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Abstract: Dysbiosis and impaired gastrointestinal barrier function have emerged as potential chronic
kidney disease (CKD) modulators. Accumulation of gut-derived uremic toxins, a subsequent shift
in the gut microbiome, and modified expression levels of intestinal tight junction proteins are all
contributing factors to hyperpermeability and endotoxemia in CKD. Experimental studies in animals
provide evidence that renal decline is linked to gastrointestinal health and that pharmacological
or dietary intervention might attenuate this process. In this review, we will highlight the current
knowledge on CKD-induced changes in the gut microbiome and the resulting consequences regarding
gastrointestinal health with a focus on animal studies. Furthermore, we will explore possible disease
management options linking to evidence in humans, if available.

Keywords: chronic kidney disease; dysbiosis; gastrointestinal hyperpermeability; gut microbiome;
leaky gut syndrome

1. Introduction

Chronic kidney disease (CKD) affects approximately 10% of the western population [1].
It is characterized by a continuous failure of nephrons, causing progressive renal function
decline that persists for over three months [2]. There are numerous potential causes of CKD,
the most common being diabetes mellitus type 2 (30 to 50%) and hypertension (27%) [3].
CKD can also develop after primary kidney damage due to polycystic kidney disease,
auto-immune diseases, acute kidney injury, glomerulonephritis, ascending infections, or
secondary to nonsteroidal anti-inflammatory drug overuse [3].

CKD is accompanied by multiple comorbidities, such as cardiovascular disease and
CKD mineral and bone disease (MBD) [4,5]. However, the gastrointestinal (GI) tract has
often been overlooked as a possible contributor to the progression of CKD, and recent
studies have highlighted its significance [6–10].

In this review, we will discuss the changes in the gut microbiome that occur during
CKD and the concurrent effects on GI barrier function, starting with pathophysiological
drivers in CKD and ion homeostasis. In this regard, we will focus on pathomechanisms that
have emerged as promising therapeutic targets regarding GI health in CKD. Furthermore,
we will address possible disease management options for CKD patients within the context
of a disturbed GI barrier.

2. Endocrine Drivers of CKD

Due to CKD’s diverse pathophysiology, multiple processes are involved in the disease
progression. The critical endocrine signaling mechanism involved in the regulation of CKD
progression is the renin–angiotensin–aldosterone system (RAAS), which exerts systemic

Appl. Sci. 2023, 13, 3212. https://doi.org/10.3390/app13053212 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13053212
https://doi.org/10.3390/app13053212
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app13053212
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13053212?type=check_update&version=2


Appl. Sci. 2023, 13, 3212 2 of 17

and local effects that determine susceptibility to renal damage via different mechanisms.
Locally, activation of RAAS instigates glomerular mesangial cells to secrete transforming
growth factor-β (TGFβ), a crucial cytokine and driver in renal fibrogenesis [11]. TGFβ is a
critical factor for forming extracellular matrix components and is linked to glomeruloscle-
rosis and renal fibrosis [11]. Systemically, RAAS is involved in blood pressure regulation
through tubular sodium and water absorption. Furthermore, RAAS and TGFβ are associ-
ated with reactive oxygen species (ROS) generation and oxidative damage [12]. This leads
to altered expression of transcription factors involved in the inflammatory response in
CKD, such as upregulated nuclear factor-kappa B (NF-κB), [13] kelch-like ECH-associated
protein 1 (Keap1) [14] and decline in nuclear factor erythroid 2-related factor 2 (Nrf2) [15].

A negative prognostic marker for CKD progression is an elevated plasma level of
phosphaturic hormone fibroblast growth factor 23 (FGF23) [16]. FGF23 and its co-receptor
α-Klotho bind to fibroblast growth factor receptor-1 in the kidney and downregulate
sodium-dependent phosphate transport protein 2a (NaPi-2a), thereby reducing phosphate
reabsorption [17]. The underlying molecular mechanism of elevated FGF23 in CKD still
needs to be elucidated, but a decrease in phosphate excretion, limited availability of
locally produced α-Klotho, and FGF23 accumulation due to decreased glomerular filtration
could potentially contribute to the mechanism [5,18]. High serum phosphate levels are an
independent predictor of morbidity and mortality among CKD non-dialysis patients [19].
In the kidney, FGF23 also suppresses 1α-hydroxylase, the enzyme responsible for the
activation of vitamin D [20]. The primary action of vitamin D is the stimulation of phosphate
absorption in the small intestine via the activation of NaPi-2b [21]. Moreover, vitamin
D increases GI and renal calcium uptake through the increased luminal abundance of
transient receptor potential channel 5 (TRPV5) and 6 (TRPV6) [22]. In CKD, FGF23-induced
suppression of vitamin D results in a lack of plasma calcium. This boosts parathyroid
hormone (PTH) secretion leading to secondary hyperparathyroidism [18]. The resulting
disordered phosphate and calcium homeostasis is the decisive factor in the pathophysiology
of CKD MBD [4].

