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Abstract: Oxidative stress and ROS are important players in the pathogenesis of numerous diseases.
In addition to directly altering proteins, ROS also affects lipids with negative intrinsic curvature
such as phosphatidylethanolamine (PE), producing PE adducts and lysolipids. The formation of
PE adducts potentiates the protonophoric activity of mitochondrial uncoupling proteins, but the
molecular mechanism remains unclear. Here, we linked the ROS-mediated change in lipid shape to
the mechanical properties of the membrane and the function of uncoupling protein 1 (UCP1) and
adenine nucleotide translocase 1 (ANT1). We show that the increase in the protonophoric activity
of both proteins occurs due to the decrease in bending modulus in lipid bilayers in the presence of
lysophosphatidylcholines (OPC and MPC) and PE adducts. Moreover, MD simulations showed that
modified PEs and lysolipids change the lateral pressure profile of the membrane in the same direction
and by the similar amplitude, indicating that modified PEs act as lipids with positive intrinsic curvature.
Both results indicate that oxidative stress decreases stored curvature elastic stress (SCES) in the lipid
bilayer membrane. We demonstrated that UCP1 and ANT1 sense SCES and proposed a novel regulatory
mechanism for the function of these proteins. The new findings should draw the attention of the
scientific community to this important and unexplored area of redox biochemistry.

Keywords: lipid shape; bending moduli; lateral pressure profile; reactive aldehydes; mitochondrial
membrane protein; lipid–protein interaction; stored curvature elastic stress; protonophoric function

1. Introduction

Lipid heterogeneity, observed between the membranes of cells and cell organelles, as
well as between membrane leaflets and subdomains, is essential for proper cell function-
ing [1–5]. The most abundant lipids in cell membranes are phospholipids. Variations in
their structure lead to different shapes, which is related to their basic property, intrinsic
lipid curvature (C0) [6–8]. Phosphatidylglycerol and phosphatidylcholine (PC), which
spontaneously assemble into lamellar bilayer structures at physiological concentration of
ions in water, have a cylindrical shape and negligible C0 (≈0). Non-bilayer lipids or conical
lipids such as phosphatidylethanolamine (PE; C0 < 0) and lysolipids (lysoPC; C0 > 0) form
highly curved lipid structures such as HII phase (PE) or micelles. PE accounts for approxi-
mately 25% of all membrane lipids that significantly affect the mechanical properties of
membranes [9,10].

The embedding of conical lipids into a flat monolayer composed of cylindrical lipids
modifies the lateral pressure profile (LPP) so that the bending moment produced by LPP
in the monolayer is no longer zero [11]. The bending rigidity, quantified by the bending
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modulus, k, is an intrinsic mechanical material constant that defines the amount of energy re-
quired to deform a membrane out of the spontaneous state [12]. Membrane bending rigidity
is critical for membrane remodeling during vesicular transport, exocytosis, and endocyto-
sis. Maintaining the flatness of the lipid monolayer containing conical lipids leads to the
induction of the stored elastic curvature stress (SCES) in the bilayer membrane [13]. SCES
induced by PE supports the docking and insertion of membrane-associated/peripheral
proteins [10,14,15], membrane budding [16], and membrane remodeling [17,18]. SCES is
also suggested to influence the functioning of transmembrane proteins. However, only a
few studies have shown this relationship [13,19–24].

The role of conical lipids is especially apparent in the inner mitochondrial mem-
brane (IMM), which contains the highest percentage of phospholipids with a negative
C0 (38−45% PE and 15−25% cardiolipin [CL]) [25,26]. Their shape supports the char-
acteristic architecture of the IMM, which is necessary for the proper functioning of the
mitochondrion [27–30]. Because PE senses membrane curvature, the curvature-driven
redistribution leads to its accumulation in strongly concave regions [31–34]. As an example,
CL and PE support adenosine 5-triphosphate (ATP) synthase dimer formation, generating
strong membrane curvature on the top of the cristae and thereby potentiating protein
activity [35,36].

Under oxidative stress conditions, membrane lipids undergo shape transformation.
The products of reactive oxygen species (ROS), which include the biologically important
reactive aldehydes (RAs) 4-hydroxy-2-nonenal (HNE) and 4-oxo-2-nonenal, covalently
modify the PE headgroup to form RA-PE adducts [37–40]. RA-PE adducts increase the
protonophoric activity of mitochondrial uncoupling protein 1 (UCP1), an essential player
in non-shivering thermogenesis [37]. Based on results obtained by mass spectrometry
and molecular dynamic (MD) simulations, we previously suggested that the formation
of RA-PE adducts reshapes PE, thereby changing the intrinsic curvature of this lipid [41].
Another contribution to the transformation of the lipid shape during oxidative stress in
mitochondria comes from the amplified action of membrane-bound phospholipase A2
(mPLA2) [42,43], which converts membrane lipids to lysolipids (C0 > 0) and free fatty
acids (FAs). The released FAs represent the raw material for the production of more RAs,
which then target the headgroup of the PE and form more RA-PE adducts. As a result of
these events, the ratio of lipids with opposite shapes in IMM can rapidly alter, leading to a
modification of the LPP and the bending rigidity of the IMM [44].

We hypothesized that the SCES change caused by the lipid shape transformation is a
crucial event by which IMM proteins (particularly uncoupling proteins) respond rapidly to
oxidative stress. To investigate the impact of ROS-modified lipids on mitochondrial protein
function, we combined experimental measurements of membrane elastic properties and
total conductance of membranes reconstituted with recombinant UCP1 and ANT1 with
calculations of membrane LPPs using MD simulations.

