempted 
to recapture and retag the individual to continue tracking. Identity was confirmed based on unique 
dorsal or ventral coloration patterns. We excluded all frogs that were tracked for less than two full 
days (not including the tagging and tag removal/loss day) without any manipulation and handling (tag 
checks or retagging). We also removed short and temporally disconnected tracking periods when the 
frog was retagged. In the end, we had data to quantify the space use of 29 A. femoralis (17 females 
and 12 males) tracked from 5 to 16 days (median = 14 days) and 26 D. tinctorius (11 females and 15 
males) tracked for 3–45 days (median = 14 days). We tracked 29 O. sylvatica (14 females and 15 males) 
for 7–20 days (median = 10 days) within enclosures and an additional 37 O. sylvatica (20 females and 
17 males) for 2–8 days (median = 3 days) at the natural site.

The sampling rate (number of locations per day) varied for different datasets and tracking periods. 
Movements associated with specific behaviors of interest, such as the tadpole transport, were often 
sampled at a higher frequency. As the sampling rate influences the spatial parameters, we standard-
ized the data by downsampling all datasets to match the datasets with the lowest sampling rate (~4 
points per day). An experienced observer (AP) down sampled the data in a two-step procedure that 
allowed us to maintain the maximum spatial and behavioral information. We first counted the number 
of points per day and selected the days with more than 2 points above the daily average for the 
respective dataset. We then removed redundant points while trying to keep the most spatially and 
temporally distributed points, and points with rare behaviors, such as parental care and mating. In a 
second step, we automatically downsampled the remaining dataset to a minimum sampling interval of 
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60 min while retaining intermediate points for long (>20 m), fast movements, occurring within shorter 
than 60 min. The resulting dataset had 3–7 points per day per frog (median = 4).

To quantify the space use, we calculated the daily cumulative distance traveled (daily travel here-
after) for 84 frogs tracked for at least two full days. For 76 frogs tracked for a minimum of 7 days, 
we also quantified the maximum movement extent area (movement extent hereafter) as a minimum 
convex polygon (MCP) and the home range as 95% utilization density (UD) contour derived from 
kernel density estimation (KDE) using the ‘mcp’ and ‘kernelUD’ functions of the ‘adehabitatHR’ R 
package (Calenge, 2006). The smoothing parameter for the KDE was calculated with a conservative 
plug-in bandwidth selection method with the ‘hpi’ function of the ‘ks’ R package (Chacón and Duong, 
2018). Daily travel is a good proxy for the mobility of the animal, but it does not capture the range of 
the animal’s movement. Movement extent calculated as the MCP encompassing all tracked positions 
is a proxy for the size of the area explored by an animal including the rare excursions, but it tends to 
overestimate the size of the area familiar to the animal. The home range calculated as an area under 
95% UD is a proxy for the area fully familiar to an animal, but it excludes the areas where the animal 
spends little time, thus underestimating the full extent of a familiar area. For summary of space use 
variables see Supplementary file 1 (Table 1k, l).

To quantify the influence of parental and reproductive behaviors on movement, we grouped 
behaviors into three categories: parental and pool associated behavior (parental behavior hereafter), 
mating associated behavior (mating behavior hereafter), and ‘other’ when neither parental nor mating 
behavior was observed. Under parental behavior, we included direct observations of tadpole trans-
port and egg-feeding, as well as all points where the frogs were located within 1 m of known breeding 
pools. Males of O. sylvatica were sometimes observed next to breeding pools, but we did not 
consider that as parental behavior because parental care has not been reported in male O. sylvatica 
nor observed in this study. Under mating behavior, we included direct observations of courting and 
mating behaviors, as well as all points where the frogs were located within 1 m from an opposite-sex 
individual. We categorized each tracking day as ‘parental’, ‘mating’, or ‘other’ whenever the respec-
tive behavior was observed at least once on that day. On the days when both parental and mating 
behavior occurred (12 out of 84 parental behavior days), we categorized the day as ‘parental’ because 
parental movements were larger in scale. To evaluate the influence of behavior on movement, we then 
compared the distance traveled on ‘parental’, ‘mating’, and ‘other’ days.