3. The Gastrointestinal Microbiome in CKD

The human microbiome consists of different bacteria, archaea and fungi. Almost
all microbiota belong to Firmicutes, Bacteroida, Proteobacteria, and Actinobacteria [23]. The
microbiome in the small intestine mainly comprises facultative anaerobes, while the large
intestine hosts obligatory anaerobes [23]. The microbiome enters a symbiotic and complex
relationship with the host providing metabolic, protective and trophic functions [23]. It is
involved in immunomodulation, defense mechanisms, synthesizes nutritional factors, such as
vitamins and is needed to digest food ingredients not targeted by digestive enzymes [23,24]. In
detail, dietary fibers are metabolized to short-chained fatty acids and gases. Short-chained
fatty acids are valuable nutritional factors for the intestinal epithelial cell and mediate
peristaltic movement [25].

Experimental data from CKD patients and rodent CKD models revealed a shift in
the microbiome towards bacterial families that possess proteolytic enzymes [26–28]. They
play a vital role in the production of gut-derived uremic toxins such as indoxyl-sulfate (IS),
p-cresyl sulfate (PCS) and indole 3-acetic acid (IAA) [29–31]. Physiologically, the kidney
excretes these uremic toxins. However, their plasma levels increase during CKD, exerting
various adverse effects that contribute to further alterations in the gut–kidney axis. For
instance, indole uremic toxins IS and IAA induce ROS production resulting in vascular
damage associated with renal anemia, [30] cognitive impairment [32], and potentially
eryptosis [33]. Even in patients with mild renal dysfunction, increased production of
gut-derived uremic toxins could be observed [31]. In addition, an observational study
that recruited pre-dialysis CKD patients found that serum IS and PSC correlate with CKD
progression [6]. Experimental studies in rodents also show that adenine-induced CKD goes
along with disordered amino acid metabolism that amplifies over time [10]. It has been
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proposed that targeting gut microbiota or amino acid metabolism might be a way to manage
uremic toxin levels as they provide a substitute energy source for the GI microbiome [10,29].

Nutritional changes associated with dietary intervention, medications, and the secre-
tion of uremic toxins into the gut affect the composition of the microbiome in CKD [27]. In
patients with end-stage renal disease (ESRD), analyses of gut microbial DNA revealed an
increased abundance of many species, including Brachybacteria, Catenibacteria, Enterobacteria,
and Akkermansia (Figure 1A) [28,34]. Those were generally accompanied by decreases
in Bifidobacteria and Lactobacilla [28,35]. In a clinical setting, it is challenging to assess if
changes in the microbiome observed during CKD are caused by uremia or due to thera-
peutic interventions. Fortunately, investigative studies in animal models allow us to focus
on isolated uremic effects on the gut microbiome. The composition of the gut microbiome
after surgical CKD induction (5/6 nephrectomy) in rats mirrored the state in human CKD
patients [28]. Furthermore, systemic inflammation and intestinal bacterial translocation
accompanied dysbiosis in a murine model of Alport syndrome-induced CKD [9]. Antibi-
otic treatment ameliorated inflammatory markers and reduced serum levels of endotoxins,
which supports the general notion that dysbiosis could be one of the driving factors behind
disease progression and systemic inflammation in CKD [9].
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ome in the intestinal lumen and the host. The TJ complex is intact, regulating the transport of se-
lected molecules. (B) TJs control the paracellular permeability of ions, water, and macromolecules. 
Alteration of the TJ proteins involved in ion regulation leads to increased intestinal permeability. 
The unrestricted pathway is TJ-independent and reflects damage of epithelial cells. (C) In CKD, 
several different mechanisms alter gut microbiota composition leading to disruption of TJ and sub-
sequent bacterial translocation across the gut barrier into the circulatory system, aggravating in-
flammation. 

Figure 1. Schematic representation of intestinal microbiota in healthy (left) and CKD patients
(right). (A) In physiological conditions, intestinal epithelial cells limit interactions between the gut
microbiome in the intestinal lumen and the host. The TJ complex is intact, regulating the transport of
selected molecules. (B) TJs control the paracellular permeability of ions, water, and macromolecules.
Alteration of the TJ proteins involved in ion regulation leads to increased intestinal permeability. The
unrestricted pathway is TJ-independent and reflects damage of epithelial cells. (C) In CKD, several
different mechanisms alter gut microbiota composition leading to disruption of TJ and subsequent
bacterial translocation across the gut barrier into the circulatory system, aggravating inflammation.