2. Materials and Methods
2.1. Chemicals

1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), 1,2-dioleoyl-sn-glycero-3-
phosphoethanolamine (DOPE), 1-oleoyl-2-hydroxy-sn-glycero-3-phosphocholine (OPC),
bovine heart cardiolipin (CL), arachidonic acid (AA), hexane, hexadecane, KCl, HEPES,
EDTA, Na2SO4, MES, Tris, adenosine 5-triphosphate (ATP), and guanosine 5-triphosphate
(GTP) were purchased from Sigma-Aldrich (Munich, Germany). MPC (1-myristoyl-2-
hydroxy-sn-glycero-3-phosphocholine) was obtained from Avanti Polar Lipids (Alabaster,
AL, USA). Plain silica beads (22-µm diameter) were from Microspheres-Nanospheres (Cor-
puscular Co., Cold Spring, NY, USA). Chloroform was purchased from Carl Roth (Karlsruhe,
Germany). 4-oxo-trans-2-nonenal (4-ONE) and 4-hydroxy-trans-2-nonenal (4-HNE) were
purchased from Cayman Chemical (Ann Arbor, MI, USA) or synthesized as previously
described [45].
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2.2. Reconstitution of UCP1 and ANT1 in Liposomes

Recombinant uncoupling protein (murine UCP1) and adenine nucleotide translocase 1
(murine ANT1) were purified from E. coli inclusion bodies and reconstituted into liposomes
made of DOPC, DOPE and CL as previously described [46,47]. AA (20:4,ω6), at a concen-
tration of 15 mol%, and lyso-PCs (OPC and MPC), at the concentrations indicated in the
figure descriptions, were added to the lipid phase before membrane formation.

2.3. Formation of the Planar Lipid Bilayer Membranes and Measurements of the Membrane
Electrical Parameters

Solvent-depleted planar lipid bilayers for the experiments with the recombinant pro-
teins UCP1 and ANT1 were formed from proteoliposomes at the tip of a disposable plastic
pipette [48]. The disposable container was filled with 0.75 mL buffer containing 50 mM
Na2SO4, 10 mM MES, 10 mM Tris, and 0.6 mM EGTA at pH 7.32 and T = 305 K. Membrane
formation and bilayer quality were monitored by capacitance measurements. Current–voltage
(I–V) characteristics were measured by a patch-clamp amplifier (EPC 10; HEKA Elektronik
Dr Schulze GmbH, Lambrecht, Germany). Total membrane conductance Gm was calculated
from a linear fit of experimental data (I) at applied voltages (V) in the range of −50 mV to
50 mV [49]. The relative conductance, Grel, was calculated according to Equation (1):

Grel =
Gm − G0

G0 − GAA
(1)

where Gm and G0 are the total membrane conductance of the lipid membranes reconstituted
with transmembrane protein and arachidonic acid (AA), with or without lysolipids, respec-
tively, while GAA is the total membrane conductance of the lipid membranes reconstituted
with AA alone.

2.4. Measurements of the Membrane Elastic Parameters

Bilayer lipid membranes (BLMs) for the experiments shown in Figure 1 were formed
by applying the “painting” technique to mesh openings [50]. In brief, the openings were
pretreated with a small drop of lipid mixture (10 mg/mL total lipid) dissolved in de-
cane:octane (1:1 v/v). The solvents were evaporated under a stream of argon. Then, a
small amount of the lipid mixture dissolved in squalene (20–30 mg/mL, total lipid) was
painted on the openings of the grid fixed at a small distance from the bottom of a Petri dish
filled with a buffer solution. BLMs formed spontaneously after the excess lipid solution
was forced to the periphery, forming a “toroidal meniscus”—a reservoir that maintains the
lateral tension of the lipid bilayer (Figure 1A). BLMs were made of DOPC, DOPE, CL, and
OPC in the ratios indicated in the figures. The experimental chamber was filled with buffer
containing 100 mM KCl, 10 mM HEPES, and 1 mM EDTA at pH 7 and room temperature
(295 K). We added RAs to the buffer solution, which surrounded the formed BLM in the
container and incubated for 15 min, then the nanotubes were pooled.

Nanotubes (NTs) were pulled from BLMs vertically using a fire-polished borosilicate
patch pipette with a tip diameter of ~1 µm filled with the same buffer as the experimental
chamber. The tip of the pipette was placed in close contact with the BLM. The hydrostatic
pressure pulse ruptured the small membrane patch isolated inside the pipette while the
pipette rim remained in contact with the parent BLM. The cylindrical NT formed spon-
taneously when the pipette was slowly moved away from the membrane [51]. A precise
nanopositioning system (piezo linear actuator and Actuator Controller ESA-CSA, Newport,
Irvine, CA, USA) controlled the vertical position of the pipette (∆L). The formation of
the NT was detected by conductance measurements using Ag/AgCl electrodes placed
in the pipette and bath solution. The NT radius was recalculated from the ion current I,
measured by an Axopatch 200 B amplifier (Molecular Devices, Sunnyvale, CA, USA), and
acquired by a low-noise data acquisition system (Axon Digidata 1550, Molecular Devices,
Sunnyvale, CA, USA). The amplifier was set in the voltage-clamp mode to measure the
ion conductance G = I/U. We used the hyperbolic approximation of G (∆L) (Figure 1B) to
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fit the measured conductance dependence [50]. Briefly, the conductance of the NT lumen,
GNT, was obtained as the difference between the G and the patch leakage conductance,
Gp (Gp = G at the infinite NT length): GNT = G − Gp. The vertical asymptotes of the fit
provided the length measurement offset, which should be subtracted from ∆L to measure
the length of NT (LNT). NT radius (rNT) was determined as given in Equation (2),