Our tracking-based space use measures represent a snapshot of an animal’s long-term movement, 
and some species were tracked in experimental study plots confined by enclosure or water. Therefore, 
we further validated our tracking data described above with three supplementary datasets, including 
multiyear capture–recapture data in natural populations of A. femoralis and D. tinctorius (for more 
details on the capture–recapture method see Ringler et al., 2009) and a short-term tracking of O. 
sylvatica in a natural population. For A. femoralis and D. tinctorius, we compared the sex differences 
observed in the tracking data to a multiyear capture–recapture data collected at the same study site 
over 3 (2009–2011 for D. tinctorius, B. Rojas, M. Ringler, unpublished data) or 6 years (2014–2019 for 
A. femoralis, M. Ringler, E. Ringler, A. Pašukonis, unpublished data). For this analysis, we only included 
the individuals that were recaptured at least 30 days apart. For each of these recaptured individuals, 
we calculated the maximum linear distance between all recapture points. Maximum linear distance 
is correlated to the movement extent area calculated for tracked individuals, but it can be calculated 
from as few as two recaptures of an individual. We also calculated the maximum linear distance for 
each individual based on the tracking data. Contrary to the tracking data for A. femoralis, which was 
collected on an island with artificial pools, A. femoralis capture–recapture data were collected from 
a nearby natural population and thus served as additional validation for the effects of the island and 
artificial pools on the patterns of space use. For O. sylvatica, we checked if the sex differences seen 
in enclosures were consistent with short-term tracking (1–7 days, median = 3 days) of 37 O. sylvatica 
(17 females and 20 males) data collected at a natural population. For both datasets (enclosures and 
natural site), we measured the movement extent distance, as the maximum linear distance in meters 
between all locations of the same individual.

Quantification of navigational performance
To quantify the navigational performance, we initially tagged 78 A. femoralis, 83 D. tinctorius, and 52 
O. sylvatica (same O. sylvatica individuals as for space use quantification at a natural population). Out 
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of these frogs, we carried out translocations and measured homing for 64 A. femoralis (32 females and 
32 males), 67 D. tinctorius (35 females and 32 males), and 39 O. sylvatica (19 females and 20 males). 
Other frogs were not translocated because of dry weather conditions, lost tags, technical difficulties, 
and various other field constraints. Most frogs were tagged and tracked for at least 24 hr before trans-
location to establish site fidelity to the tagging areas. We presumed the tagging area to correspond to 
defended territories or core areas within the home range (collectively termed home areas hereafter). 
We further confirmed site fidelity by behavioral observations of calling, courtship, and repeated use 
of shelters. In a few instances, A. femoralis were translocated immediately after tagging because the 
territories were already known from a concurrent study (Rodríguez et al., 2020). We did not translo-
cate frogs transporting tadpoles or continuously moving away from the tagging site. The locations of 
each frog recorded in the home area before the translocation were used as reference points to estab-
lish the correct homeward direction and homing success. We translocated one male and one female 
from nearby home areas simultaneously and released them 50 or 200 m away from their respective 
home areas. Frog movements were then tracked for 4 or 6 days for 50 and 200 m translocation, 
respectively, or until the frogs returned within ~10 m from their home areas. Frogs that did not return 
home within the given time were captured and released back at their home areas. In a few instances, 
the frogs were tracked for longer than 4 or 6 days, but the trajectories were truncated for the analysis.

For translocation, each frog was captured and placed in an airtight and opaque container. We 
chose, measured, and located a release site on the digital map of the study area and carried the 
frogs to the release site. To disorient the frogs, the container was rotated multiple times and never 
carried in a straight line from the capture to the release site. All frogs were captured and released in 
the afternoon, and the translocation usually took between 30 and 90 min. We translocated one male 
and one female simultaneously from the same area toward the same direction and attempted to vary 
the translocation direction between pairs within the landscape constraints of the field site. Most frogs 
were released by placing the container on the ground for at least 5 min and then gently opening the 
lid allowing the frog to leave. In the case of A. femoralis tracked in 2017, frogs were removed from a 
bag by hand and placed under a flowerpot with an opening for an exit. If the frogs did not leave the 
pot within 30–60 min, we lifted the pot by hand. These periods of 30–60 min were not included in the 
analysis.

We directly observed and mapped the initial movements of each frog for at least 30 min after 
release. For this, we set up a radial grid with a 3-m radius at the release site, made of colored strings 
for visual reference, and mapped the frog movements at approximately 0.3-m precision on a tablet PC 
running a custom Python (version 2.7.3) script (‘Frogger Logger’ available on https://osf.io/3bpn6/) 
allowing us to record the frog position in relation to the visual reference grid. Following the direct 
observation, we attempted to locate the frogs approximately every 20–60  min, although longer 
sampling gaps occurred due to local terrain and weather constraints.

