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Abstract

Characteristics of food availability and distribution are key components of a species'
ecology. Objective ecological surveying used in animal behavior research does not
consider aspects of selection by the consumer and therefore may produce imprecise
measures of availability. We propose a method to integrate ecological sampling of an
animal's environment into existing behavioral data collection systems by using the
consumer as the surveyor. Here, we evaluate the consumer-centric method (CCM)
of assessing resource availability for its ability to measure food resource abundance,
distribution, and dispersion. This method catalogs feeding locations observed during
behavioral observation and uses aggregated data to characterize these ecological
metrics. We evaluated the CCM relative to traditional vegetation plot surveying
using accumulated feeding locations across 3years visited by a tropical frugivore, the
bonobo (Pan paniscus), and compared it with data derived from over 200 vegetation
plots across their 50 km?+ home ranges. We demonstrate that food species abundance
estimates derived from the CCM are comparable to those derived from traditional
vegetation plot samplinginlessthan 2 years of data collection,and agreementimproved
when accounting for aspects of consumer selectivity in objective vegetation plot
sampling (e.g., tree size minima). Density correlated between CCM and plot-derived
estimates and was relatively insensitive to home range inclusion and other species
characteristics, however, it was sensitive to sampling frequency. Agreement between
the methods in relative distribution of resources performed better across species than
expected by chance, although measures of dispersion correlated poorly. Once tested
in other systems, the CCM may provide a robust measure of food availability for use
in relative food availability indices and can be incorporated into existing observational
data collection. The CCM has an advantage over traditional sampling methods as it
incorporates sampling biases relevant to the consumer, thereby serving as a promising

method for animal behavioral research.
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1 | INTRODUCTION

The abundance, dispersion, and distribution of food resources
not only determine species distribution but also have a strong
impact on many aspects of an animal's life history, physiology,
and sociality (Anholt & Werner, 1995; Chapman et al, 2015;
Davies & Deviche, 2014; Hutto, 1990; Lambert & Rothman, 2015;
Rogers, 1987; van Schaik et al., 1993; Vogel & Janson, 2007). Due
to the core importance of food to an organism, the quantification of
food availability and distribution are key considerations across stud-
ies and disciplines. Methods used to estimate food resource abun-
dance, distribution, and dispersion are just as varied as the questions
which necessitate these quantifications (Szigeti et al., 2016).

Measurement of the amount of food resources present for
a consumer, such as abundance or density (i.e., estimation of the
amount of a resource available in a landscape), depends heavily on
the type of resource and scale of interest (Bowering et al., 2018;
Morrison, 2016). Large-scale analyses of abundance typically rely on
remotely derived proxies via satellite imagery due to the practical
impossibility to directly measure large areas of land. In such analy-
ses, the abundance of resources available in a landscape is proxied
from the estimation of land cover of preferred habitats (e.g., habitat-
based abundance) or includes methods like species distributional
modeling (SDM) where the characteristics of locations occupied by
a particular species are then used to extrapolate occupancy, and less
frequently, abundance, over much larger scales.

For questions related more immediately to the consumer (at the
individual or social group scale), direct measurement of exploitable
resources offers more accurate insights into the resources available
to a consumer (Foerster et al., 2016; Wessling et al., 2020). The
abundance of mobile food resources may be measured via consumer
behavior using metrics such as dietary composition, attack rates,
feeding frequencies, and other metrics, under the assumption that
consumption correlates with rates of resource encounter. Such met-
rics frequently serve only as proxies of food abundances in cases
where measurements of true availability cannot be objectively or
reliably inferred (Hutto, 1990; Lovette & Holmes, 1995; Watts &
Mitani, 2015). However, for static food resources like plants, abun-
dance is commonly estimated by cataloging the number of individual
resources available to a consumer in subsets of an area of interest
and extrapolating quantities to a global scale (e.g., plot, transect,
or adaptive cluster sampling), or by sampling distances from pre-
determined or random points and extrapolating densities based on
these distances (e.g., point-centered distance sampling). Plot sam-
pling is the most common sampling method in studies of frugivorous
or folivorous animals, and involves the placement of randomly or
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systematically placed plots of fixed size across the area of interest,
and all individuals contained within those plots are inventoried and
frequently measured for size (e.g., trunk size; Baraloto et al., 2013;
Stahl et al., 2017; Vogel & Janson, 2007). A number of considerations
feed into the selection of plot size, shape, placement, and number
(Bonham, 2013), such as species form (e.g., tree, liana, and herb),
dispersion (e.g., clumped or dispersed), and anticipated rarity, all of
which necessitate different optimized designs.

Plot sampling also allows the calculation of other metrics com-
monly of interest to animal behaviorists, such as food distribution
and dispersion. To estimate distribution, that is, a calculation of rela-
tive resource density across space within a landscape, plot sampling
may be further stratified across a given area relevant to a consumer
at various scales ranging from individuals to populations (e.g., home
range, landscape, or region). Distribution provides information about
where and how many individuals are located within a space rather
than simply about the number of individuals available globally within
that system. Measures of dispersion (i.e., patterns of clustering or
patchiness), such as Morisita's index (Morisita, 1962), are used to
quantify the clustering of resources over space within a landscape
(Krebs, 1999; Stephens & Krebs, 1986). Resource clustering is often
used in the contexts of understanding resource competition and
socio-ecological behavior (Vogel & Janson, 2011). Quantifications of
food species dispersion are perhaps even more varied in practice
and sensitive to the scale relevant to the consumer (Myers, 1978;
Vogel & Janson, 2011). Dispersion metrics may also require distinct
sampling methods tailored to specific questions (e.g., focal tree ob-
servation: Vogel & Janson, 2007, 2011), thus potentially require sup-
plementary surveying efforts to plot sampling.