rNT = 〈
√

GNT LNTρNT
π

〉 (2)

where the ρNT denotes the specific electrical resistance of the electrolyte inside NT lu-
men. For electrically neutral NT, we considered ρNT to be equal to the bulk value ρ0.
ρ0 was 1 Ohm*m for the buffer we used (100 mM KCl). For CL-containing membranes
the impact of electrical double layer on total ion concentration inside NT was taken into
consideration [50].
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Figure 1. Determination of the elastic parameters of the lipid bilayer membrane based on nanotube
(NT) pulling. (A) Scheme of NTs pulled from a bilayer lipid membrane (grey) and held by a
patch-pipette (white). A voltage applied to the ends of the NTs (U) induces an ion current (INT)
flowing through the NT interior. (B) A representative measurement shows the dependence of
measured membrane conductance (G) (black circles) on the NT length change (∆L), required for
calculation of the NT radius (rNT) (see Section 2). (C) Dependence rNT on U, obtained for the
membrane lipid compositions DOPC:CL 90:10 (black) and DOPC:DOPE:CL 45:45:10 (red). (D) Box
plot and distribution of the bending modulus, k, depending on the molar concentration of the
phosphatidylethanolamine (DOPE). The buffer solution contained 100 mM KCl, 10 mM HEPES, and
1 mM EDTA at pH 7.0 and T = 295 K. Data points represent the mean and standard deviation from
more than 10 independent experiments. *** p < 0.001, t-test.

Bending modulus, k, and lateral tension, σ, were measured as previously described [50].
Briefly, the expansion of NT under the action of electrical field [52] was used. The same
potential difference, U, that is applied to the ends of the NT to induce an ionic current
through its lumen leads to a transmembrane potential in the nanotube wall, which reduces
the lateral tension of the nanotube membrane according to Lippmann’s law of electrocap-
illarity. Since NT transmembrane potential grows linearly from 0 at the “BLM” end to U



Antioxidants 2022, 11, 2314 5 of 17

at the “pipette’s tip” end of the NT (Figure 1A), the expansion of NT is non-uniform [52].
However, the hyperbolic dependence of G (∆L) of such a non-cylindrical NT is preserved,
and the effective radius determined from the hyperbolic approximation of G (∆L) is related
to the elastic characteristics of the membrane and the applied voltage by the Equation (3):

1

(rNT + h)2 =
2σ

k
−

cspU2

3k
(3)

where h = 2 nm is the monolayer thickness and csp—the specific capacitance of BLM.
csp ≈ 1 µF·cm−2 for the membranes prepared from lipid solution in squalene [53].

Thus, rNT was measured at different U and the dependence (rNT + h)−2 on U2 was plotted.
The linear regression of this plot gave k as the tangent to the slope of the line and σ was
determined from the intersection of the line with the ordinate axis (Figure 1C).

2.5. Molecular Dynamics Simulations

We performed molecular dynamics (MD) simulations for lipid bilayers of differ-
ent compositions—DOPC, DOPC:DOPE (50:50), DOPC:ONE-PE (50:50), and DOPC:OPC
(50:50). DOPC, DOPE, ONE-PE Schiff base adduct [37,41], and OPC were described with
Slipids force field [54–56]. All missing bonding and non-bonding parameters of lipid
molecules in the existing Slipids force field were updated with compatible CHARMM36
parameters [57] when needed. Atomic charges were recalculated by the standard Slipids
procedure using the Merz–Singh–Kollman scheme [58], which is composed of B3LYP/6-
31G (d) geometry optimization of the molecule of interest, a subsequent single point ESP
charge calculation using the B3LYP/cc-pVTZ method, and a final charge refinement with
the RESP method [59].

Bilayers containing 128 lipid molecules were constructed from two monolayers con-
taining 64 individual lipid molecules, with symmetrical lipid distribution across the
leaflets in mixed systems. All systems were placed in a unit cell and solvated by about
12,000 water molecules using the TIP3P water model [60]. The unit cell size was approxi-
mately 6.5 × 6.5 × 12.0 nm. Three-dimensional periodic boundary conditions were used
with long-range electrostatic interactions beyond the non-bonded cut-off of 1 nm using the
particle-mesh Ewald procedure [61] with a Fourier spacing of 1.2 nm. Real-space Coulomb
interactions were cut off at 1 nm, while van der Waals interactions were cut-off at 1.4 nm.
We performed 100 ns MD simulations with semi-isotropic pressure coupling, independently
in the directions parallel and perpendicular to the bilayer’s normal using the Parrinello–
Rahman algorithm [62]. The pressure was set to 1 bar, and a coupling constant of 10 ps−1

was used. All simulations were performed at 310 K and controlled with the Nose–Hoover
thermostat [63] independently for the lipid–water sub-systems, with a coupling constant
of 0.5 ps−1. Bond lengths within the simulated molecules were constrained using the
LINCS [64]. Water bond lengths were kept constant by using the SETTLE method [65].
Equations of motion were integrated using the leap-frog algorithm with a time step of
2 fs. For the LPP, a custom version of GROMACS-LS package [66,67] was used to re-run
trajectories and output local stress tensors. Because long-range electrostatics via PME is not
available in GROMACS-LS, an increased cut-off distance of 2 nm was used for Coulomb
interaction calculations as suggested by the package developers [66].