For summary of navigation variables see Supplementary file 1 (Table 1k, l). To measure the move-
ment strategy and the navigational performance, we quantified (1) homing success, (2) explored area, 
(3) homing trajectory straightness, (4) angular deviation from the home direction, and (5) homing dura-
tion. (1) We assumed that the frog is showing homing behavior (yes/no) if the frog approached at least 
70% of the distance from the release site to the home area center, defined as the geometric average 
of frog positions prior to translocation. (2) To estimate the explored area, we calculated the total area 
within 5 m around the movement trajectory. The value is based on a putative perceptual range of a 
frog being at least 5 m. (3) Trajectory straightness was calculated as the ratio between the straight-
line distance from the release site to the end of the homing trajectory and the cumulative distance of 
the actual homing trajectory. To calculate explored area and trajectory straightness, trajectories were 
downsampled to the minimum sampling interval of 15 min. Trajectory straightness measures are influ-
enced by the sampling rate, which was variable in our dataset. Therefore, we also quantified homing 
accuracy as an angular deviation from the home direction at fixed distance thresholds from the release 
site. The goal was to quantify the accuracy during the initial orientation near the release site, adjusted 
for translocation distance. (4) We measured the angular deviation from the home center direction at 
the first point where the frog first crossed a 10 ∓ 5 or 40 ∓ 20 m radius circle drawn around the release 
site for 50 and 200 m translocation, respectively. This corresponded to ~20% of the total translocation 
distance for each translocation distance. (5) The homing duration was calculated as the time from 
the release of the frog to the moment when the frog crossed a 10-m buffer drawn around the home 
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area polygon. Night-time (12 hr per night) was excluded from homing duration because none of the 
study species moves at night. Homing success, explored area, and angular deviation were calculated 
for all translocated frogs. Trajectory straightness and duration were only estimated for the frogs that 
successfully returned home. Trajectory straightness and angular deviation could not be estimated for 
some frogs due to missing data in the trajectory.

Quantification of androgen levels
For a subset of the frogs used in navigation experiments, we quantified androgen levels using non-
invasive water sampling, following the methodology described elsewhere (Baugh and Gray-Gaillard, 
2021; Rodríguez et al., 2022). Androgen levels were quantified once in the morning within 2 days 
before translocation (baseline hereafter) and again in the morning after the frogs returned home by 
themselves or were returned by the experimenter. We did not quantify androgen levels for the A. 
femoralis and D. tinctorius translocated in 2017. Each frog was placed in 40 ml of distilled water inside 
a small glass container with a dark cover for 60 min at the frog capture location and released imme-
diately after. The water sample was pushed through a C18 cartridge (SPE, Sep-Pak C18 Plus, 360 mg 
Sorbent, 55–105 μm particle size, #WAT020515, Waters Corp, Milford, MA, USA) with a 20-ml sterile 
syringe. Cartridges were immediately eluted with 4 ml of 98% EtOH into 5 ml glass vials and were 
stored at first at 4°C when in the field and then transferred to −20°C until analysis.

To estimate androgen concentration, we used a commercial enzymatic immunoassay for testos-
terone (ADI-900-065, RRID: AB_2848196, Enzo Life Sciences, Farmingdale, NY, USA). Before the 
ELISA, 1 or 2 ml of the original 4 ml sample was dried down with N2 at 37°C and resuspended with 
250 μl of the assay buffer (provided in the kit), and incubated overnight at 4°C. Samples were brought 
to room temperature and shaken at 500 rpm for 1 hr prior the assay. Samples were plated in dupli-
cate and assays were performed following the manufacturer’s protocol. Plates were read at 405 nm, 
with correction at 570  nm, using a microplate reader (Synergy H1, BioTek Instruments, Winooski, 
VT, USA) and the concentration of androgens was calculated using the software Gen5 (version 3.05, 
BioTek Instruments, Winooski, VT, USA). The lower and upper detection limit for the assay were 7.8 
and 2000 pg/ml and samples that fell out of this range were removed from the analysis. The cross-
reactivity of the testosterone antibody with other androgens is below 15% according to the manu-
facturer’s manual. Samples with the average intra-assay coefficient of variation (CV) above 15% were 
excluded from the analysis and the resulting average CV was 5.7%. The average inter-assay CV was 
7% for five out of nine assays and not available for the other four due to experimenter error. The final 
reported concentrations were adjusted for the sample volume taken (1 or 2 ml) and sample concen-
tration during drying-resuspending.

