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Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the
most devastating viruses for the global swine industry. Infection during late
gestation causes reproductive failure but the local immune response in utero
remains poorly understood. In this study, an experimental PRRSV-infection
model with two different PRRSV-1 field isolates was used to investigate the
immune cell phenotypes at the maternal-fetal interface during late gestation. In
addition, phenotypic changes induced by a modified live virus (MLV,
ReproCyc® PRRS EU) vaccine were studied. Vaccinated (n = 12) and non-
vaccinated pregnant gilts (n = 12) were challenged with either one of the
PRRSV-1 field isolates (low vs. high virulent, LV or HV) or sham-inoculated at
day 84 of gestation. Twenty-one days post infection all gilts were euthanized
and the fetal preservation status for all fetuses per litter was assessed.
Leukocytes from the maternal-fetal interface were isolated and PRRSV-
induced changes were investigated using ex vivo phenotyping by flow
cytometry. PRRSV load in tissue from the maternal endometrium (ME) and
fetal placenta (FP) was determined by RT-gPCR. In the ME, a vast increase in
CD8B T cells with CD8a”°°CD27™ early effector phenotype was found for
fetuses from the non-vaccinated LV and HV-challenged gilts, compared to
non-treated and vaccinated-only controls. HV-challenged fetuses also
showed significant increases of lymphocytes with effector phenotypes in the
FP, including NKp46P°* NK cells, CD8a™9" y§ T cells, as well as
CD80P°*CD27°°?™ CD4 and CD8 T cells. In vaccinated animals, this
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common activation of effector phenotypes was more confined and the fetal
preservation status significantly improved. Furthermore, a negative correlation
between the viral load and CD163"9"CD169"°* mononuclear phagocytic cells
was observed in the FP of HV-infected animals. These results suggest that the
strong expansion of effector lymphocytes in gilts that were only infected
causes immune-pathogenesis rather than protection. In contrast, the
attenuated MLV seems to dampen this effect, yet presumably induces
memory cells that limit reproductive failure. This work provides valuable
insights into changes of local immune cell phenotypes following PRRSV

vaccination and infection.
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1 Introduction

Porcine reproductive and respiratory syndrome virus
(PRRSV), belonging to the Arteriviridae family (1), is the
cause of PRRS which has a massive negative economic impact
on global swine industry (2-4). This enveloped, positive-
stranded RNA virus preferentially infects cells of the
monocytic lineage (1, 5); however, some dendritic cell
populations have also been shown to be permissive for viral
replication in vitro (6). PRRSV exists in two genetically distinct
species, Betaarterivirus suid 1 (PRRSV-1) and Betaarterivirus
suid 2 (PRRSV-2) (7-9). Between and within species, a high
degree of genetic diversity has been described (10, 11), which
might explain observed differences in virulence and severity of
clinical outcome (12, 13). A high mutation rate and genetic
recombination events contribute to PRRSV heterogeneity (11)
and inevitably have repercussions on vaccine efficacy and design.

Modified live virus (MLV) vaccines are widely used as a
preventive or therapeutic measure to mitigate clinical signs,
financial losses and transmission of the virus. These vaccines
are considered efficacious, especially when compared to killed
vaccines (14), but no clear correlates of protection have been
identified so far (5, 15). The PRRSV-specific antibody responses
that occur early after infection are non-neutralizing and do not
correlate with clinical protection (5, 15). Neutralizing antibodies
(NAbs) occur late (about four weeks post infection) and can
confer protection (5, 15). NAbs are mostly strain specific,
although heterologous NAbs have been identified (16, 17).
Interferon-y (IFN-y) producing T cells and NK cells are
considered to be involved in protection (5, 15, 18-21).
Furthermore, a recent study showed that local T cell responses
in the lung are already induced ten days post infection (dpi) and
seem to be linked to viral clearance (20).
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As to date, several molecules have been implicated as
potential receptors for PRRSV including: CD163, CD169 (also
known as sialoadhesin or siglec-1), non-muscle myosin heavy
chain 9, heparin sulfate, CD151, vimentin, and DC-SING
(CD209) (22). The cysteine-rich scavenger receptor CD163 is
considered as the main receptor for PRRSV internalization and
disassembly (5, 22) as pigs with a complete CD163 knock-out are
resistant to PRRSV infection (23). CD169 is considered as a co-
receptor which may assist in viral attachment/internalization but
is not a requirement to establish a PRRSV infection (5, 22).
Momentarily, CD163 and CD169 are the most extensively
studied. The potential role of the other mentioned co-
receptors in context of PRRSV is reviewed here (22).

The reproductive form of PRRS is associated with
transplacental infection of the fetuses and primarily occurs
during late gestation (24-26). This might be related to the
frequency of CD1697°° cells located at the maternal-fetal
interface (27). An epithelial bilayer sequesters the porcine
maternal-fetal interface and is considered as a tight,
impermeable barrier (28). The mechanisms responsible for
reproductive failure remain elusive, although several
hypotheses exist (26, 29-32). Currently, it is thought that post-
infection events at the maternal-fetal interface are the cause for
fetal deterioration and demise (33-36).

We recently described lymphocyte phenotypes that reside at
the maternal-fetal interface in healthy sows during late gestation
(37). More NKp46P* and NKP46"°® NK cells were identified in
the maternal endometrium (ME) and fetal placenta (FP),
compared to fetal spleens. In the FP, however, also NKp46™¢"
NK cells were found. CD4, CD8, and y8 T cells in the ME
predominantly exhibited differentiated effector phenotypes
whereas in the FP naive phenotypes prevailed. Investigations
concerning the PRRSV-mediated immune response at the
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maternal-fetal interface are limited. Following infection,
PRRSV-infected monocytes reach the endometrium via the
endometrial vessels (5, 26). Hereafter, the virus replicates in
CD163°°CD1697* macrophages and causes apoptosis of
infected cells and bystander cells (5, 26, 33). Ten dpi a higher
number of these virus susceptible cells are found in the ME and
FP of PRRSV-infected sows (33). Furthermore, an increase in
CD3™8CD80™ cells was also found in the ME of PRRSV-
infected animals through immunofluorescence staining (33).

Due to these limited findings, we investigated local changes
in immune cell phenotypes at the maternal-fetal interface in
response to two PRRSV-1 field isolates, using ex vivo
phenotyping by flow cytometry. With the same methodology,
we also investigated the influence of a PRRSV-1 MLV
(ReproCyc® PRRS EU) immunization prior to challenge
infection, which was previously shown to partially prevent
vertical transmission following heterologous PRRSV-1 AUT15-
33 infection (38).

2 Material and methods
2.1 Animals and experimental design

Twenty-four healthy crossbred (Landrace x Large White)
gilts were purchased from a specialized producer (PIC
Deutschland GmbH) and housed in a commercial Austrian
piglet-producing farm free of PRRSV, as confirmed by regular
serological monitoring. All gilts were vaccinated against porcine
parvovirus 1 in combination with Erysipelothrix rhusiopathiae,
swine influenza A virus, and porcine crcovirus type 2, as
previously described (38). Prior to insemination (142 and 114
days prior to infection) and during mid-gestation (31 days prior
to infection), twelve randomly selected gilts were vaccinated with
a PRRSV MLV vaccine (RaproCyc® PRRS EU, Boehringer
Ingelheim Vetmedica GmbH, Ingelheim am Rhein, Germany)
according to the instructions of the manufacturer. Vaccinated
and non-vaccinated gilts were housed separately but under

TABLE1 Overview six treatment groups.

Groups n

Vaccination PRRSV+

10.3389/fimmu.2022.1055048

identical housing conditions. At day 77/78 of gestation,
vaccinated and non-vaccinated gilts were relocated to a
biosafety level 2 unit of the University of Veterinary Medicine
Vienna on two consecutive days. All gilts were randomly
allocated into six groups: 1. non-vaccinated and non-infected,
No.Vac_No.Chall; 2. vaccinated and non-infected,
Vac_No.Chall; 3. non-vaccinated and infected with low
virulent (LV) strain, No.Vac_Chall_LV; 4. vaccinated and
infected with low virulent (LV) strain, Vac_Chall_LV; 5. non-
vaccinated and infected high virulent (HV) strain,
No.Vac_Chall HV; 6. vaccinated and infected with high
virulent (HV) strain, Vac_Chall HV (n = 4/group). Each
group was housed in individual rooms with isolated airspaces.
After one-week of acclimation, experimental infection was
performed as described previously (39). Eight gilts (4
vaccinated and 4 non-vaccinated) were inoculated intranasally
and intramusculardy (50% IN, 50% IM), with an infectious dose
of 3 x 10° TCIDsy, with either one of two different PRRSV-1 field
isolates (LV or HV) or sham-inoculated with cell culture
medium (DMEM, Thermo Fischer Scientific, Carlsbad, CA,
United States) at day 84 of gestation. An overview of the six
groups is given in Table 1. All experiments were approved by
institutional ethics and animal welfare committee (Vetmeduni
Vienna) and the national authority according to §$26ff. of
Animal Experiments Act, Tierversuchsgesetz 2012 - TVG
2012 (GZ 68.205/0142-WF/V/3b/2016).