2.6. Statistics

Data from the electrophysiological measurements are displayed as mean ± standard
deviation of at least three technical replicates (on three different days). Each replicate was
the mean membrane conductance of three to ten bilayer membranes formed on the same
day. Error bars for pressure profiles of lipids were calculated as the difference between
symmetrized and unsymmetrized pressure profiles in different leaflets. Smoothed data
were obtained from the average of two points.
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3. Results
3.1. Impact of DOPE on Membrane Elastic Parameters and SCES

First, we examined how the presence of PE influences the elastic properties of lipid
bilayer membranes. To do so, we measured the radii (rNT) of nanotubes (NTs) pulled from
BLM at different voltage biases (U) applied to the NT interior (Figure 1A).

To evaluate the impact of PE on membrane elastic parameters, we compared NT pulled
from BLM made of either (i) DOPC:DOPE:CL (45:45:10 mol%), mimicking the IMM, or
(ii) DOPC:CL (90:10 mol%), as a model of a PE-free membrane. The rNT was measured
for both lipid compositions at U values varying from 50 to 200 mV. The membrane bend-
ing rigidity modulus (k) and lateral tension (σ) of BLMs were calculated from the linear
regression of (rNT + h)−2(U2) according to Equation (3) (see Section 2).

We found that membranes containing 45 mol% DOPE were considerably less resistant
to bending than DOPE-free membranes (Figure 1D). The measured bending modulus
decreased from k = (22.1 ± 2.0) kBT for PE-free membranes to k = (4.8 ± 1.8) kBT for
PE-containing membranes.

This observation qualitatively confirmed the previously reported effect of membrane
softening by PE, demonstrating that the addition of 30 mol% DOPE significantly reduced
the k [68]. At the molecular level, the effect was attributed to the curvature-induced
redistribution of DOPE between NT monolayers and the reservoir membrane during NT
formation. Conical lipids with a pronounced C0 < 0 tend to accumulate in the inner
leaflet and to be deposited from the outer monolayer of the highly curved NT membrane,
which remained connected to a flat reservoir membrane during the measurement [32,33].
Reduction in the apparent bending rigidity modulus, k, due to curvature-driven DOPE
redistribution in the membrane can be estimated according to the Equation (4) [69]:

k =
k̃

1 +
ak̃C2

0,DOPE ϕ(1−ϕ)

2kBT

(4)

where k̃ is the bending modulus of membranes with a restricted PE curvature-composition
coupling, a—the area per lipid (about 0.7 nm2), C0,DOPE—the intrinsic curvature of DOPE,
and ϕ—the molar fraction of DOPE in the lipid reservoir.

For PE-containing membranes, we considered k̃ equal to the bending modulus measured
for PE-free membranes and characteristic of DOPC membranes [50]. Using Equation (4),
we calculated C0,DOPE ≈ −0.45 nm−1, which is in agreement with previously published
data obtained for DOPE in the inverted HII phase [70], confirming the reduction in ap-
parent bending rigidity of PE-containing membrane due to PE curvature-composition
coupling [44]. At the same time, lateral tension in PE-containing membranes was almost
twice as high (σ = (1.4± 0.4)·mN·m−1 versus σ = (0.8± 0.3) mN·m−1 in PE-free membrane).
BLM is an open system, in which a lipid bilayer is connected to a large lipid reservoir that
defines the chemical potentials of the lipids. The lateral tension, σ, is related to the surface
free energy, required for keeping lipids in a flat bilayer or the same SCES = 1

2 kC2
m, where

Cm is the average spontaneous curvature of the lipid mixture. Thus, the lateral tension of
BLM should increase with DOPE content by the SCES magnitude caused by the insertion
of conical PE lipids into a flat membrane. Indeed, we found that σ gradually increases in
DOPC membranes with increasing DOPE content, so that it almost doubles at 50 mol%
DOPE, confirming the direct contribution of SCES to the lateral tension of membranes
connected to the lipid reservoir.

We considered the contribution of the CL curvature-composition coupling to the
apparent bending rigidity to be the same in both types of the membrane (PE-containing
and PE-free) because of its lower concentration (10 mol% of total lipid composition) and
smaller C0 (C0,CL ≈ −0.15 nm−1 [70]) compared to PE.
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3.2. Reactive Aldehydes Modify the Elastic Properties of the PE-Containing Lipid Bilayer Membranes