C57Bl/6 mice are generally considered relatively resistant to CKD development after
5/6 nephrectomy, making them a good model for studying microbial changes over time.
Luminal urea concentration was significantly increased after 5/6 nephrectomy, but was not
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accompanied by upregulation of intestinal urea transporters [36]. Furthermore, the applica-
tion of urea to healthy mice did not induce dysbiosis comparable to CKD [36]. Therefore,
intestinal urea concentration rises independently of its specific transporters and cannot
be the only cause of CKD-induced dysbiosis [36]. A recent clinical trial aimed to identify
microbiome-derived biomarkers for CKD and further explored the differences within the
microbiome between healthy and CKD patients. Ruminococcus and Lachnospira emerged as
potential biomarkers to separate both patient cohorts, but at least for Lachnospira, it is well
documented that quantity changes with many diseases [37]. Interestingly, five phylotypes
were associated with the progression of CKD: Holdemanella, Megamonas, Prevotella, Dielma,
and Scardovia [37]. Prevotella is significantly reduced in an adenine-induced murine model
of CKD as well [38]. Pharmacological intervention, focusing on the treatment of constipa-
tion, a common comorbidity in CKD, restored Prevotella prevalence and reduced plasma
levels of uremic toxins, directly linking GI health to renal decline [38]. It is conceivable that
intestinal microbial changes are different depending on the pathophysiological cause of
CKD. Comprehensive studies combining microbiome analysis and causal renal pathology
are still lacking.

While the general macroscopic and microscopic anatomy of the GI tract is comparable
between rodents and humans, CKD-induced changes in the microbiome might not be
directly transferrable, as bacterial fermentation occurs in different regions of the large
intestine. Therefore, it is very challenging to analyze isolated effects on the microbiome in
an observational setting in humans, which warrants the use of laboratory animals. Porcine
intestines might provide a better comparison as they can also be populated with the human
microbiome [39].

4. Microbiome-Related Effects on CKD Progression

It is recognized that the gut microbiota can contribute to renal health, as it may affect
the underlying molecular pathways involved in the progression of the disease. In the GI
system, gut bacteria can modulate local RAAS and, therefore may be involved in various
physiological and pathophysiological processes. In uninephrectomized rats, short-chain
fatty acids produced by the gut microbiome suppressed the renin receptor and the renal
RAAS, resulting in antihypertensive effects, which may indirectly prevent CKD progres-
sion [40]. In 5/6 nephrectomized and unilateral ureteral obstruction rat models, alisol B
23-acetate derived from A. orientale suppressed RAAS constituents and the TGF-β/Smad3
pathway, which contribute to renal fibrosis and glomerulosclerosis [41]. RAAS can regulate
the gut microbiome as well [42]. In the angiotensin II infusion model, significant shifts
in metabolites and the microbiome have been observed in C57BL/6 but not in germ-free
mice [43]. Alterations of the insulin/PI3K metabolic signaling pathway contribute to the
progression of CKD, and gut microbiota is a major player in CKD pathophysiology as
it provokes specific NF-kB reduction of the aforementioned pathway and systemic NF-
kB-mediated inflammatory response [44]. Moreover, lipopolysaccharide lipid A derived
from gut bacteria interacts with the toll-like receptor 4, which activates a pathway for
proinflammatory cytokine generation [45]. A further molecular mechanism involved in
CKD pathophysiology is Keap1/Nrf2. Oral administration of B. fragilis is reported to re-
duce the upregulated protein expression of Keap1 in unilateral ureteral obstruction mouse
model. At the same time, the downregulation of Nrf2 found in this model was signifi-
cantly increased with the treatment, which indicates the reduction of oxidative stress levels.
B. fragilis abundance was also associated with an anti-fibrotic effect, as reflected by inhibi-
tion of the TGF-β/Smad signaling pathway [46]. These effects indicate how modulation of
the gut microbiome is portrayed as a potential therapeutic strategy in a CKD setting.

5. Gastrointestinal Barrier Function in CKD

The surface of the GI tract is lined with epithelial cells connected by tight junction
(TJ) proteins. There are two ways of crossing this cellular barrier. The transcellular route
is mediated by substrate-specific receptors and involves diffusion through the cell and
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basolateral release [47], while the TJ restricts the paracellular route [48,49]. The TJ is
a multiprotein complex constituted of structural proteins, such as occludin, tricellulin
and zonula occludens-1 (ZO-1), and functional proteins, which belong to the family of
claudins [48,49]. The expression and localization of claudin family members vary along the
vertical axis of the GI tract [50]. Claudins that mediate ion and small molecule transport
(e.g., claudin-2, −12) are predominately present in the small intestine [50]. Claudin-2-
mediated pore pathway arbitrates the transition of small uncharged ions up to a radius
of 4 Å, [49,51] whereas occludin appears to play a central role in the formation of the leak
pathway for larger ion transition across the barrier [52]. Transepithelial leakage and flux of
particles of any size through the membrane via the unrestricted permeability pathway is a
result of damage to the epithelial cells (Figure 1B) [48]. In contrast, claudins that restrict
transport (e.g., claudin-4, −5) are increasingly expressed in the large intestine [50]. Protein
production levels are usually stable within singular anatomical segments. An exception
is the follicle-associated epithelium (FAE) that covers Peyer’s Patches in the distal small
intestine. Here, sealing claudins dominate to prevent accidental contact between antigens
and the underlying cells of the immune system [53,54].