2.2 Virus isolates for challenge

Two European PRRSV-1 field isolates with a documented
history of reproductive pathogenesis, as communicated by
veterinarians in the field, were used. The PRRSV-1 field
isolate 720789 (Genbank Accession number OP529852,
kindly provided by Christoph Keller, Boehringer Ingelheim
Vetmedica GmbH), further referred to as the ‘low virulent
strain (LV)’, was propagated in MARC-145 cells for seven
passages. The PRRSV-1 field isolate AUT15-33 (GenBank

Infection PRRSV+

No.Vac_No.Chall
Vac_No.Chall
No.Vac_Chall_LV
Vac_Chall LV
No.Vac_Chall_ HV
Vac_Chall HV

W R

3 doses Reprocyc® PRRS EU

3 doses Reprocyc® PRRS EU

3 doses Reprocyc® PRRS EU -

LV dog 84, 50% IN + 50% IM
LV dog 84, 50% IN + 50% IM
HV dog 84, 50% IN + 50% IM
HV dog 84, 50% IN + 50% IM

NoVac No.Chall, non-vaccinated and non-infected; Vac_No.Chall, vacdnated and non-infected; No.Vac_Chall LV, non-vacdnated and infected with low virulent (LV) strain;
Vac_Chall LV, vaccinated and infected with low virulent (LV) strain; No.Vac_Chall HV; non-vacdnated and infected high virulent (HV) strain; Vac_Chall_HV, vaccinated and infected

with high virulent (HV) strain.

LV, low virulent; HV, high virulent; dog, day of gestation; IN, i I; IM, i cular.

*2 Reprocyc® PRRS EU doses prior to insemination and 1 dose mid-gestation.
*PRRSV infection dose 3 x 10° TCQID,,
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Accession number MT000052), further referred to as the
‘high virulent strain (HV)’, was propagated for three
passages in porcine alveolar macrophages as described
before (9). Titers were determined on the respective cell
line (MARC-145, MA-104 derived African Green monkey
kidney cell line) or cells (porcine alveolar macrophages,
PAMs) used for propagation.

2.3 Euthanasia and sample collection

Approximately 21 dpi (21 * 2, gestation day 105 + 2), gilts
and their litters were anesthetized by intravenous injection of
Ketamine (N arketan® 100 mg/mL, Vetoquinol Osterreich
GmbH, Vienna Austria, 10 mg/kg body weight) and
Azaperone (Stresni® 40 mg/mL, Elanco GmbH, Cuxhaven,
Germany, 1.5 mg/kg body weight) and subsequently
euthanized via intracardial injection of T61® (Intervet
GesmbH, Vienna, Austria, 1 mL/10 kg body weight). To
retrieve samples, the abdomen of the gilts was opened, and the
uteri removed, placed into a trough, and rinsed with tap water to
remove maternal blood. The uteri were incised and opened at the
anti-mesometrial side. The position of each fetus, from the left
and right uterine horn, was recorded as previously described (38,
40). Fetal preservation status for each individual fetus was
assessed and categorized as viable (VIA), meconium-stained
(MEC), decomposed (DEC), and autolyzed (AUT) as
previously described (39). For investigations on immune cell
populations at the maternal-fetal interface, two fetuses per gilt
were randomly selected and removed with their umbilical cord,
placenta, and a portion of the uterus adjacent to the umbilical
stump. A 1 x 1 cm piece of the maternal-fetal interface, was
embedded in Tissue-Tek® O.C.T compound (Sakura Fintek,
Alphen aan den Rijn, The Netherlands) and immediately frozen
in liquid isopentane whilst placed on dry ice and stored at -80 °C
until further processing. The myometrium was trimmed off and
the maternal endometrium (ME) and fetal placenta (FP) were
mechanically separated with two forceps without contaminating
either side. Once separated, 40 g of ME and 60 g of FP were
collected in sterile collection cups (Greiner Bio-One,
Frickenhausen, Germany) filled with medium (RPMI-1640
with stable L-glutamine supplemented with 100 IU/mL
penicillin and 0.1 mg/mL streptomycin (PAN-Biotech,
Aidenbach, Germany)). In addition, tissue pieces from the ME
and FP for viral load quantification were snap-frozen in liquid
nitrogen and stored at -80 °C until further processing.

10.3389/fimmu.2022.1055048

2.4 Cell isolation

The procedure for the isolation of immune cells from the
porcine maternal-fetal interface has been described previously
(37). In brief, ME and FP tissues were cut into small pieces and
incubated in tissue digestion medium [RPMI-1640
supplemented with 2% (v/v) heat-inactivated fetal calf serum
(FCS; Sigma-Aldrich, Schnelldorf, Germany), 25 U/mL DNase
type I (Thermo Fischer Scientific), 300 U/mL Collagenase type I
(Thermo Fisher Scientific), 100 IU/mL penicillin (PAN-
Biotech), and 0.1 mg/mL streptomycin (PAN-Biotech)] for 1 h
at 37 °C and constant mixing. Remaining larger pieces of tissue
and dead cells were removed by draining the cell suspensions
through a coarse-meshed sieve and subsequent filtering through
a layer of cotton wool. Suspensions were centrifuged (350 x g, 10
minutes, 4°C), resuspended in 40% Percoll (13 mL, Thermo
Fisher Scientific), underlaid with 70% Percoll (13 mL, Thermo
Fisher Scientific), and subjected to density gradient
centrifugation (920 x g, 30 minutes, room temperature).
Isolated leukocytes were washed four times (phosphate-
buffered saline (PBS, 2x), RPMI-1640 + 5% FCS (1x), and
RPMI-1640 + 10% FCS (1x)) and immediately used for
immune phenotyping.

2.5 Viral load quantification via RT-qPCR

The extraction of PRRSV RNA from the ME and FP, and
quantification of the viral load in these tissues has been described
elsewhere (38). Briefly, tissues were homogenized in lysis buffer
(Q[Azol® lysis reagent, QIAGEN GmbH, Hilden, Germany)
with three stainless steel beads using a TissueLyser II instrument
(QIAGEN GmbH). The homogenates were centrifuged,
chloroform was added, and the tubes were vigorously vortexed
and subsequently spun (13 000 x g, 5 minutes) to ensure phase
separation. The aqueous phase was collected, and viral RNA was
obtained using the Cador Pathogen Kit (QIAGEN GmbH) in a
QiaCubeHT device (QIAGEN GmbH) following the
manufacturer’s instructions. An ORF7-specific reverse
transcription quantitative polymerase chain reaction (RT-
qPCR) for the LV and HV strain, primers and probes listed in
Table 2, was performed using the Luna Onestep RT PCR kit
(New England Biolabs GmbH, Frankfurt am Main, Germany).
The viral load, expressed as genome equivalents (GE), was
determined based on the serial dilution of SP6 transcripts,
specific to the PRRSV-1 isolates that were cloned into a

TABLE 2 Overview primers and probes used for PRRSV ORF7-specific RT-qPCR.

Forward primer (5°-3’)

Reverse primer (5°-3’)

Probe

LV TCAACTGTGCCAGTTGCTGG
HV TCAACTGTGCCAGTTGCTGG

TGCGGCTTCTCAGGCTTTTTC
TGRGGCTTCTCAGGCTTTTC

5'Fam-CCCAGCGCCAGCAAYCTAGGG Tamra-3'
5'Fam-CCCAGCGY CRRCARCCTAGGG Tamra-3'
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pGEM-T vector (pLS69, Promega GmbH, Walldorf, Germany)
and amplified. The cloned product was digested with DNasel
(New England Biolabs GmbH) and viral SP6 RNA was purified
with the RNeasy kit (QIAGEN GmbH). Hereafter, a Quantus
fluorometer and RNA-specific fluorescent dye (Promega) were
used to determine the RNA concentration. The RNA
concentration was multiplied with Avogadro’s number and
divided by the molecular mass of the PRRSV-1 specific SP6
transcripts to determine the absolute quantity of GE.