Next, we studied the effects of the modification of the lipids by RAs [37] on the
elastic properties of membranes. We incubated the reservoir membranes of different lipid
compositions with a RA (4-hydroxy-2-hexenal [HHE], HNE, or ONE) at the concentrations
of 0.5–0.7 mM, which are in accordance with the concentrations found under physiological
conditions (~0.3 mM) and under oxidative stress (up to 5 mM in cellular membranes) [71,72].
We found that HNE and ONE induced a pronounced reduction in the apparent bending
modulus k in DOPE-containing membranes, resulting in kHNE = 11.7 kBT and kONE = 7.1 kBT
(Figures 2A and S1A). HHE had no detectable impact on k (Figures 2A and S1A). We
explained the lack of the HHE effect by its weaker adsorption to the lipid membrane [37]. It
is noteworthy that in the PE-free membranes, none of the RAs caused a measurable change
in the bending modulus k (Figures 2B and S1B).
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(RAs). (A,B) Relative bending rigidity k/k0 and relative lateral tension σ/σ0 for lipid membranes
composed of DOPC:DOPE:CL 45:45:10 in (A) and DOPC:CL 90:10 in (B), incubated with the RAs
4-hydroxy-2-hexenal (HHE), 4-hydroxy-2-nonenal (HNE), and 4-oxo-2-nonenal (ONE). k0 and σ0

are bending modulus and lateral tension in the absence of RAs, respectively. RAs were added
in a concentration range of 0.5–0.7 mM. Buffer composition: 100 mM KCl, 10 mM HEPES, 1 mM
EDTA pH = 7.0, T = 295 K. Data points represent mean and standard deviation from more than 10
independent experiments. * p < 0.05; ** p < 0.01; *** p < 0.001, t-test.

Alongside enhanced compliance to bending, we observed a decrease in σ for PE-
containing membranes after their incubation with RAs (Figure 2A). Again, this effect was
absent in PE-free membranes (Figure 2B). MD simulations predicted a significant alteration
of the PE molecular shape caused by its modification by RAs [41]. Such lipid reshaping is
highly likely to be the reason for the simultaneous reduction in both the k and σ caused by
RAs in PE-containing membranes.

3.3. OPC Alters the Elastic Properties of the Lipid Bilayer Membrane

Next, we measured the impact of inverted conical lipid 1-hydroxy-2-oleoyl-sn-glycero-
3-phosphocholine (OPC; C0,OPC > 0) on the elasticity of PE-containing membranes. The
presence of OPC mimics the accumulation of lysolipids in the IMM due to increased
phospholipase activity in response to oxidative stress [42,43]. Therefore, we measured
the changes in the σ and k of DOPC membranes (C0,DOPC ≈ 0) induced by the addition
of DOPE alone or simultaneously with OPC in the molar ratios indicated in the figure
descriptions (Figure 3 and Supplementary Figure S1C,D). In these particular studies, we
did not add CL to the BLM compositions because we aimed to use lipids whose molecular
shapes were as complementary as possible: the absolute C0 values of DOPE and OPC are
practically the same (C0,OPC = 0.41 nm−1 [70]).
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Our results showed that the presence of both conical lipids, OPC and DOPE, made
membranes significantly more compliant to bending than DOPE alone, and the effect is
potentiated with an increase in DOPE by constant OPC. The bending modulus of a DOPC
membrane containing DOPC:DOPE:OPC (60:20:20) mol% was k = [13.6 ± 0.63] kT and
lower than that of a DOPC:DOPE (50:50) lipid mixture (k = [16.7 ± 1.05] kT). The bending
modulus of the membrane containing DOPC:DOPE:OPC (30:50:20) mol% was the lowest
(k = [11.4± 0.79] kT). Thus, the OPC-induced changes in elastic parameters of PE-containing
membranes (Figure 3) were similar to those caused by the accumulation of PE-RAs adducts
in the membrane (Figure 2A). Both OPC and PE-RA adducts diminished the SCES initially
produced by PE.

The replacement of DOPC with DOPE led to a concentration-dependent increase in the
lateral tension σ in the lipid bilayer membrane (Figure 3B) [44]. Replacement of 20 mol%
DOPC with the lysolipid OPC abolished the DOPE-induced increase in σ. This indicates
that the effect of OPC on SCES was due to the complementarity of DOPE and OPC shapes
(Figures 3B and S1D).

3.4. The IMM Proteins UCP1 and ANT1 Sense Stored Curvature Elastic Stress

To test our hypothesis about the impact of SCES on mitochondrial membrane protein
function, we performed measurements of total conductance (Gm) of membranes reconsti-
tuted with recombinant UCP1 and ANT1. Both proteins are known to assist FA in the
transport of protons from the cytosol to the mitochondrial matrix [73–76]. To test the
role of lipid shape and thus conditioned SCES in the lipid membrane, we reconstituted
UCP1 or ANT1 in lipid bilayer membranes containing lysolipids with pronounced positive
individual curvature, 1-myristoyl-2-hydroxy-sn-glycero-3-phosphocholine (MPC; 14:0) and
OPC (18:1). Because the acyl chain length defines the intrinsic lipid curvature (the shorter
the acyl chain, the higher the individual lipid curvature), we achieved different SCESs in
the lipid bilayer membrane at the same concentration of lysolipids.

We compared Gm of membranes formed from (i) DOPE:DOPC:CL (45:45:10 mol%),
(ii) MPC:DOPC:DOPE:CL (5:45:40:10 mol%), or (iii) OPC:DOPC:DOPE:CL X:(45 − X/2):
(45 − X/2):10, (X = 5, 10, and 12.5 mol%), thereby keeping a constant protein to lipid ratio.
In all experiments, the UCP1 and ANT1 activities were measured in the presence of the
arachidonic acid (AA; 20:4,ω6), because this fatty acid is released from phospholipids by
the activity of phospholipase A2 (PLA2) [77]. With 5 mol% MPC, the Gm (MPC) increased
to (124.6 ± 13.7) nS/cm2, in contrast to the Gm = (79.9 ± 5.3) nS/cm2 in the absence
of MPC (Figure 4A). In the experiments with OPC, we demonstrated a concentration-
dependent increase in Gm, from Gm = (89.9 ± 6.7) nS/cm2 in the absence of OPC to the
Gm (OPC) = (158.5 ± 15.8) nS/cm2 at 12.5 mol% OPC (Figure 4B). We failed to measure the
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conductance of the protein-containing membranes at lysolipid concentrations higher than
5 mol% MPC or 12.5 mol% OPC because of the high membrane instability. In the control
measurements, we showed that, in the absence of AA, even 15 mol% OPC does not affect
UCP1-mediated Gm, which remained comparable to the Gm (OPC) = (11.2 ± 1.5) nS/cm2