Dysfunctions in the intestinal epithelium that propagate bacterial, uremic and endo-
toxin cross-over to the bloodstream are defined as intestinal hyperpermeability or “leaky
gut“ syndrome (LGS). Hyperpermeability in the intestine subsequently leads to alterations
in the GI microbiome, thus promoting inflammation [55]. Precise interplay between persis-
tent systemic inflammatory response observed during intestinal barrier dysfunction and
disease progression in CKD remains to be explored.

As CKD progresses, a decline of the glomerular filtration of sodium and activation of
the RAAS signaling pathway occurs, causing increased sodium retention. Consequently, os-
molarity rises, triggering a negative feedback mechanism that results in fluid retention [56].
Hypervolemia independently correlates with renal and cardiovascular outcomes in patients
with stage 3 to 5 CKD [56]. Despite suggested pathophysiological mechanisms of how an
edematous bowel wall increases gut permeability in CKD patients leading to sepsis and
elevated levels of endotoxins exacerbating the progression, the relative contribution of
volume overload to poor outcomes is still unknown.

In 2012, Vaziri et al. highlighted morphological changes in the colonic TJ structure
of 5/6 nephrectomized rats. Claudin-1, occludin, and ZO-1 production was markedly
reduced [57]. mRNA levels of the above-mentioned proteins remained similar between
control and CKD groups, suggesting the changes observed at the protein level were due
to post-transcriptional or post-translational modifications [57]. Histological analysis dis-
played an increase in GI wall thickness and lymphocytic infiltration in rats with CKD [57].
Furthermore, in hemodialysis (HD) patients with ischemic bowel disease, significantly
declined expression of claudin-1, occludin, and ZO-1 was marked compared to patients
with advanced CKD without ischemic bowel disease [7]. In mice subjected to unilateral
ureteral obstruction, depletion of gut microbiota induced by broad-spectrum antibiotics
was followed by elevated occludin and ZO-1 gene expression [58]. Therefore, alterations
of TJ proteins play a key role in the underlying molecular mechanism of the impaired GI
barrier in CKD.

Beneficial gut bacteria Akkermansia is a prominent example of direct interaction be-
tween the microbiome and the GI TJ. Akkermansia is decreased in fecal samples of CKD pa-
tients and is negatively correlated with circulating interleukin-10, providing a link between
the GI microbiome and inflammation [34]. Furthermore, Akkermansia muciniphila-derived
extracellular vesicles might be able to directly influence the gut barrier by upregulating
occludin, as was recently shown in a mouse model of diabetes type 2 [59]. Additionally,
incubation of colonic Caco-2 cells with Akkermansia-derived extracellular vesicles stabilized
barrier function of the monolayer when challenged by lipopolysaccharides [59]. Human
patients suffering from type 2 diabetes mellitus also show decreased fecal excretion of those
extracellular vesicles, highlighting Akkermansia as a potential candidate to regulate the GI
barrier in CKD [59]. Unfortunately, no data in CKD patients is available yet.
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6. Systemic Inflammation as a Consequence of Impaired Gastrointestinal Barrier
in CKD

Impaired kidney function in CKD is associated with numerous alterations in the bi-
directional crosstalk between intestinal hyperpermeability and systemic inflammation. One
proposed mechanism to elucidate the aforementioned relationship includes the overpro-
duction and retention of urea and uremic solutes in CKD, shifting to the intestinal tract as
the main excretion route [60,61]. Experimental evidence revealed that gut bacteria is an
essential mediator of inflammation as it decomposes urea to ammonia (NH3) and ammo-
nium hydroxide (NH4OH) [26,60]. Accumulation of NH3 and NH4OH causes injury to the
protective mucosal barrier due to subsequent elevation of luminal pH and activation of
pro-inflammatory cytokines [34,62,63]. This contributes to increased intestinal permeability
and consequent bacterial translocation [26,57,62–64]. Endotoxin, the lipopolysaccharide
that constitutes the exterior cell wall of most Gram-negative bacteria, is the key initiator for
immune system activation [65]. Elevated plasma levels of translocated endotoxin promote
the production of ROS following the activation of the inflammatory NF-kB pathway [66]
and local RAAS [8].