Weather variables
We measured the understory ambient temperature with temperature-data loggers (HOBO U23 Pro 
v2, Onset Computer Corp, Bourne, USA) placed ~30 cm above ground and recording temperature 
at 15 or 30 min intervals. Because our study species are exclusively diurnal, we calculated daytime 
temperature by averaging all measures from sunrise to sunset. At the O. sylvatica enclosure site, we 
manually measured temperature three times per day at the start, middle, and end of each tracking 
session with a handheld electronic thermometer (GFTH 95, GHM Messtechnik, Regenstauf, Germany) 
held slightly above the ground. We averaged the three measurements to obtain daytime tempera-
ture. We also calculated mean daytime temperatures for each frog during the navigation experiments 
by averaging daytime temperatures over the tracking period of each frog (also see Supplementary 
file 1, Table 1l). We did not use the rainfall data because they were strongly correlated with daytime 
temperature and missing for some tracking periods.

Data analyses
All statistics were generated in R Studio (version 1.0.153, RStudio Team, 2020) running R (version 
3.6.3, R Development Core Team, 2020). Space-use plots were generated in QGIS (version 2.14, ​
QGIS.​org, 2022), box plots, trajectory plots, and bar plots were generated in R with the ‘ggplot2’ 
package (Wickham, 2016), circular plots with the ‘circular’ package (Agostinelli and Lund, 2022), and 
model plots with the ‘sjPlot’ package (Lüdecke, 2021). Schematic representations and further editing 
were done with Adobe Illustrator (version 25.2.3, Adobe Inc, Mountain View, CA, USA), Inkscape 
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(version 1.0.2, Inkscape Project 2020), and Microsoft PowerPoint (version 16.54, Microsoft Corp, 
Redmont, WA, USA). All variables and statistical models are summarized in Supplementary file 1 
(Table 1k–m).

Space use
Spatial variables (daily travel, movement extent area, movement extent distance, home range, and 
explored area) approximately followed a log-normal distribution and thus we transformed the raw 
data using the natural logarithm to fit the model assumptions. Before all other analyses, we evaluated 
if tagging-related skin injuries affected frog mobility. We categorized the injuries into three categories 
of severity: no injury, superficial abrasion, and skin lesion. We then included injury as a categorical 
predictor in models of home range size, movement extent, and daily travel. Injuries had a significant 
effect on home range size and daily travel in A. femoralis, but not in D. tinctorius and O. sylvatica. 
Based on these results, we excluded A. femoralis (one male and one female) with skin lesions from 
space use analyses. The overall results of all models remained the same with and without injured frogs, 
but we report the conservative values after excluding the two injured frogs.

To investigate sex differences in movement extent and home range, we fitted two linear models 
(LMs) with movement extent and home range as responses in each model, respectively, and sex, 
species, and their interaction as predictors. As there was a strong interaction between species and 
sex for both models, we fitted a separate LM for each species with sex as the predictor. As move-
ment extent and home range often correlate with tracking duration, we included the number of days 
tracked as a covariate. To investigate the influence of behavior and sex on the daily movement, we 
fitted linear mixed-effects models (LMMs) with daily travel as the response variable using the ‘lmer’ 
function within the ‘lme4’ R package (Bates et al., 2015). We first fitted an LMM for each species 
with sex, behavior, and daytime temperature as fixed factors and frog identity and tracking date as 
random factors. We checked for a correlation between daily travel and number of points per day for 
each species (significant for D. tinctorius and O. sylvatica, but not for A. femoralis) and used number 
of points per day as a covariate in LMMs when the correlation was significant. For model selection we 
followed an information-theoretic approach (Burnham and Anderson, 2002) based on the Corrected 
Akaike’s Information Criterion (AICc). We calculated models with all combinations of fixed factors 
(behavior, sex, daytime temperature) while keeping random factors (id and date) and the covariate 
(number of points per day). We selected the best single model using the ‘​model.​sel’ function within 
the ‘MuMIn’ R package (Bartón and Barton, 2020). Because parental behaviors mostly occurred in 
one sex, we also analyzed the influence of behavior on movement for each sex separately. We fitted 
separate LMMs for each sex of each species with behavior as a fixed factor (two or three levels: 
parental, mating, and other as appropriate for each species and sex), and frog identity and tracking 
date as random factors. The daytime temperature was only included as a fixed factor if the best model 
based on AICc included temperature (it did for A. femoralis, but not for D. tinctorius and O. sylvatica). 
We used least-squares means contrasts to compare daily travel between behavioral categories. Post 
hoc comparisons were done with the ‘emmeans’ function within the emmeans R package (Lenth 
et al., 2022) with p values adjusted by Tukey’s method for multiple comparisons (Tukey, 1977). To 
compare the tracking-based space-use data for A. femoralis and D. tinctorius with long-term data, 
we fitted a separate LM for each species with capture–recapture-based movement extent distance 
as the response variable and sex and time period between recapture points as predictors. We also 
fitted a separate LM for each species with tracking-based movement extent distance as the response 
variable and sex as predictor. To validate the space-use data for O. sylvatica, we fitted a separate LM 
for natural site and enclosure data with movement extent distance as the response variable and sex 
and tracking duration as predictors. We also fitted an LMM for the natural site and enclosure data 
with daily travel as the response variable, sex as a fixed factor, and frog identity as a random factor.