of neat lipid bilayer membranes (Supplementary Figure S2A). The relative increase in
Grel, ANT1 = 1.65 (Equation (1)), mediated by ANT1 reconstituted in lipid bilayer membranes
containing 10 mol% OPC (Figure 4C), was comparable to the Grel, UCP1 = 1.5, measured for
the membranes reconstituted with UCP1 in the presence of OPC (Figures 4B and S2).
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We tested how SCES affects the inhibition of ANT1 by adding 4 mM ATP to the 
ANT1 reconstituted with 10% OPC (Supplementary Figure S2C). A slight decrease in the 
relative ANT1 inhibition (⁓66% in the presence of OPC vs. ⁓76% in its absence; Supple-
mentary Figure S2C) suggests that the binding of ATP to R79 of ANT1 [74] was unaffected 
by SCES.  

Figure 4. Lipid shape affects UCP1- and ANT1-mediated total membrane conductance (Gm).
(A,B) Dependence of Gm measured in membranes reconstituted with recombinant UCP1 on the
concentration of lysolipids MPC (A) and OPC (B). (C). Dependence of Gm measured in membranes
reconstituted with recombinant ANT1 on the concentration of OPC. The lipid composition in control
experiments was DOPC:DOPE:CL (45:45:10). The specified lysolipid amount (mol%) was used
instead of DOPC and DOPE. The concentrations of UCP1 and ANT1 were 4–5 µg/(mg lipid). The
concentrations of lipid and AA were 1.5 mg/mL and 15 mol%, respectively. The buffer solution
contained 50 mM Na2SO4, 10 mM MES, 10 mM Tris, and 0.6 mM EGTA, at pH = 7.32 and T = 305 K.
Data points represent means and standard deviation from 3–5 independent experiments.

We tested how SCES affects the inhibition of ANT1 by adding 4 mM ATP to the ANT1
reconstituted with 10% OPC (Supplementary Figure S2C). A slight decrease in the relative
ANT1 inhibition (~66% in the presence of OPC vs. ~76% in its absence; Supplementary
Figure S2C) suggests that the binding of ATP to R79 of ANT1 [74] was unaffected by SCES.

3.5. Impact of Lipid Shape on the Lateral Pressure Profiles across the Lipid Bilayer Membrane

The results shown above suggest that lipids with different intrinsic curvatures pro-
mote activation of the membrane proteins to different extents. Therefore, we used MD
simulations to investigate the impact of lipid shape on the LPP in lipid membranes
comprising (i) DOPC, (ii) DOPC:ONE-DOPE, (iii) DOPC:OPC, and (iv) DOPC:DOPE
(Figures 5A–C and S3). We omitted CL from our MD simulations because (1) CL has low
intrinsic curvature (C0,CL ≈ −0.15 nm−1) [78], and (2) we focused only on lipids that change
shape as a consequence of oxidative stress, such as PE or lysolipids. The ONE-DOPE adduct
is chosen as a prototypical Schiff base adduct formed via the reaction of ONE with PE [37],
while OPC mimics lysolipids formed due to increased PLA2 activity. The LPP arises in the
lipid bilayer membrane due to the repulsive interaction in the lipid headgroup and acyl
chain regions and strong attraction at the lipid–water interface.
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SC on the LPP, p. (D–F) Comparison of areas below the pressure profiles in the headgroup (head),
water–lipid interface (w/l), and acyl chains (acyl) and for the whole bilayer profile (all) for p shown
in (A–C). The lipid ratio in bi-component membranes was 50:50 mol%. Color labels: DOPC:DOPE
(red), DOPC (grey), DOPC:ONE-DOPE (cyan), and DOPC:OPC (blue).

To highlight the fact that the changes originated from the modified PE headgroup
due to the formation of the RA-PE adducts, we compared the LPPs in DOPC:DOPE and
DOPC:ONE-DOPE membranes (Figure 5A). A substantial drop in the pressure occurred
across the whole membrane profile, in the headgroup region, hydrophobic core, and water–
lipid interface. In the membrane–water interface region, ∆pONE-PE = (pPE − pONE-PE) was
equal to 302 bar (25%), while in the acyl chain region, the ∆pONE-PE was 72.5 bar (40%). To
evaluate the contribution of lysolipids to the LPP, we compared the DOPC and DOPC:OPC
membrane bilayers (Figure 5B). The decrease in lateral pressure due to the replacement
of DOPC with OPC occurred at the water–lipid interface and in the acyl tail regions and
was slightly pushed to the center of the bilayer. Compared to the LPP of pure DOPC
membranes, the lateral pressure in the OPC-containing membranes (Figure 5B) decreased
in the membrane–water interface region, from ∆pOPC = (pDOPC − pOPC) = 188.6 bar (15.76%),
to ∆pOPC = 182 bar (27%) in the acyl chain region, and to ∆pOPC = 38.6 bar in the center of
the bilayer. We also analyzed the effect of DOPE (C0 < 0) on the LPP in the lipid bilayer by
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comparing the membrane with DOPC membrane with near-neutral curvature (C0 ≈ 0). In
contrast to OPC and ONE-PE, insertion of DOPE into the lipid bilayer slightly increased the
lateral pressure in the acyl chain region (∆pDOPE = (pDOPE − pDOPC) = 256.2 bar [27.5%]),
and slightly shifted the profile outwards from the bilayer center (Figure 5C). Importantly,
the changes in LPP caused by the introduction of DOPE or ONE-PE or OPC into the DOPC
bilayer are in qualitative agreement with the lateral stress measurements (Figures 2 and 3).