Experimental evidence from laboratory rodents and humans suggests that systemic in-
flammation is associated with intestinal dysbiosis and barrier dysfunction [9,55,57,65], so it
might be tempting to speculate that hyperpermeability and the microbial shift are the lead-
ing causes of systemic inflammation in CKD. In CKD rats, nuclear levels of nuclear factor
erythroid 2-related factor 2 (Nrf2—a promising target of antioxidant properties) declined,
whereas the nuclear fraction of the pro-inflammatory transcription factor NF-kB increased.
Treatment with Nrf2 activator dh404 resulted in a diminished level of pro-inflammatory
cytokines. Additionally, untreated CKD rats displayed downregulated protein expression
of ZO-1, occludin, and claudin-1. Dh404 treatment restored the protein expression of TJ
components [66]. Nevertheless, it should be considered that most studies only focused on a
few TJ proteins, and there is no data on TJ protein levels in the FAE covering Peyer’s patches
yet. The main task of the Peyer’s patch is the specific presentation of antigen to the underly-
ing cells of the immune system [67]. Impaired barrier function could trigger an unregulated
immune response, subsequently leading to detrimental effects on the patient’s health. Thus
far, there is a lack of experimental evidence linking the relationship between FAE and
CKD. The same can be said for the phosphaturic hormone FGF23. FGF23 is negatively
associated with the survival of CKD patients and is currently regarded as an early indicator
of disease progression [21]. FGF23 is linked to several inflammatory processes in other
organs. It directly induces the production of c-reactive protein and interleukin-6 in murine
hepatocytes and tumor necrosis factor-α (TNFα) in macrophages [68,69]. Macrophages also
produce FGF23, possibly triggering an autocrine loop of inflammation [69]. Hence, FGF23
can induce inflammatory processes in peripheral organs. It is currently unknown whether
FGF23 is only a biomarker for kidney disease progression or actively drives kidney failure,
perhaps even through regulation of GI permeability.

7. Gastrointestinal Motility in CKD

CKD does not only affect the microbiome but also influences GI transit time. Consti-
pation is a common GI disorder in patients with CKD and has been linked to increased
colonic transit time in patients with ESRD [70]. A comparable effect could be detected in
different ex vivo and in vivo mouse models [71,72]. In adenine-induced CKD, GI transit
time doubled while colonic peristaltic movements were markedly reduced and showed
an abnormal contraction pattern [71]. Incubation of healthy colonic tissue with uremic
serum decreased maximum contractility. This highlights either IS, PCS or both as potential
causative agents, as single incubation with urea did not influence contractility [71]. Ex
vivo analysis of large intestines from mice with CKD displayed imbalances in GI motility,
which could be linked to dysregulated release of acetylcholine in the plexus myenteri-
cus [72]. Incubation with different uremic toxins individually, including IS, failed to alter
motility, suggesting a multicausal effect on GI peristalsis during CKD. Antibiotic treatment
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was able to reverse constipation and dysregulated motility and decrease inflammatory
markers in CKD mice [72]. Lack of gastrointestinal motility might be addressed by dietary
supplementation of L-carnitine. Subsequently, the frequency of stool passing increased
slightly after three months of continuous intake by 15 HD patients [73]. In addition, a
recent meta-analysis has found evidence for significant improvement of various serum
parameters, including albumin, low-density lipoprotein and hemoglobin [74]. However,
more clinical evidence is needed to focus on long-term endpoints such as mortality or
survival time.

8. Disease Management Options within the Context of a Disturbed
Gastrointestinal Barrier
8.1. Pharmacological Intervention in CKD

There are many options to treat such a complex disease as CKD. These mainly focus on
preventing further renal decline and managing the resulting comorbidities. The application
of phosphate binders and a phosphate-reduced diet are used to treat hyperphosphatemia as
it correlates with increased mortality [75]. It might also prevent an incline in FGF23 [5,18].
A combination of antihypertensive medication and a salt-reduced diet is often prescribed
to combat hypertension [76,77].

While these treatments target CKD-induced comorbidities, they can also influence
the GI barrier. Frequent consumption of various medications is proposed as a putative
contributor to gut dysbiosis and potential intestinal barrier disruption [78]. Intestinal hyper-
permeability of iatrogenic origin in CKD is presumed to compromise the gut microbiome,
which may lead to increased gut permeability [79]. Even though phosphate binders are
the mainstay of therapy, CKD patients receiving iron salts may be more susceptible to LGS
due to potential bacterial proliferation and overgrowth caused by iron stimulation [80]. On
the other hand, phosphate binder ferric citrate restored colonic ZO-1 abundance in 5/6
nephrectomized rats [81]. This raised interest regarding the overall effect of phosphate
binders on GI health and gut-derived uremic toxins. Therefore, the effect of Sevelamer,
a phosphate-binding medication, was investigated in a double-blind, placebo-controlled,
randomized clinical trial. However, no significant effect on pCS, IS, and IAA serum concen-
trations could be detected [82]. Phosphate binders themselves can significantly alter the
gastrointestinal microbiome. A direct comparison between the treatment of HD patients
with ferric citrate and calcium carbonate revealed reduced microbial diversity and altered
stool composition in patients treated with calcium carbonate [83]. Therefore, a specific
choice of phosphate binders could be an option to tailor treatment to patients. More infor-
mation on phosphate metabolism and its effect on the GI microbiome in CKD can be found
in a recently published review [84].