2.6 Flow cytometry staining and analysis

Mononudear immune cells (1.5 x 10° cells per isolation) from
ME and FP, were transferred into a 96-well round bottom
microtiter plate (Greiner Bio-One) and stained in a 5- or 6-step
procedure. An overview of the primary monoclonal antibodies
(mAbs) and secondary reagents used per panel is given in Table 3.
All incubation steps (20 minutes, 4°C) were followed by two washes
with cold PBS supplemented with 10% (v/v) porcine plasma (in-
house preparation) or as specified. Surface antigens were stained
with mAbs listed in Table 3 followed by incubation with secondary
reagents. Free antibody sites of the isotype-specific secondary
antibodies were blocked with 2 pg whole mouse IgG
(ChromPure, Jackson ImmunoResearch, West Grove, PA, United
States) and subsequently washed with PBS. Thereafter, a mixture of

directly conjugated primary mAbs, streptavidin conjugates, and the

TABLE 3 Antibodies and secondary reagents used for FCM staining.

10.3389/fimmu.2022.1055048

Fixable Viability Dye eFluor 780 (Thermo Fisher Scientific) was
applied. The BD Cytofix/Cytoperm kit (BD Biosciences, San Jose,
CA, USA) was used to fix and permeabilize the cells. This was
followed by a staining for intracellular antigens using directly
conjugated mAbs. All samples were measured on a FACSCanto
II flow cytometer (BD Biosciences) equipped with three lasers (405,
488, and 633 nm), and a minimum of 1 x 10° lymphocytes per
sample were recorded. Single-stained samples were prepared and
recorded for automatic calculation of compensation, using
FACSDiva software version 6.1.3 (BD Biosciences). The obtained
data was analyzed with FlowJo software version 10.8.1 (BD
Biosciences) and a consecutive gating strategy was applied
(Supplementary Figure 1). A time gate was applied and based on
the light scatter properties [forward scatter area (FSC-A) vs. side
scatter area (SSC-A)] lymphocytes were identified. A 2-step doublet
discrimination was performed and subsequently cells with high
auto fluorescent signal were excluded using a 530/30 nm bandpass
filter in the excitation line of the violet laser. Dead cells were
excluded by a high signal for the Fixable Viability dye eFluor 780.

2.7 Immunofluorescence
histology staining

Tissue from the maternal-fetal interface was sectioned using a
Leica CM1950 microtome (Leica Biosystems Nussloch GmbH,
Nussloch, Germany). Sections were loaded onto a slide, air-dried

Antigen Clone Isotype Source Labeling Fluorophore
Total mononuclear immune cells

CD45 K252.1E4 IgGl Bio-Rad Direct AlexaFluor647
Myeloid cells

CD169 3B11/11 IgGl1 Bio-Rad Indirect* AlexaFluor647
CcD14 Tiik4 IgG2a Bio-Rad Indirect® PE-Cy7
CD163 2A10/11 IgGl Bio-Rad Direct PE
CD172a 74-22-15A 1gG2b In-house Indirect™” BV421
NK cells

CD3 BB23-8E6-8C8 IgG2a BD biosciences Direct PerCP-Cy5.5
CD8u. 11/295/33 IgG2a In-house Indirect” BV421
CD172a 74-22-15 IgGl In-house Indirect® PE
NEp46 VIV-EM1 IgGl In-house Direct AlexaFluor647
CD16 G7 IgGl Bio-Rad Direct FITC
Band T cells

CD4 74-12-4 IgG2b BD biosciences Direct PerCP-Cy5.5
CD8a 76-2-11 IgG2a In-house Indirect® PE-Cy7
CD27 b30c7 IgGl In-house Direct AlexaFluor647
CD7%acy HM57 IgGl Thermo Fisher Scientific Direct PE
TCR-yd PPT16 IgG2b In-house Indirect” AlexaFluor488
CDsp PPT23 IgGl In-house Indirect” BV421

*Goat-anti-mouse anti-IgG1-AlexaFluor647, Thermo Fisher Scientific, B Goat-anti-mouse anti-IgG2a-PE-Cy7, Southern Biotech, ©Goat-anti-mouse anti-IgG2b-biotin, Southern Biotech,
PStreptavidin-BV421, Biolegend, EGoat-anti-mouse anti-IgG1-PE, Southern Biotech, FGoat-anti-mouse anti-IgG2b-AlexaFluord88, Jackson Immuno Research.
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at room temperature for 1 h, and fixed with methanol/acetone
(1:1) for 30 minutes at -20°C. Slides were blocked with PBS + 5%
goat serum (Vector Laboratories, Inc., Burlingame, CA, U.S.A.)
for 30 minutes at room temperature. Mouse anti-PRRSV-NP
mAb (IgG2a, clone P11/d72-cl, in-house, 1:2) was diluted in
PBS and applied overnight (4°C). Thereafter, secondary goat anti-
mouse IgG2a AlexaFluor488 (Thermo Fisher Scientific, 1:500) was
diluted in PBS and applied for 40 minutes at room temperature.
This was followed by a 2 h incubation with a rat anti-human/
mouse Cytokeratin 8 mAb (1:500; IgG2a, clone TROMA-1, Merck
KGaA, Darmstadt, Germany) and visualized by secondary goat-
anti-rat IgG (H+L) AlexaFluor647 (1:500; Thermo Fisher
Scientific), for 40 minutes, both at room temperature. After
each incubation step, slides were washed three times in PBS for
five minutes. Nuclei were stained with DAPI (Sigma Aldrich) for 3
minutes in the dark and the slides were washed twice with PBS,
Finally, slides were washed once with dH,O and covered with
mounting medium (Mowiol®4-88, Polysciences Europe GmbH,
Germany) and a cover glass. Tissue sections were scanned using
an Axioimager Z.1 microscope (Carl Zeiss Micro imaging GmbH,
Germany) equipped with TissueFAXS hardware and software
(TissueGnostics GmbH, Austria).

2.8 Statistics and graphical
representation

The frequencies of major immune cells lineages (NK, 5, B,
CD4 T, and CD8PB T cells), as a measure within viable
lymphocytes, were exported into Microsoft Excel (Office 2016,
Microsoft, Redmond, WA, United States) and corrected for
CD45 expression as previously described (37). Also,
frequencies of immune cell subsets and myeloid phenotypes
were exported into Microsoft Excel and imported into GraphPad
Prism version 9.2.0 (GraphPad Software Inc., San Diego, CA,
United States) for the graphical presentation highlighting
animal-to-animal variation. Statistical analysis was performed
with R version R v4.0.2 (41).

2.8.1 Viral load quantification via RT-qPCR

We analyzed log, transformed RT-qPCR measured viral
loads, after adding a constant of one to every observation in the
ME and FP tissue, via two separate univariate linear mixed
effects models applying function Imer in R package Imed v1.1-
27.1 (42) fitting a fixed categorical effect of treatment with the
four factor levels involving a challenge: No.Vac_Chall_LV,
Vac_Chall_LV, No.Vac_Chall_HV, and Vac_Chall_HV,
respectively. We further included a random intercept for gilt
with 16 factor levels (four gilts in each of the four treatment
groups) as we had measures from two fetuses per gilt. Option
REML was set to false to request maximum likelihood
estimation. We then calculated estimated marginal means for
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each challenge group using function emmeans in package
emmeans v1.7.5 Lenth (43) and requested hypothesis testing
for all pairwise contrasts between estimated marginal means of
treatment levels using option pairwise. Default multiple testing
correction for these pairwise contrasts was turned off (option
adjust = “none”). We performed a False Discovery Rate (FDR)
multiple testing correction (44) across all p-values for all
pairwise treatment contrasts across the two analyzed tissues.
The multiple testing load was 12 tests total (six group
comparisons x two tissues) and significance was declared at
10% FDR.

Results of the models are visualized via bar plots of estimated
marginal means on a log, transformed level using packages
RColorBrewer v1.1-2 (45), ggplot2 v3.3.5 (46), and ggpubr v0.4.0
(47) in which the fitted model is shown as the height of the bar
plot. The black dots and whiskers represent upper and lower
95% confidence intervals of estimated marginal means. P-value
brackets display contrasts significant at 10% FDR. Figures were
exported as scalable vector graphics using package svglite
v2.0.0 (48).