We quantified the distribution of LPP for each lipid bilayer by calculating the lateral
tension σ, which is equal to the area under the pressure profile curve (Supplementary
Figure S3). This allowed us to determine σ for the headgroup, water–lipid interface, and
hydrophobic regions in the lipid bilayer membrane and compare the results for unmodified
and modified lipids (PE vs. ONE-PE, DOPC vs. OPC, and PE vs. PC) (Figure 5D–F).

Our results showed that transformation of the PE headgroup (PE→ONE-PE) re-
duced the σ value by 29.6%, whereas deletion of the acyl chain (DOPC→OPC)—by 17%
(Figure 5D,E). More precisely, the decreases in the σ values for the PE→ONE-PE and
DOPC→OPC modifications were 10% and 6.5% in the water–lipid interface region and
43.1% and 37.6% in the acyl chains region (Figure 5D,E). In contrast, PE insertion into the
lipid bilayer increased the σ value by only 4.3% in total, and by 11.9% in the acyl chain
(Figure 5F). These observations are in agreement with the data of Zoni et al. [79] that were
obtained for LPPs and areas under the curve in the hydrophobic core region for mixed
bilayers containing DOPC, DAG, DOPE, and DLPC, where DLPC can be considered a lipid
with a positive individual curvature [21].

Interestingly, the variability of the lipid acyl chains in the mitochondrion [80] could
also influence the modification of the PE headgroup. However, Bacot et al. [39] showed that
a reduction in the unsaturation of the mixed acyl chains (18:0/20:4 PE versus 18:0/22:6 PE)
only slightly reduced the modification of the PE headgroup by hydroxyalkenals (HHE,
HNE, and HDDE).

The results shown in Figure 5D (PE→ONE-PE) are consistent with the experimental
results obtained for the PE→ONE-PE modification (Figure 2A). Figure 5E indicates the
weakening of the membrane lateral tension due to DOPC→OPC modification but it cannot
be directly compared with the result shown in Figure 3B, because the MD simulation
did not include DOPE (Figure 5E). As mentioned before, we applied MD simulations
exclusively to demonstrate the contribution of lipid shape change to lateral pressure. The
very small changes in surface tension, σ, of the lipid bilayer due to the presence of DOPE
(Figure 5F) are consistent with published data [79,81]. In contrast, an increase of nearly 100%
is shown for the same composition of the membrane (Figure 3B). Due to the fundamental
difference between the applied experimental and in silico methods, obtained values in
Figures 3B and 5F are not directly comparable. A bilayer lipid membrane (Figure 3) is an
open system in which a lipid bilayer is connected to a large lipid reservoir. Therefore, lateral
tension, σ, which arises in the lipid bilayer, is related to the surface free energy density of
the lipids from a lipid reservoir. The lateral tension of the membrane increases by the SCES
magnitude due to the insertion of the conical PE into the flat membrane.

In contrast, in the MD simulations (Figure 5), we consider a closed system consisting
of a certain number of lipid molecules. In this system, SCES does not directly contribute to
the lateral tension, which we calculate as the area under the curve obtained for the lateral
pressure distribution. MD simulations in this case show the qualitative change in direction
(increase/decrease), but not the quantitative magnitude of the change.

Based on the analysis presented above, the individual curvature of the ONE-PE
should be more like that of OPC and, in any case, substantially different from the shape
of the endogenous PE. Taken together, our results suggest that membrane protein activity
increases if the lateral pressure at the water–lipid interface and in acyl chain regions
decreases due to lipid modification; otherwise, it stays unchanged.
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4. Discussion