Orally applied charcoal adsorbents seemed to be another promising option as they
bind intestinal urea and ammonia and, therefore, could prevent epithelial damage [85].
Administration of AST-120 in rats with adenine-induced CKD markedly improved general
inflammation and partially restored claudin-1, occludin, and ZO-1 protein levels in the
colon [85]. In addition, detected endotoxin levels, interleukin-6 and TNFα were significantly
reduced in AST-120-treated rats compared to the control group [85]. However, the EPPIC
trial, based on a cohort of 2035 patients, did not reveal any difference between AST-120
and placebo-treated groups regarding the primary endpoints creatinine doubling, dialysis
initiation or kidney transplant [86]. Post hoc analysis, on the other hand, suggests a slight
delay regarding disease progression [87]. A 2016 study of stage 3 to 4 CKD patients
revealed no effect on mortality, unplanned hospitalizations, and health-related quality of
life score [88]. A meta-analysis of 15 randomized controlled studies confirmed a lack of
effect regarding mortality. However, the incidence of ESRD was significantly lower in the
treatment group [89]. To summarize, the effect of AST-120 remains debatable, but there
is only a little evidence that the positive effects witnessed in rodents can be transferred
to humans.



Appl. Sci. 2023, 13, 3212 8 of 17

The current treatment guidelines also propose individualized active vitamin D sup-
plementation in patients with advanced CKD to manage the clinical symptoms of CKD
MBD [90]. Even though vitamin D analogues, including 1,25(OH)2D and calcitriol, have
been efficacious in the treatment of CKD, [91] they might contribute to an increase in circu-
lating FGF23 levels [19]. Thus, they all have the potential to increase serum phosphorous
levels through upregulation of NaPi-2b and consequent intestinal Pi absorption and should
be applied after careful consideration [92].

A double-blind, randomized, placebo-controlled study in patients with CKD and
type 2 diabetes proposed the effectiveness of bardoxolone methyl regarding increased GFR
compared with a placebo. Bardoxolone methyl is considered to have the potential to activate
Nrf2 and, thus, modulate antioxidant and anti-inflammatory responses [93]. However,
these findings need to be interpreted with caution since the phase 3 trial (BEACON) with
the primary efficacy endpoints “ESRD“ or “death from heart failure”, had to be terminated
due to a significant rate of unforeseen adverse cardiovascular events in CKD patients
treated with bardoxolone methyl [94]. A series of post hoc analyses were conducted to
identify risk factors for heart failure in the BEACON population. Bardoxolone methyl
increased cardiovascular events in the proportion of patients with baseline brain natriuretic
peptide (BNP) > 200 pg/mL and previous hospitalization for heart failure [95]. However,
these clinical trials did not comprise the effects of a disturbed GI barrier on the study
outcome. Alternatively, as discussed below, non-pharmaceutical interventions, such as
dietary protein restriction, appear to have beneficial effects on Nrf2 activity.

Recent experimental evidence taken from an adenine-induced mouse model of CKD has
highlighted SGLT inhibitors as potential modulators of GI health in the context of renal disease.
Application of SGL5213, an inhibitor of GI SGLT1, reduced circulating levels of gut-derived
uremic toxins, creatinine, and urea [96]. Treatment reduced renal and GI inflammation and
restored the Firmicutes/Bacteroidetes ratio, which is currently discussed as a possible biomarker
for gut dysbiosis [96]. This is not limited to CKD but is also associated with other conditions,
such as obesity and aging [97,98]. It remains to be seen whether these effects can be transferred
to human patients, as no data is available yet. The effect of renal SGLT2 inhibitors was recently
meta-analyzed and revealed a lower risk of decreasing kidney function, ESRD or renal death
by 30% in patients with GFR < 60 mL/min/1.73 m2 [99]. However, this effect depended
on other comorbidities, as patients with CKD and heart failure did not profit from the
medication [99]. GI health was not considered in this analysis.