2.8.2 Viral load and CD163"9"CD169P°*
phenotypes

To investigate the relationships between viral loads and
CD163"%"CD169"* phenotypes in both the ME and FP tissue,
we produced scatterplots and calculated Spearman correlation
coefficients on log,, transformed viral loads and log,,
transformed CD163""CD1697°* phenotypes separately for
each challenged group (No.Vac_Chall_LV, Vac_Chall_LV,
No.Vac_Chall HV, and Vac_Chall HV), after adding a
constant of 1 to every observation for both the viral load and
cell type data. P-values in these plots were not corrected for
multiple testing. Plots were produced using packages
RColorBrewer v1.1-2 (45), ggplot2 v3.3.5 (46), and exported in
svg format using package svglite v2.0.0 (48).

2.8.3 Immune cells

Our data comprised two different types of measurements.
Frequencies of major immune cell lineages (e.g. total NK,
total y8 T, total B, total CD4, and total CD8B T cells),
phenotypes of the myeloid lineage (e.g. CD14P*CD172a"8,
CD14P*CD163"#*CD169**, and CD14"#CD163"¢"CD169°**
cells), which were investigated in separate samples (Table 3) and
frequencies of immune cell subsets as compositional data,
derived from a single sample. Compositional data (CoDa)
were transformed into log-ratios, to get rid of the constant
sum constraint, allowing standard uni- and multivariate model
employment for hypothesis testing (49).

For compositions of two components, which are perfectly
negatively correlated (correlation coefficient of -1), and with
components of the same effect sizes but with opposing signs (in
our study CD8a"°®''™ ys. CD8a"'8" y§ T cells and
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CD14P*CD172a% vs. CD14™8CD172aP* cells), we chose the
former in each composition due to its higher discriminative
power after log;, transformation during hypothesis testing.
Immune cell subsets representing compositions of three
components included NK cells (i.e. NKp46-defined subsets:
NKp46™¢, NKp46°*, and NKp46™#"), CD4 T cells (i.e. CD80/
CD27-defined subsets: CD80."**CD277*, CD80/"*CD27", and
CD80P*°CD27"8), and CD8 T cells (i.e. CD80/CD27-defined
subsets: CD8aP°*CD27"'#", CD8wP°*CD27"°%, and
CD80P*°CD27"°¢). Each composition was subjected to
centered log ratio (dr) transformation using function clr in
package compositions v2.0-4 (50, 51) after turning them into a
package specific class of type Aitchison compositions using
function acomp. Clr transformed data was then reformatted
into “long data format” applying functions from package dplyr
v1.0.7 (52).

We then analyzed every measured immune cell type
individually, either log;, transformed after adding a constant of
one to every observation or dr transformed for the compositional
data, fitting univariate linear mixed models applying function Inmer
in R package Ime4 v1.1-27.1 (42) changing the optimizer to
“nloptwrap” with 100,000 iterations and setting option REML to
false to perform maximum likelihood estimation to yield the most
accurate estimates for the fixed effects part of the model. The fixed
effects part of our models contained a main effect of treatment with
six factor levels (No.Vac_No.Chall, Vac_No.Chall,
No.Vac_Chall_LV, Vac_Chall_LV, No.Vac_Chall_HV,
Vac_Chall HV), a fixed effect of tissue type with levels ME and
FP, and the interaction between treatment and tissue type. We
further fitted a random intercept effect of day of experiment (six
levels) to reduce any potential technical noise in our data. A random
intercept of gilt (24 levels) was added to account for the covariance
structure in our data (each gilt had measures of two fetuses each
measured in the two tissues). As each level of random intercept of
gilt had two observations per tissue, we added a dummy coded,
centered, random slope for tissue as recommended by Barr et al.
(53). Variance homogeneity of the residuals, normal distribution of
residuals, fitted random intercepts, and slopes were verified with
custom R scripts.

We then calculated estimated marginal means for all
treatment levels for both tissues and tested for all pairwise
differences (option pairwise~treatment|tissue) between
treatment levels within tissue with function emmeans in
package emmeansvl.7.5 (43). Default multiple testing
correction for these pairwise contrasts was turned off (option
adjust = “none”). We then selected pairwise biological contrasts
of interest, excluding the contrasts “Vac_Chall_LV wvs.
No.Vac_Chall_HV” and “No.Vac_Chall_LV wvs.
Vac_Chall_ HV”, and collected all p-values for all contrasts of
interest, measured in all cell types for both tissues before
applying a False Discovery Rate (FDR) multiple testing
correction (44). Multiple testing correction was performed
across all major immune cell lineages, myeloid phenotypes,
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and separately across all immune cell subsets. The multiple
testing load was 234 tests total (13 group comparisons x nine
phenotypes x two tissues). Significance was declared at 10%
FDR. Modelling results were visualized with bar plots as
described for viral load (in section 2.8.1).

2.8.4 Graphical representation
All figures were assembled using Inkscape software version
1.1.1 (URL https://inkscape.org/)

3 Results

3.1 Viral load at the maternal-fetal
interface and fetal preservation

The viral load in tissues from the maternal-fetal interface was
determined using RT-qPCR for PRRSV ORF7, with primers
specific for the LV or the HV strain. Since no viral RNA for any
strain could be detected in the ME and FP from gilts in the
No.Vac_No.Chall and the Vac_No.Chall group (data not shown)
only the challenged groups (No.Vac_Chall LV, Vac_Chall LV,
No.Vac_Chall_ HV, and Vac_Chall_HV) are displayed in
Figure 1. Our analysis revealed that the emmeans for the viral
load were significantly higher for the No.Vac_Chall HV group as
compared to the No.Vac_Chall LV, Vac_Chall LV, and
Vac_Chall_HV group within ME and FP, respectively
(Figures 1A, B). Of note, at the maternal-fetal interface from
fetuses originating from Vac_Chall_LV gilts no viral RNA could
be detected (Supplementary Figure 2). For Vac_Chall HV gilts,
viral RNA could be detected in the ME from a few fetuses from two
different litters (gilts 15 and 16) and for gilt 15 in affected fetuses the
virus was transmitted to the FP (Supplementary Figure 2),
highlighting vertical transmission. Furthermore, there was a
substantial negative impact on the fetal preservation status in the
No.Vac_Chall HV gilts (Supplementary Figure 2). Only 56% of
these fetuses were designated as viable whereas in the other groups
the vast majority (>90%) of fetuses were viable (data for the
No.Vac_No.Chall and Vac_No.Chall group not shown). A clear
difference in impact on the fetal preservation status between the two
PRRSV-1 field isolates (LV and HV) was observed and
demonstrated a divergence in virulence.

3.2 CD172aP** cells at the maternal-fetal
interface and their correlation with viral
load

Since PRRSV infects cells of the myeloid lineage, we sought to
investigate their phenotype at the maternal-fetal interface.
Following FCM staining, myeloid cells at the maternal-fetal
interface were identified based on their CD172a expression and
were subsequently divided into CD14°* and CD14™® subsets
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(Figures 2A, B). No significant differences were observed for the
CD14P* cells within total CD172a"* cells in the ME whereas a
significant decrease was observed in the FP of No.Vac_Chall HV
group as compared to No.Vac_No.Chall group (Figure 2C, top
panel). In addition, a high degree of variation between individual
fetuses, especially within the ME, was identified (Figure 2C,
bottom panel, scatterplots). Both CD14-defined subsets were
further analyzed for their co-expression of CD163 and CD169,
both molecules involved in viral entry, and CD163"¢"CD1697**
mononuclear phagocytes (MPCs) were identified (Figures 2A, B).
The abundance of these CD163™#'CD169°° MPC phenotypes in
the respective CD14-defined populations in ME was rather low
(Figures 2A, D left) and no differences in emmeans for either
macrophage phenotypes was observed between the six groups
(Figure 2D left, top panel). A high abundance of
CD163"#"CD1697* phenotypes within CD14** and CD14"8

10.3389/fimmu.2022.1055048

CD172aP** cells was found in the FP, especially in the
No.Vac_No.Chall and the Vac_No.Chall groups (Figures 2B, D
right, bottom panel). A significant drop for CD163"¢"CD1697**
cells within CD14P* CD172a”* MPCs was seen in the FP of
fetuses from the No.Vac_Chall_HV as compared to the
No.Vac_No.Chall, Vac_No.Chall, and No.Vac_Chall_LV groups
(Figures 2B, D right, top panel). For CD163"¢"CD169°* cells
within CD14"® MPCs in the FP a similar drop was observed for
the No.Vac_Chall HV as compared to the No.Vac_No.Chall
group (Figures 2B, D right, top panel). These significant
contrasts for both MPC subsets in the FP (Figure 2D right)
prompted us to investigate a correlation with viral load. For
this purpose, a spearman correlation was performed
for all challenged groups and both anatomic locations
(Figure 2E). A strong negative correlation (R = -0.76, p = 0.03)
between both MPC phenotypes and the viral load was revealed
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FIGURE 1