Navigational performance
As species and frogs translocated to different distances showed qualitatively very different movement 
and homing patterns, we fitted separate models per species and per translocation distance. Before all 
other analyses, we evaluated if tagging-related skin injuries affected frog mobility following the proce-
dure described above. We included injury as a categorical predictor in models of explored area and 
homing duration. The injury had a significant effect in the model of explored area size in O. sylvatica 
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translocated 200 m. Based on these results, we excluded O. sylvatica (three males and three females) 
with skin lesions from navigation analyses. The overall results of all models remained the same with 
and without injured frogs, but we report the conservative values after excluding injured individuals.

To investigate sex differences in the homing success we fitted generalized linear models (GLMs) 
with binomial error distribution and Logit link function using the ‘glm’ function within R package 
stats (R Development Core Team, 2020). We used the homing success as a binary response variable 
with sex, frog weight (except for O. sylvatica), and the mean daytime temperature during the entire 
tracking period as predictors. To investigate sex differences in exploration, we fitted an LM with the 
natural log-transformed explored area as the response variable and sex, mean daytime temperature, 
and frog weight as predictors. To investigate sex differences in homing trajectory straightness we 
fitted a beta regression model for proportions via maximum likelihood using the ‘betareg’ function 
within the R package betareg (Cribari-Neto and Zeileis, 2010). We used straightness (ratio between 
0 and 1) as the response variable with sex and mean daytime temperature as predictors. We also eval-
uated if each group (males and females after 50 or 200 m translocation) were significantly orientated 
toward home at the measured thresholds with the Rayleigh test of circular uniformity with a specified 
mean home direction as an alternative hypothesis using the ‘​rayleigh.​test’ function within the ‘circular’ 
R package. We then compared the circular distributions of males and females for each species and 
translocation group with an MANOVA based on trigonometric functions (Landler et al., 2021) using 
the ‘manova’ functions within the ‘stats’ R package. To investigate sex difference in homing duration 
we fitted an LM with natural log-transformed homing duration as the response variable and sex, mean 
daytime temperature, and frog weight as predictors.

Androgen levels and navigation
To investigate the relationship between androgens, sex, and movement, we fitted a series of separate 
models for each species. We first fitted LMMs with log-transformed androgen levels as the response 
variable, sex, and time point (two levels: baseline or back home) as fixed factors, and frog identity as 
a random factor. For all three species, there was no interaction between sex and sampling time point, 
and the interaction factor was excluded. To investigate the relationship between baseline androgens 
and spatial behavior during navigation, we first fitted an LM for each species with the log-transformed 
explored area as the response variable and baseline androgen levels, sex, translocation distance, 
homing success, mean daytime temperature, and frog weight as predictors. For successfully homing 
frogs, we also fitted two GLMs (Gamma distribution, inverse link function) with trajectory straightness 
and homing duration as response variables and baseline androgen levels, sex, translocation distance, 
mean ambient temperature, and frog weight as predictors. To be able to evaluate the relative influ-
ence of different fixed factors on the response variables, we standardized all continuous predictors 
by centering and scaling using the ‘stdize’ function from the ‘MuMIn’ R package. We did not include 
sex for GLMs of trajectory straightness and homing duration of A. femoralis because androgen levels 
were available for only one homing female. If movement itself had an influence on androgen levels, 
we expected the amount of exploration to have a significant influence on androgen levels after the 
navigation task. Therefore, we calculated delta androgen levels by subtracting the baseline from the 
back home levels and fitted an LM with delta androgen levels as a response variable and the explored 
area, sex, tracking duration, homing success, mean daytime temperature, and frog weight as fixed 
factors. To reduce the number of covariates, for each model mentioned above, we compared the full 
models against a model without the mean temperature or the frog weight using the ‘drop1’ function 
of the stats R package. We removed mean temperature and frog weight from the final model if the 
model excluding these factors (separately) was not significantly different (p > 0.1).
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