8.2. The Effects of Dietary Intervention on the Microbiome and GI Barrier

Recently, plant-based diets have emerged as a modifier of the microbiome. Increased
dietary fiber promotes carbohydrate fermentation and the growth of Bifidobacteria and
Lactobacilla. This decreases protein fermentation and could improve CKD-induced dysbio-
sis [100]. Dietary addition of fiber led to a decrease of renal marker creatinine in patients
with CKD [101,102]. Association between improved survival and higher dietary fiber intake
in CKD patients may be due to lowering inflammatory markers [103]. In HD patients,
the dietary addition of high-amylose maize resistant starch type 2 (HAM-RS2) signifi-
cantly decreased serum urea and creatinine as well as inflammatory markers TNF-α and
interleukin-6 [104]. HAM-RS2 altered the composition of the microbiome by increasing
Faecalibacteria [105]. Further analysis was carried out in adenine-induced CKD in rats, focus-
ing on microbial changes and gut-derived uremic toxins. After three weeks of additional
HAM-RS2, decreased serum and urinary IS levels and an increased Bacteroidetes/Firmicutes
ratio were noted [106]. Gum arabica (GA), a tree exudate, has also been named a potential
candidate to increase renal function. In an adenine-induced mouse model, GA significantly
decreased duodenal TNF-α, Il-6 and TGFβ [107]. Unfortunately, no parameters of renal
function were published [107]. Patients with CKD stage 2 or 3 or progressive renal disease
benefited from the long-term application of GA [108]. GA generally preserved or even
increased estimated GFR [108]. Unfortunately, this study lacked a placebo group as a
control. Furthermore, dietary fiber activates peristaltic movements, decreases gut transition
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time, and reduces the time for protein fermentation [102,104]. This leads to a decrease in
uremic toxin load [102]. A higher intake of fruits and vegetables can also be advantageous
as it improves metabolic acidosis, a common symptom of CKD [109].

Phosphate uptake is automatically reduced on a plant-based diet because of low
bioavailability [110]. Even short-term dietary modification results in lower serum phos-
phorus levels and decreased phosphaturic hormone FGF23 [110]. Conversely, evidence
in clinical trials suggests that prescribed dietary phosphorus restriction is not associated
with survival benefits among HD patients [111] and that the correspondence of phosphate
intake with adverse outcomes is speculative [81,82,101]. On the other hand, a low-protein
diet, often prescribed in CKD patients to achieve neutral phosphorous balance, has recently
emerged as the potential modulator of Nrf2 expression. The longitudinal study that re-
cruited 30 non-dialysis CKD patients investigated the effects of dietary protein restriction
for six months. It was demonstrated that a low-protein diet increased Nrf2 mRNA expres-
sion and Nrf2/NF-κB ratio in peripheral blood mononuclear cells [112]. However, more
clinical evidence is necessary to confirm that a protein-reducing diet is associated with a
decline in ROS production and pro-inflammatory cytokines. The high potassium content
of plant-based diets seems counterintuitive. However, so far, there is no experimental
evidence suggesting that dietary potassium restriction is beneficial for CKD patients [113].
Taken together, a vegetarian diet could likely be beneficial for CKD patients.

Prebiotic supplementation of oligofructose-enriched inulin induced a significant re-
duction of uremic toxins, urea and PCS in rats with adenine-induced kidney injury [114].
Histological assessment of renal injury revealed less tubular and glomerular damage and
interstitial fibrosis than in untreated CKD rats. No effects on the production levels of
colonic TJ proteins claudin-1 and occludin could be observed [114]. In a randomized
controlled trial, inulin supplementation in HD patients did not change fecal or plasma
uremic toxins levels but increased Akkermansia in the fecal microbiota [115]. In line with
these findings, several clinical trials report a positive association between pre- and probiotic
supplementation and CKD progression.

Application of a commercially available synbiotic treatment specifically lowered IS
levels in CKD patients stage 3 to 4 and improved GI permeability in the small intestine [116].
However, synbiotic therapy in CKD patients stage 4 to 5 significantly reduced PCS levels,
whereas IS levels did not reach statistical significance [117]. Conversely, levels of indole-
producing gut bacteria were restored and comparable to healthy controls [118]. Similarly,
prebiotic oligofructose-enriched inulin supplementation in HD patients led to a decline
in PCS levels by 20% [119]. In CKD patients, lactulose supplementation increased fecal
Bifidobacteria and Lactobacillus counts [120]. Therefore, a combination of pre-and probiotic
might be a valid treatment option regarding GI health. Nevertheless, more research is
needed to find a combination that addresses more than just one uremic toxin. A recent
meta-analysis and a double-blind, placebo-controlled, randomized controlled trial with
68 participants focused on biotic effects in human CKD patients could not detect any
positive outcomes regarding GFR, serum creatinine, and serum urea [121,122]. Overall,
long-term assessments are needed that focus on complex outcomes such as mortality.

8.3. Colonic Dialysis as Alternative Treatment Option

Another method to attenuate CKD progression could be colonic dialysis [123]. It is
an easy and inexpensive method that can be performed at the patient’s home. Colonic
waste is removed through the rectal instillation of an osmotically balanced solution [124].
A recent study of stage 3 to 5 CKD patients has shown that the intestinal microbiome of
patients that underwent colonic dialysis is comparable to that of healthy patients [124]. This
could explain why disease progression is slower in patients who regularly undergo colonic
dialysis and underlines the importance of gut-derived toxins for disease progression [123].
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9. Conclusions