Viral RNA at the maternal-fetal interface of infected and vaccinated-infected gilts. Porcine reproductive and respiratory syndrome virus (PRRSV)
RNA was extracted from tissue from the maternal endometrium (ME) and fetal placenta (FP). The viral load within the respective tissues was
determined using an ORF7 PRRSV-1 field isolate specific RT-gPCR. PRRSV RNA was not detected in tissue samples from the No.Vac_No.Chall
and Vac_No.Chall group and are therefore not shown. A linear mixed effects model fitting a fixed categorical effect (treatment) and random
intercept for gilt (16 levels) was applied for the ME and FP separately. Results for the viral load are summarized in bar plots for the ME (A) and FP
(B). The y-axes show the estimated marginal means ([emmeans) of the viral load ([genome equivalents/g tissue) on a log,, scale, after adding a
constant of + 1, for the four different treatment groups. Only significant p-values (p < 0.1) corrected for multiple testing, using a false discovery
rate approach, across all pairwise comparisons of contrasts, across both tissues, are shown above the brackets. The whiskers depict the 95%
confidence intervals of the emmeans. Depicted treatment groups: No.Vac_Chall_LV (dark purple, non-vaccinated and infected low virulent
strain), Vac_Chall_LV (light purple, vaccinated and infected low virulent strain), No.Vac_Chall_HV (dark red, non-vaccinated and infected high
virulent strain), and Vac_Chall_HV (light red, vaccinated and infected high virulent strain).
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FIGURE 2

Mononuclear phagocytes at the maternal-fetal interface and their correlation to viral load. (A, B) A time gate was applied and mononuclear
phagocytes (MPCs) were gated based on their SSC-A (side scatter area) versus FSC-A (forward scatter area) characteristics and following a
consecutive gating strategy was applied to exclude doublets, cells with high autofluorescence, and dead cells (Supplementary Figure 1). MPCs were
further analyzed for their expression of CD172a and subsequently sub-gated for CD14P?5CD172aP°* and CD14™*9CD172a"" MPCs. The two CD14-
defined MPC populations were further analyzed for their co-expression of CD163 and CD169. For both CD14-defined MPCs a CD163"9"CD169P°%
subset was identified at the maternal fetal interface. Representative pseudocolor plots from the matemal endometrium (ME) in (A) and fetal placenta
(FP) in (B) from a No.Vac_No.Chall fetus are shown. (C) A linear mixed effects model considering the fixed effects of treatment, tissue, and the
interaction between both was applied. A random intercept (gilt) was fitted and estimated marginal means (emmeans) were calculated. Results for
total CD14P°* MPCs within the ME (left) and FP (right) are presented as bar plots on top. On the y-axes the estimated marginal means (emmeans) for
CD14P>* MPCs on a logq scale, after adding a constant of + 1, are depicted. The graphs below depict the frequency of CD14P™ MPCs within total
CD172aP* cells for the individual fetuses within each treatment group in the ME (left) and FP (right). (D) A linear mixed effects model considering the
fixed effects of treatment, tissue, and the interaction between both was applied. A random intercept (gilt) was fitted and estimated marginal means
{emmeans) were calculated. Results for CD163™"CD169P°° MPCs within CD147°° and CD14"™ cells within the ME (left) and FP (right) are shown.
The y-axes in the bar plots (on top) represent the emmeans of the CD163""CD169P°* MPCs within CD14-defined subsets on a logyg + 1 scale. The
frequencies of the CD163M"CD169P% MPCs within CD14-defined subsets for the individual fetuses and anatomic locations are given in the graphs
below. For all bar plots only significant p-values (p < 0.1), corrected for multiple testing using a false discovery rate approach across all 234 pairwise
comparisons of contrasts, are shown above the brackets. The whiskers depict the 95% confidence intervals of the emmeans. For all graphs showing
the frequencies of a specific cell subset, results for the fetuses from one gilt are represented by different symbols. The black bars in the graphs
display the mean within the respective treatment group within the specified anatomic location. (E) Spearman correlation coefficients were
estimated, to investigate the relationship between log,q transformed CD163M9"CD169P°% CD14-defined MPCs and log, transformed viral load, for
all challenged groups and both anatomic locations. Results for the spearman correlation in the ME are shown on the left and FP on the right The
correlation coefficients (R) and p-values (p < 0.1) not corrected for multiple testing are depicted. For all bar plots, graphs, and scatterplots the
depicted treatment groups are: No.Vac_No.Chall (dark green, non-vaccinated and non-infected), Vac_No.Chall (light green, vaccinated and non-
infected), No.Vac_Chall_LV (dark purple, non-vaccinated and infected low virulent strain), Vac_Chall_LV (light purple, vaccinated and infected low
virulent strain), No.Vac_Chall_HV (dark red, non-vaccinated and infected high virulent strain), and Vac_Chall_HV (light red, vaccinated and infected
high virulent strain).

Frontiers in Immunology 09 frontiersin.org


https://doi.org/10.3389/fimmu.2022.1055048
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Stas et al.

inthe FP from No.Vac_Chall_HV fetuses. Furthermore,
virus infected cells, as identified with a monodonal antibody
targeting PRRSV-NP, were predominantly detected in the FP
(Supplementary Figure 3).

3.3 Major lymphocyte subsets at the
maternal-fetal interface in response to
an infection with PRRSV

Next to MPCs, major lymphocyte subsets were investigated
by flow cytometry and the applied gating strategy is illustrated in
Supplementary Figure 1. A CD3"8CD80**CD16P**CD172a"®
phenotype was used to identify NK cells. During steady state
conditions (No.Vac_No.Chall), total NK cells were present in
similar frequencies within total lymphocytes in both the ME and
FP (Figure 3, Scatter plots). With regards to PRRSV-mediated
changes, no significant contrasts were detected in the ME,
possibly due to the high degree of animal-to-animal variation.
Significant higher emmeans for total NK cells could be observed
in the FP from No.Vac_Chall HV fetuses. Significant contrasts
for the FP were found between No.Vac_Chall_ HV vs
No.Vac_No.Chall, No.Vac_Chall HV vs Vac_No.Chall, and
No.Vac_Chall_ HV vs Vac_Chall HV (Figure 3B). Porcine Y3
T cells at the maternal-fetal interface were identified with a
monoclonal antibody targeting a T-cell receptor yd-specific
CD3e chain (clone PPT16) (54). Emmeans for the total ¥ T
cells in the ME were lower for both non-vaccinated challenged
groups (No.Vac_Chall_LV and No.Vac_Chall_HV) as
compared to the No.Vac_No.Chall group. Furthermore, the
vaccination seemed to have prevented this loss in total 0 T
cells in the Vac_Chall_HV group. These differences in emmeans
were also visible in the scatterplots showing the percentages of Yo
T cells within lymphocytes (Figure 3A). Total Y8 T cells were
significantly reduced in the FP of fetuses from the
No.Vac_Chall_HV group as compared to No.Vac_No.Chall,
Vac_No.Chall, and vaccinated counterpart (Vac_Chall_HV)
(Figure 3B). Total B cells at the maternal-fetal interface were
identified using the pan-B cell marker CD79c.. For this
phenotype, no PRRSV-associated changes were observed
neither in the ME nor in the FP (Figure 3). CD4 and CD8 T
cells, were characterized by gating on total CD4 and total CD8J
expressing T cells (Supplementary Figure 1). No significant
PRRSV-induced contrasts for both T cell phenotypes in the
ME could be identified by our statistical model. However, for the
total CD8P T cells a high degree of animal-to-animal variation
was observed for most groups except for the Vac_Chall HV
group. A significant reduction in total CD4 T cells could be
observed in the FP from the No.Vac_Chall HV group as
compared to the No.Vac_No.Chall and Vac_No.Chall groups.
For CD8P T cells, we only observed a significant increase in the
No.Vac_Chall_LV group in comparison to the
No.Vac_No.Chall group (Figure 3B).
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3.4 NKp46-defined NK cell phenotypes

Total CD3"**CD80"*CD16P**CD172a"™*® NK cells in the FP
were further investigated for their expression of NKp46. Three
NK cell subsets, NKp46™8, NKpd6P°, and NKp46™'# were
identified. Representative pseudocolor plots for one fetus from
the No.Vac_No.Chall and No.Vac_Chall_HV group are shown
in Figure 4A. Considering that the relative frequencies of the
three NKp46-defined NK cell subsets are interdependent, a
univariate CoDa was performed. Therefore, to correct for this
interdependence our data was transformed to centered log ratios
(clr). The output of our model, showed a significant increase in
NK cells with a NKp46P® phenotype in the No.Vac_Chall HV
as compared to the Vac_No.Chall group (Figure 4B). For the
other two NKp46-defined NK cell phenotypes, no significant
changes were observed. When considering the raw frequency
data, however, a visual reduction in the NKp46™& NK cells in the
FP from the No.Vac_Chall_ HV group could be observed.
Notably, considerable variation between individual fetuses was
observed. Data on NKp46-defined NK cell phenotypes in the ME
are not shown, since no significant changes were observed.