The importance of the membrane lipid shape/reshaping for the mitochondria func-
tioning under oxidative stress conditions (Figure 6A) can be summarized in two related
categories: (i) softening of the lipid bilayer membrane, and (ii) a regulatory effect on the
action of membrane proteins. In our previous study, we demonstrated the increase in Gm
by AA-activated UCP1 due to the formation of RA-PE adducts and linked it for the first
time to the change in membrane properties (Figure 6B, modified data from [37]).
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terionic lysoPC lipids increased UCP1- and ANT1-mediated proton translocation simi-
larly to PE adducts. Thus, we propose that lipid shape and associated membrane mechan-
ical properties, such as bending rigidity and lateral pressure, play a regulatory role in the 
protonophoric activity of UCPs and ANTs. In contrast, the membrane surface potential, 
which increases due to the formation of RA-PEs [37], is most likely irrelevant for the acti-
vation of UCP1 and ANT1, because zwitterionic lysolipids do not affect the surface po-
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Notably, MD simulations suggested decreased lateral pressure over the whole mem-
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Figure 6. Proposed mechanism for the SCES sensing by mitochondrial proteins ANT1 and UCP1.
(A) Schematic representation of the lipid membrane leaflet and change in lipid shapes under oxidative
stress in mitochondria. (B) Effect of PE adducts, ONE-PE and HNE-PE, on the UCP1-mediated Gm in
the presence of AA. The relative membrane conductance Gm/Gm,DOPC was calculated based on data
from [37]. Gm,DOPC, and Gm are specific membrane conductance in the absence or presence of PE
or RA-PEs, respectively. (C) Schematic representation of the LPP redistribution in the lipid bilayer
membrane caused by a change in the lipid shape. A comparison of the LPP (left) and protein structure
(right) suggests that the decreased lateral pressure (dark blue), which appeared in the area of the
FA binding site (*) and in the protein cavity region (**), promotes FA translocation. Most likely, the
transformed lipid environment (i) increases the probability that anionic FA reaches a protein binding
site and (ii) facilitates a protein conformational change, which in turn supports a faster translocation
of FA to the opposite leaflet. (D) The increase in the UCP1- and ANT1- mediated Gm correlates with
a decrease in both the lateral pressure, p, and bending rigidity, k, in the lipid bilayer membrane. If
the change in p and k goes in the opposite direction, the protein-mediated Gm is not affected, as
demonstrated here for the DOPE-containing membrane.

Here, we show that the integral proteins, UCP1 and ANT1, embedded in IMM-like
membranes, sense changes in SCES caused by oxidative stress. The experimental results
and MD simulations revealed that the modified phospholipids—PE adducts and lysolipids—
induce similar changes in the bending rigidity, lateral tension, and LPP of lipid bilayer
membranes (Figure 6C,D). The observed variations in k and σ among RAs can be explained
by differences in the types of RA-PE adducts and their localization in the lipid bilayer
membrane [37]. Because OPC (C0,OPC > 0) induced similar changes in k, σ, and p as a
ONE-PE adduct in PE-containing membranes, we speculate that this PE adduct has a
positive individual curvature. Thus, RA-driven shape transformation in a fraction of PE
molecules with a negative C0 reduced lipid packing stress due to mutual compensation
with lipids with the opposite C0, thereby decreasing the membrane SCES.
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More importantly, the impact of PE-adducts on the elastic parameters k and σ in the
order HHE < HNE < ONE perfectly matches their ability to enhance the UCP1-mediated
proton translocation in the presence of FAs in membranes of the same lipid composition
(Figure 4A) [37]. This supports the hypothesis that RA-induced changes in a lipid environment,
and not a modification of protein amino acid residues, increase the Gm. A zwitterionic lysoPC
lipids increased UCP1- and ANT1-mediated proton translocation similarly to PE adducts.
Thus, we propose that lipid shape and associated membrane mechanical properties, such
as bending rigidity and lateral pressure, play a regulatory role in the protonophoric activity
of UCPs and ANTs. In contrast, the membrane surface potential, which increases due to
the formation of RA-PEs [37], is most likely irrelevant for the activation of UCP1 and ANT1,
because zwitterionic lysolipids do not affect the surface potential.

Notably, MD simulations suggested decreased lateral pressure over the whole mem-
brane profile for bilayer membranes containing ONE-PE adduct or OPC (Figure 6D). We
suggest that the altered lipid environment at the molecular level results in increased Gm in
the presence of UCP1 or ANT1. The changes in the lipid environment are caused by the
nature of the lipid transformation, in which the ratio (lipid head)/(acyl chains) is increased
compared to the “initial form” of the lipid (e.g., DOPC→OPC, PE→RA-PE). These modifi-
cations decreased both the bending modulus k and the lateral pressure p in the lipid bilayer
membrane (Figures 2A and 5A,B).

The insertion of PE into the PC lipid bilayer resulted in an increase in lateral tension
(Figure 3B), while the UCP1-mediated conductance remained unchanged (Figure 4A).
In the case of RA-PE and lysolipids, decreased lateral pressure in the acyl tail region
(Figure 6D) could increase the probability that anionic free fatty acids (i) reach the protein
binding site, which is located in the hydrophobic region on the matrix side of the IMM [74],
(ii) are protonated in the position near the center of the bilayer (asterisks in Figure 6D and
reference [82]), and dissociate from the protein. Eventually, the same lipid environment
supports the protein conformation change, ensuring faster FA− translocation. Notably,
protein modifications, such as crosslinking of RA amino acid adducts or protein mutations,
can lead to loss of the protein transport function, whereas lipid modification potentiates the
protein-mediated FA− translocation. Remarkably, in the absence of oxidative stress lipids
with distinctly positive curvature, such as lysolipids and phosphoinositides, are found only
in trace amounts (<1%) and are primarily involved in direct lipid–protein interaction and
signaling [9].

5. Conclusions

Identification of the mechanisms by which the transformation of lipid shape affects the
functioning of mitochondria helps to explain the onset of diseases associated with oxidative
stress in a way that has not been considered so far. Our results show that lysolipids and
PEs modified by RAs similarly affect membrane mechanical properties by decreasing the
bending modulus k and SCES. Furthermore, we showed that UCP1 and ANT1 sense SCES
and proposed a new mechanism for regulating the protonophoric function of IMM proteins
under oxidative stress.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/antiox11122314/s1, Figure S1: The lipid shape changes the elastic properties of
the membrane; Figure S2: Lipid shape affects UCP1 and ANT1-mediated total membrane conductance;
Figure S3: Impact of lipids with pronounced intrinsic curvature on the lateral pressure profile.
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