CKD is often insufficiently recognized, but it is the 12th leading cause of death world-
wide, with a high impact on mortality and morbidity. Renal and cardiovascular systems
were the focus of research to tackle CKD-driven mortality. However, the GI tract and its
microbiome have recently emerged as potential targets when addressing CKD-related co-
morbidities. Human clinical trials and experimental evidence from rodent models provide
insight into the role of the GI tract and its microbiome in CKD patients (Table 1). Biotic
modulation of the microbiome and dietary addition of fiber is associated with lower values
of uremic toxins, less inflammation, and improved renal function. We have highlighted
the importance of dealing with uremic-induced shifts in the gut microbiome and sum-
marized interventions with potential clinical applications. Although pharmaceuticals are
prominently used to keep health in check, the dietary approach remains an economical
and promising avenue to fight against CKD (Figure 2). However, there are insufficient
high-quality trials to support one treatment strategy over another. While specific signaling
cascades connecting gut health and renal function have not been described, the microbiome
is relevant in this context. However, the definite impact still needs to be clarified.
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Table 1. Summary of gut targeted intervention strategies and outcomes in CKD patients.

Study Design Study Population (n) Intervention Primary Findings Reference

Cross-sectional survey 14, 533 healthy and
1105 CKD patients High dietary fiber intake (≥l14.6 g/day) Inflammatory markers ↓

Mortality in CKD ↓ [103]

Randomized controlled clinical trial 32 CKD stage 3 or 4 patients Lactulose syrup as a prebiotic (30 mm three times a
day for 8 weeks)

Bifidobacteria ↑
Lactobacillus ↑ Creatinine↓ [120]

Dietary effects
Single-center, double-blind,

placebo-controlled, randomized
crossover trial

37 CKD patients with moderate
to severe CKD

Synbiotics as combination of prebiotic powder
(7.5 g) and probiotic capsule (45 billion 1 CFU) for
the first 3 weeks with a dose elevation to 15 g of

powder and two capsules for the following
three weeks

P-cresyl sulfate ↓
Modified stool microbiome [117]

Single-blind controlled study 13 CKD patients with an eGFR of
≤50 mL/minute/1.73 m2

High dietary fiber (1.6 g/day for 2 weeks, followed
by 23 g/day fiber for 4 weeks)

2 BUN ↓ by 10.6%
Serum creatinine ↓

eGFR ↑
[101]

Single-center, non-randomized,
open-label phase I/II study 22 maintenance dialysis patients Oligofructose-enriched inulin (10 g/day for the first

week, 20 g/day for the next 3 weeks)

Serum P-cresyl sulfate ↓
20% p-cresyl sulfate generation rates

↓
[119]

Pilot-scale, randomized,
double-blind, placebo-controlled

crossover study
16 CKD stage 3 or 4 patients

Probiotic dietary supplementation (180 billion
CFUs/day for 2 months with 2 months washout

and crossover period)

BUN ↓
Uric acid ↓ [125]

Double-blind, randomized, parallel,
placebo-controlled trial 46 HD patients

20 g/day for the first 4 weeks and 25 g/day during
the second 4 weeks of either HAM-RS2 or

wheat-flour biscuits

↓ serum urea
↓ creatinine
↓ TNFα

↓ interleukin-6

[104]

Randomized, double-blind,
placebo-controlled, crossover study 12 HD patients

Inulin (10 g/d for females; 15 g/d for males) or
maltodextrin (6 g/d for females; 9 g/d for males) for

4 weeks, with a 4-week washout period
↑ Akkermansia [115]

Cohort study 70 CKD stage 2 or 3 patients 25 g of Acacia senegal var. senegal Gum Arabic daily
for 12 months eGFR↑ [108]

Colonic dialysis Cross-sectional, prospective study 50 CKD stages 3–5 patients
34 healthy subjects Colonic dialysis (1 h/15–16 L per session) Greater diversity of microbiota [124]

Retrospective study 178 CKD patients stage 3–5 Colonic dialysis (1 h/15–16 L per session three times
per week) Lower risk of CKD progression [123]

1 CFU, colony-forming units. 2 BUN, blood urea nitrogen.
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Abbreviations

CKD chronic kidney disease
MBD mineral and bone disease
GI gastrointestinal
RAAS Renin–angiotensin–aldosterone system
TGFβ transforming growth factor-β
ROS reactive oxygen species
NF-κB nuclear factor-kappa B
Keap1 kelch-like ECH-associated protein 1
Nrf2 nuclear factor erythroid 2-related factor 2
FGF23 fibroblast growth factor-23
NaPi-2a sodium-dependent phosphate transport protein 2a
TRPV5 and 6 transient receptor potential channel 5 and 6
PTH parathyroid hormone
IS indoxyl-sulfate
PCS p-cresyl sulfate
IAA indole 3-acetic acid
TJ tight junction
ZO-1 zonula occludens-1
FAE follicle-associated epithelium
LGS “leaky gut“ syndrome
HD hemodialysis
GFR glomerular filtration rate
NH3 ammonia
NH4OH ammonium hydroxide
ESRD end-stage renal disease
HAM-RS2 high-amylose maize resistant starch type 2
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