3.5 CD8o-defined y3 T cell phenotypes

Total 8 T cells were analyzed for their expression of CD80.
which enabled us to identify a CD80"¥¥™ and CD8as"
expressing subset in the ME and FP. Representative
pseudocolor plots for the two investigated anatomic locations
are shown in Figures 5A, B. CD80."'8" expressing y8 T cells were
the main phenotype in the ME (Figure 5A) whereas the
CD80™¥4™ expressing Y8 T cells were more abundant in the
FP (Figure 5B). For the statistical analysis, only y8 T cells with a
CD80"¥4™ phenotype were included since the effect size of the
CD80"&" y3 T cells is dependent on the CD80t™#™ phenotype.
In the ME no significant difference was found for the CD80"¥
dim henotype (Figure 5A). Nonetheless, a significant reduction
for this phenotype and thus an increase in CD80™&" y§ T was
observed in the FP of fetuses from the No.Vac_Chall_ HV group
as compared to the No.Vac_No.Chall, Vac_No.Chall, and
No.Vac_Chall_LV group (Figure 5B).

3.6 The activation and differentiation
state of porcine CD4 T cells

Total CD4 T cells at the maternal-fetal interface were
investigated for their expression of CD8c and CD27 (Figure 6).
This enabled us to delineate three subsets with a CD8o"®CD277*
naive, CD80"*CD27"** early effector or central memory (Tem),
and CD80P**CD27" late effector or effector memory phenotype
(Tem) (Figures 6A, B), representative pseudocolor plots are
shown). Since the three CD80/CD27-defined CD4 T cell subsets
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FIGURE 3

Major lymphocyte subsets at the maternal-fetal interface. Following the applied consecutive gating strategy (Supplementary Figure 1) NK cells,
¥d T cells, B cells, CD4 T cells, and CD8B T cells were identified in the ME (A) and FP (B). A linear mixed effects model considering the fixed
effects of treatment, tissue, and the interaction between both was applied. A random intercept (gilt) was fitted and estimated marginal means
(emmeans) were calculated. The bar plots (top panel; (A) ME; (B) FP) depict the results for the obtained major lymphocyte subsets across all
treatment groups and are presented as emmeans of each subset on alog;y + 1 scale as depicted on the y-axes. Only significant p-values (p <
0.1), corrected for multiple testing using a false discovery rate approach, across all 234 pairwise comparisons of contrasts, are shown above the
brackets. The whiskers depict the 95% confidence intervals of the emmeans. Frequencies of the major lymphocyte subsets, within viable
lymphocytes corrected for CD45 expression, are given (bottom panel; (A) ME; (B) FP). For all graphs, results for each individual fetus are shown
and different symbols indicate fetuses from different gilts. The black bars in the graphs display the mean within the respective treatment group
within the specified anatomic location. For all bar plots and graphs shown, the depicted treatment groups are: NoVac_No.Chall (dark green,
non-vaccinated and non-infected), Vac_No.Chall (light green, vaccinated and non-infected), No.Vac_Chall_LV (dark purple, non-vaccinated and
infected low virulent strain), Vac_Chall_LV (light purple, vaccinated and infected low virulent strain), No.Vac_Chall_HV (dark red, non-vaccinated
and infected high virulent strain), and Vac_Chall_HV (light red, vaccinated and infected high virulent strain).
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NKp46-defined NK cell subsets in the fetal placenta. (A) CD3™?CD8uP**CD16P**CD172a™* NK cells in the fetal placenta (FP) were investigated
for their expression of NKp46. Three NK cell subsets were identified: NKp46™%, NKp46P°%, and NKp46™" (from left to right). Representative
pseudocolor plots for the FP from a No.Vac_No.Chall and No.Vac_Chall_HV fetus are shown. (B) Univariate compositional data analysis was
performed for the three NKp46-defined NK cell subsets. Results are represented in the bar charts (top panel). The y-axes depict the estimated
marginal means (emmeans) of the centered log ratios (clr) transformed NKp46™=2, NKp46P™, and NKp46™2" NK cell subsets (from left to right).
Only significant p-values (p < 0.1), corrected for multiple testing using a false discovery rate approach, across all pairwise comparisons of
contrasts for all (nine) compositional cell subsets and both tissues, are shown above the brackets. The whiskers depict the 95% confidence
intervals of the clr-transformed data. The graphs in the bottom panel show the frequencies of the three NKp46-defined subsets within total NK
cells. For all graphs, results for each individual fetus are shown and different symbols indicate fetuses from different gilts. The black bars in the
graphs display the mean within the respective treatment group. For all bar plots and graphs shown, the depicted treatment groups are:
NoVac_No.Chall (dark green, non-vaccinated and non-infected), Vac_No.Chall (light green, vaccinated and non-infected), No.Vac_Chall_LV
(dark purple, non-vaccinated and infected low virulent strain), Vac_Chall_LV (light purple, vaccinated and infected low virulent strain),
NoVac_Chall_HV (dark red, non-vaccinated and infected high virulent strain), and Vac_Chall_HV (light red, vaccinated and infected high virulent
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are interdependent on each other, the components of the
compositions were dr transformed before hypothesis testing to
deal with the constant sum constraints. No significant changes in
the CD80/CD27-defined CD4 T cell subsets were observed in the
ME (Figure 6A). In the FP, however, a significant decrease in
CD80.™8CD27"* naive CD4 T cells and a concurrent increase in
CD8uf’*CD277°° Tcm cells was observed in the
No.Vac_Chall_ HV group as compared to the No.Vac_No.Chall,
Vac_No.Chall, and No.Vac_Chall_LV group (Figure 6B). Of note,
the five FP tissues with the highest CD80"**CD27"** percentages
tested PRRSV positive in this tissue (fetuses G22 L7, G22 R10, G23
L5, G23 R11, and G24 L2, Supplementary Figure 2) and showed a
reduced number of CD163™"CD1697* MPCs (Figure 2D).
Furthermore, the significant loss in CD80(*®CD27°* naive CD4
T cells was also observed as compared to the Vac_Chall HV.
However, in this case the increase in CD80*CD27°* Tcm cells
in the No.Vac_Chall HV compared to the Vac_Chall HV was

not significant.
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3.7 CD8B T cell phenotypes

As CD8 T cells are major effector cells in many viral infections,
we sought to investigate their phenotype at the maternal-fetal
interface. Therefore, the expression of CD8c. and CD27 on the
identified CD8B T cells was evaluated. CD8B T cells with a
CD8aP*CD27P%, CD80P**CD27%"™, and CD8aP**CD27°8
phenotype were identified (Figures 7A, B, representative
pseudocolor plots are shown) and represent CD8P T cells with a
naive, early effector, and late effector phenotype, respectively (55,
56). The interdependency between the three CD8B T cell
phenotypes was corrected for with CoDa. Several significant
contrasts were identified in both investigated anatomic
compartments. In the ME a significant loss of CD8B T cells with
a CD80P**CD27P* naive phenotype and an accompanying increase
of CD80P®CD27"™ early effector phenotype was observed from
No.Vac_Chall HV fetuses as compared to the No.Vac_No.Chall
and Vac_No.Chall group (Figure 7A). A similar increase of
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bar plots and graphs shown, the depicted treatment groups are: No.Vac_No.Chall (dark green, non-vaccinated and non-infected), Vac_No.Chall
(light green, vaccinated and non-infected), No.Vac_Chall_LV (dark purple, non-vaccinated and infected low virulent strain), Vac_Chall_LV (light
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FIGURE 6
CDBa and CD27 expression of CD4 T cells at the maternal-fetal interface. (A, B) Total CD4 T cells were investigated for their expression of CDBa
and CD27. CDBu™9CD277 (representing naive), CDBuP*CD27P"* (representing early effectors or central memory, Tcm), and CDBaP*=CD27™9
(representing late effectors of effector memory, Tem) cells were identified. Representative pseudocolor plots for the (A) maternal endometrium (ME)
and the (B) fetal placenta (FP) from a No.Vac_No.Chall fetus are shown. Univariate compositional data analysis was performed for the three CD8a/
CD27-defined CD4 T cell subsets. Results are represented in the bar charts (top panel; (A) ME; (B) FP). The y-axes depict the estimated marginal
means (emmeans) of the centered log ratios (clr) for the specified CD4 T cell subset Only significant p-values (p < 0.1), corrected for multiple
testing using a false discovery rate approach, across all pairwise comparisons of contrasts for all (nine) compositional cell subsets and both tissues,
are shown above the brackets. The whiskers depict the 95% confidence intervals of the clr-transformed data. The graphs in the bottom panel
(A) ME; (B) FP) show the frequencies of the CD8u/CD27-defined CD4 T cell subsets within total CD4 T cells. For all graphs, results for each
individual fetus are shown and different symbols indicate fetuses from different gilts. The black bars in the graphs display the mean within the
respective treatment group. For all bar plots and graphs shown, the depicted treatment groups are: No.Vac_No.Chall (dark green, non-vaccinated
and non-infected), Vac_No.Chall (light green, vaccinated and non-infected), No.Vac_Chall_LV (dark purple, non-vaccinated and infected low
virulent strain), Vac_Chall_LV (light purple, vaccinated and infected low virulent strain), No.Vac_Chall_HV (dark red, non-vaccinated and infected
high virulent strain), and Vac_Chall_HV (light red, vaccinated and infected high virulent strain).
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CD80P*CD27%™ early effector CD8B T cells was observed for the
ME from No.Vac_Chall_LV group as compared to the
No.Vac_No.Chall and Vac_No.Chall groups (Figure 7A). In
addition, significant contrasts for CD8p T cells with a
CD8aP*CD27"™ early effector phenotype were observed between
the non-vaccinated challenged groups, No.Vac_Chall HV and
No.Vac_Chall LV, and their vaccinated counterparts,
Vac_Chall_HV and Vac_Chall_LV, respectively (Figure 7A).
Furthermore, a significant but limited increase in CD8P T cells
with a CD80P™CD27%™ early effector phenotype was cbserved in
the Vac_Chall HV and Vac_Chall_LV groups as compared to the
No.Vac_No.Chall and Vac_No.Chall groups (Figure 7A). In the FP,
a significant loss of CD80P*CD27"* naive CD8P T cells in the
No.Vac_Chall_HV group as compared to the Vac_No.Chall group
concurred with a strong increase in CD8B T cells with a
CD80P*CD27%™ early effector phenotype (Figure 7B). Also for
No.Vac_Chall_LV group a significant increase of CD8P T cells with
a CD80P*CD27%™ early effector phenotype was observed
(Figure 7B). Similarly to the ME, significant contrasts in the FP
were observed between the non-vaccinated challenged groups,
No.Vac_Chall HV and No.Vac_Chall_LV, and their vaccinated
counterparts, Vac_Chall HV and Vac_Chall LV, respectively
(Figure 7B). Compared to the other investigated lymphocyte
subsets, CD80PCD27%™ early effector CD8B T cells showed the
strongest response to infection with the two PRRSV-1 strains.

4 Discussion and conclusions

Research on PRRSV-specific immune responses in utero is
sparse. By using our previously established method of ME and
FP separation (37), we were able to provide an in-depth
characterization of the mononuclear immune cells at the
maternal-fetal interface following experimental infection
and vaccination.

In this study, two PRRSV-1 field isolates were used,
designated in hindsight as LV and HV. Initially, we did not
expect to see a difference in terms of reproductive failure, as both
PRRSV-1 field isolates caused severe clinical signs in affected
farms (9), as communicated by veterinarians in the field.
However, viral loads measured in the ME and FP for the LV
strain were significantly lower as compared to the HV strain for
non-vaccinated animals (Figure 1). Furthermore, for the LV
infected gilts viral transmission from the ME to the FP was only
observed in five fetuses. In addition, only two fetuses from LV
infected gilts had an impaired fetal preservation status whereas
in the HV infected gilts the fetal preservation was affected in
many (n=30) fetuses (Supplementary Figure 2). An obvious
explanation for these observed differences might be the in
vitro passaging of the LV strain on MARC-145 cells (MA-104
derived African Green monkey kidney cell line), whereas the HV
strain was passaged on porcine alveolar macrophages. It has
been shown that PRRSV loses its virulence due to adaptation to
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MARC-145 cells in vitro resulting in an attenuated phenotype in
vivo (57). Furthermore, PRRS MLV can be generated by in vitro
passaging leading to attenuation (58, 59). The LV strain has a
99.76% sequence homology to the PRRSV field isolate IVI-1173
(Genbank Accession number KX622783.1) that caused a PRRSV
outbreak in Switzerland (2012) (60). Although not planned at
the outset, these differences in virulence allowed valuable
insights into the response of the investigated immune cell
phenotypes, as outlined above, and discussed in the following.

In our reproductive gilt model, the PRRSV-1 based MLV
(ReproCyc® PRRS EU) completely or partially prevented
reproductive signs following heterologous challenge with the
LV PRRSV-1 field isolate and HV PRRSV-1 field isolate,
respectively. Nevertheless, for gilts from the Vac_Chall HV
group viral transmission to the FP only occurred in one out of
four litters. For the viral load, in the ME and FP, no significant
difference could be found between the No.Vac_Chall_LV and
the Vac_Chall LV groups (Figure 1). However, when
considering the fetal preservation status and viral load of each
given individual fetus it becomes apparent that no viral RNA
could be detected at the maternal-fetal interface from
Vac_Chall_LV gilts (Supplementary Figure 2). This is due to
the fact that all observations for viral load in the Vac_Chall_LV
gilts were zero resulting in the absence of variation in this group.
In the Vac_Chall_HV group the viralload in the ME and FP was
significantly lower as compared to the non-vaccinated
counterpart. Furthermore, the fetal preservation status
substantially improved when the gilts were vaccinated prior
PRRSV infection (Supplementary Figure 2).

We focused mainly on immune cell phenotypes in utero.
Humoral-mediated effector mechanisms were not investigated
but could also have contributed to the protective effects of the
MLV. Following a similar vaccination scheme, PRRSV-specific
antibodies were readily detected in the serum of vaccinated gilts
after two MLV doses, which did not drastically change after a
third dose (38). Combining the three dose MLV with the
experimental infection with a PRRSV-1 field isolate
significantly increased the antibody response in these gilts
(38). In addition, serum transfer experiments in gestating
females have shown that vertical transmission can be
prevented by PRRSV-specific Nabs (61). Therefore, it is
conceivable that PRRSV-specific antibodies, as detected in the
serum, could be locally active in utero in the Vac_Chall_HV and
Vac_Chall_LV group, and contribute to the protective effect of
the vaccine.

As cells from the myeloid lineage are the primary targets for
the virus; we characterized them using CD14, CD163, CD169
and CD172a. In the ME, CD172a"* cells with a CD14°* and
CD14"® phenotype were identified; however, the frequency of
CD163"8"CD1697° MPCs was rather low as compared to the
FP (Figures 2C, D). Similarly, other researchers evaluated the
presence of CD163P* and CD169"* cells at the maternal-fetal
interface and reported that they were significantly enriched in
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FIGURE 7

CD8a and CD27 expression of CD8B T cells at the maternal-fetal interface (A, B) Total CD8p T cells were investigated for their expression of
CD8a and CD27. CD8B T cells with a CD8P*CD277%, CD8¢”**CD27%™, and CD8aP*CD27™2 phenotype were identified and presumably
represent naive, early effector, and late effector CD8 T cells, respectively. Representative pseudocolor plots for the (A) maternal endometrium
(ME) and the (B) fetal placenta (FP) from a No.Vac_No.Chall fetus are shown. Representative pseudocolor plots for the (A) ME and the (B) FP
from a No.Vac_No.Chall fetus are shown. Univariate compositional data analysis was performed for the three CDBua/CD27-defined CDBB T cell
subsets. Results are represented in the bar charts (top panel; (A) ME; (B) FP). The y-axes depict the estimated marginal means (emmeans) of the
centered log ratios (clr) transformed specified CD8P T cell subset. Only significant p-values (p < 0.1), corrected for multiple testing using a false
discovery rate approach, across all pairwise comparisons of contrasts for all (nine) compositional cell subsets and both tissues, are shown above
the brackets. The whiskers depict the 95% confidence intervals of the clr-transformed data. The graphs in the bottom panel (A) ME; (B) FP) show
the frequencies of the CD8a/CD27-defined subsets within total CD8B T cells. For all graphs, results for each individual fetus are shown and
different symbols indicate fetuses from different gilts. The black bars in the graphs display the mean within the respective treatment group. For
all bar plots and graphs shown, the depicted treatment groups are: No.Vac_No.Chall (dark green, non-vaccinated and non-infected),
Vac_No.Chall (light green, vaccinated and non-infected), No.Vac_Chall_LV (dark purple, non-vaccinated and infected low virulent strain),
Vac_Chall_LV (light purple, vaccinated and infected low virulent strain), No.Vac_Chall_HV (dark red, non-vaccinated and infected high virulent
strain), and Vac_Chall_HV (light red, vaccinated and infected high virulent strain).
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the FP during steady state and even 21 dpi with PRRSV-2 (31).
In our study, the MPCs identified in the ME did not seem to be
affected by the vaccination or infection since no significant
differences were found. In contrast, in the ME of PRRSV-2
infected gilts an increase of CD163°* and CD1697** cells was
found 21 dpi (31). In addition, another study demonstrated the
increase in CD1697 cells in both the ME and FP from PRRSV -1
inoculated sows as compared to controls at 10 dpi whereas the
CD163* cell count was not altered (33). They also showed a
decrease in CD14%° cells in the FP of PRRSV-infected animals
(33), this decrease is in line with the outcome of our study
(Figure 2D). Furthermore, we observed a significant loss in
CD163"8"CD1697°° MPCs in the FP of the No.Vac_Chall HV
group, which was inversely associated to the viral load
(Figure 2E). The latter would be in line with the inverse
relationship between placental CD163"° cells and viral load in
the fetal thymus (31). It has been shown that PRRSV induces
apoptosis of PRRSV-infected cells, expressing CD163, and
bystander apoptosis of virus-negative cells (34). Therefore, our
data suggests that viral replication in the FP accounts for the
observed loss of CD163"#CD169°* MPCs. The discrepancies
observed as compared to the other studies, might be explained
by the different methodologies used. So far, most investigations
utilized immunofluorescence microscopy, which is limited in the
number of cellular markers that can be investigated
simultaneously. Flow cytometry enabled us to incdude multiple
parameters for the characterization of the immune cells,
although, at the cost of the spatial information in the tissue.
Furthermore, our data indicates that there is a high degree of
MPC heterogeneity at the maternal-fetal interface, which
illustrates a need for more sophisticated phenotypical,
transcriptional, and functional analyses in the context of PRRSV.

NK cells form a first line of defense in many viral infections
(62). Previous work has shown that an increase of CD3"®CD80u™®
NK cells in the ME of PRRSV-infected pregnant gilts can be
observed 10 dpi (33). In the current study, however, we did not
observe any increase of CD3™®CD80f*CD16°*CD172a™® NK
cells in the ME 21 dpi (Figure 3A). A plausible explanation for
that might be that between 10 and 21 dpi a shift from innate to
adaptive responses may have occurred. Furthermore, we also
considered the expression of the activating receptor NKp46 (63)
and found an increase of NKp46P™ NK cells in the FP from
No.Vac_Chall HV fetuses (Figure 4B). This increase coincided
with a drop in NKp46™® NK cells, which could either be
explained by the reacquisition of NKp46 on these cells or the
influx of more NKp46°® cells. In vitro experiments have
demonstrated that NKp46 expression can be induced on sorted
NKp46™® NK cells following cytokine stimulation (63). For
NKp46P* NK cells in blood and spleen, it has been shown that
their capacity to produce cytokines and cytolytic activity is higher
compared to NKp46™8 NK cells (64). NKp46™€" expressing NK
cells are considered to be superior in context of cytokine production
and cytolytic activity (64), but recent data suggests that NKp46
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downregulation occurs during porcine NK cell differentiation
(Schmuckenschlager et al.,, manuscript in preparation). In
addition, we have also demonstrated that all NK cells at the
maternal-fetal interface contain perforin (37). Therefore, it seems
likely that the NK cells in the FP are combatting the virus. Further
investigations are needed to prove this hypothesis.

The exact role of 18 T cells in context of PRRSV infection is not
fully understood. In this study, total 8 T cells were significantly
lower at the maternal-fetal interface of No.Vac_Chall_ HV fetuses as
compared to the Vac_Chall HV and No.Vac_No.Chall fetuses
(Figure 3). Moreover, in the FP of No.Vac_Chall HV fetuses,
there was a significant change towards a dominance of CD8o®"
Y8 T cells at the expense of the CD80"¥4™ y§ T cells (Figure 5B).
Based on our previous data, where CD8ot expression was mainly
associated with a CD2P* phenotype (37), we presume that the
CD80™¢" and CD8a:"¥¥™ 4§ T dlosely correspond to a CD2P** and
CD2"% phenotype, respectively. Distinct cytokine production
profiles have been associated with the two ¥8 T cell subsets (65).
A CD2P* phenotype is associated with a higher capacity to produce
IFN-y (65), and exclusively expresses perforin (66). The latter was
also demonstrated for CD2P* 48 T cells at the maternal-fetal
interface (37). This suggests that the identified increase in
CD80™#" ¥§ T cells in the FP might have exhibited inflammatory
and potentially cytotoxic functions in No.Vac_Chall_HV fetuses.

CD4 T cells can promote the B cell and CD8 T cell function in
context of antiviral immunity (67). In the current study, the
CD80/CD27-expression pattern was used to assess
CD80P*CD27"* early effector or central memory (Tcm) and
CD80P**CD27"*# late effector or effector memory phenotype at the
maternal-fetal interface. A clear increase in CD4 T cells with an
early effector phenotype was observed for No.Vac_Chall HV
fetuses, and coincided with a drop of CD80"®CD27"* naive
CD4T cells (Figure 6). It seems that this increase in early effector T
cells is a response to HV PRRSV infection. However, further
functional characteristics and PRRSV-specificity of CD4 T cells
need to be characterized. CD8 T cells are important components
of the adaptive immune system responsible for the elimination of
virus-infected cells. CD8B-expressing T cells with a putative
CD80P**CD27%™ early effector phenotype were the main
responders at the maternal-fetal interface of No.Vac_Chall HV
and No.Vac_Chall_LV fetuses (Figure 7). Furthermore, our
previous work has shown that CD8B T cells with an early
effector phenotype readily express perforin (37), which is
indicative of a cytotoxic potential. Overall, research addressing
local CD8 T cell responses is limited. Previously, it has been shown
that peripheral blood CD8 T cells, isolated 21 dpi, readily
proliferate upon restimulation in vitro (68). However their
capacity to kill PRRSV-infected macrophages only occurred 49
dpi (68). Recent work has shown that CD8 T cells might play a
pivotal role at the site of infection, particularly in lung and
brochoalveolar lavage (20, 69). Future work is needed to address
the PRRSV-specific CD8 T cell responses and their functional
capacity in utero.
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Hence, the results of our study indicate that the HV PRRSV-
1 field isolate causes an influx of early effector phenotypes at the
maternal-fetal interface, including NKp46°°* NK cells, CD80/" "
18 T cells, as well as CD8P**CD27°°** CD4 and CD8 T cells.
We postulate that this substantial increase in effector phenotypes
is an indicator of local tissue damage potentially resulting in
focal detachment of the placenta and consequently fetal demise.
Of note, in the ME of vaccinated gilts (e.g Vac_Chall LV and
Vac_Chall_HV), this increase of CD4 and CD8 early effector T
cell phenotypes compared to No.Vac_No.Chall and
Vac_No.Chall groups was more contained. This may suggest
that the challenge infection lead to a re-activation of pre-existing
memory T cells, induced by the MLV vaccine, that was “just
about right” to control viral replication yet avoided an excessive
inflammatory response. However, depending on the PRRSV
field strain and response to vaccination, in some gilts/sows the
local response might not be sufficient to prevent vertical
transmission (as observed in gilt #15, Supplementary Figure 2).

In condlusion, using flow cytometry, we have shown that
PRRSV induces changes in immune cell phenotypes that reside at
the maternal-fetal interface. Our study suggests that the local
activation of effector phenotypes in response to high-virulent
PRRSV strains might cause immune-pathogenesis, as the result of
local inflammation, apoptosis and bystander apoptosis, causing
focal detachment of the maternal-fetal interface, contributing to
reproductive failure. In addition, our data indicates that vaccination
by MLVs may limit such local immune activation with potentially
beneficial or detrimental consequences. However, functional aspects
of the addressed immune cell phenotypes need further
investigation, as it is assumed that PRRSV utilizes various
immune modulatory mechanisms (5, 70-72).
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