Despite its centrality to animal research, ecological sampling
design to evaluate abundance, distribution, or dispersion fre-
quently does not conform to recommended standards or is ad-
equately validated by animal ecologists (Mortelliti et al., 2010;
Szigeti et al., 2016). For example, while sampling effort can sub-
stantially impact measures of resource abundance, it is rarely
validated whether sampling efforts are sufficient to adequately
measure the intended metrics. Furthermore, ecological data col-
lection often requires research effort in addition to ongoing be-
havioral observations and is time intensive and thus infrequently
conducted. Snapshots of abundance (i.e., measurements of a
landscape spanning short intervals of time) derived from these ef-
forts may therefore be used up to decades after they have been
measured without any consideration of changes that may have oc-
curred since the last assessment. For example, primate research
sites commonly approximate intra-annual changes in food avail-

ability using species densities calculated from surveys that have
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not been updated since the establishment of ecological monitor-
ing, in some cases representing significant time lags of 6 or more
years (Klein et al., 2021; Potts et al., 2016; Wessling et al., 2018).

The problem of insufficient quantifications of resource avail-
ability also extends to sampling design. Traditional sampling
methods in animal ecology, like plot sampling, are perceived as
objective measures of the resources potentially accessible to a
consumer. However, these methods are by design blind to aspects
of resource selection by the consumer, and thus likely introduce an
unknown measurement error. The distinction between resource
accessibility and availability is important, as only the latter con-
siders that not all individual food items are equally attractive to
a consumer. As such, if researchers are interested in an accurate
representation of the resources relevant to a consumer, then as-
pects of resource selection must be incorporated into resource
availability estimates.

Ecological sampling is time intensive and the need to incorpo-
rate resource selection into resource availability metrics adds an
additional burden on sampling methods. Given the inadequacies of
existing methods for the estimation of an animal's food availabil-
ity, is there a way to conduct ecological sampling that is time ef-
ficient within existing behavioral data collection systems and also
integrates resource selection criteria of the consumer? Behavioral
observation has been used extensively as a measure of food avail-
ability (Hutto, 1990; Lovette & Holmes, 1995), dispersion (Vogel
& Janson, 2011), and preference (Forester et al., 2009; Kent &
Sherry, 2020), however, these methods are either limited in appli-
cation or still necessitate ecological data collection to be collected
in parallel to behavioral observation. We therefore introduce a
consumer-centric method (CCM) for animal behavioral ecology
studies which uses the consumer as the survey vehicle to quantify
food resources in a landscape. With this method, researchers cata-
log discrete food resource locations (e.g., feeding tree locations) as
they are consumed during the process of behavioral observation.
The CCM compiles the geographic location of food resources visited
by a consumer over a given time period to allow the calculation of
ecological indices (e.g., proxies of density) similar to those collected
in traditional ecological sampling (see below). The method uses the
consumer as a surveyor that, over time, aggregates the locations of
all species in their diet within a given area of interest to that con-
sumer (e.g., home range).

Data reliant upon patterns of usage by a consumer, such as that
proposed in the CCM, would result in a form of a presence-only
dataset that mimics the logic employed in species distributional
modeling (SDMs). In other words, aggregations of data on species'
presence can be used to generate broader-scale predictions of rel-
ative abundance (i.e., distribution; Gomes et al., 2018). The prolif-
eration of presence-based datasets for uses like SDMs is indicative
that there is significant utility in these types of data for estimating
species distribution, and presence-only datasets have been fur-
ther employed to estimate species abundances with mixed success
(Bradley, 2016; Gomes et al., 2018; Gutiérrez et al., 2013; Hwang
& He, 2011; Jiménez-Valverde et al., 2021; Royle & Nichols, 2003;
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Yackulic et al., 2013). The CCM operates similarly to these applica-
tions, in that behavioral observation would contribute data on feed-
ing locations that subsequently translate into presence-based data
on dietary species over a smaller spatial scale.

The CCM combines aspects of presence-based abundance mod-
eling outlined above with those of animal consumption rate proxies
(e.g., prey attack rates), and consequently cannot be used univer-
sally in all animal consumer applications. First, as the CCM relies on
the aggregation of data over time, data collected on resource loca-
tions must be representative of the species' same distribution over
time, and therefore the method must only be applied to estimate
resources that are immobile, discrete, and spatially explicit entities.
Second, to allow for data accumulation, the CCM can only be ap-
plied to consumers who reuse the same space over time, such as
a home range, and assumes that they have equal access to all the
areas of this space (Alldredge et al., 1998). The data afforded by the
CCM represent the outcome of both consumer-independent food
abundance as well as consumer resource selection, therefore we
must also assume that potential resource presence and consumer
preference do not change within the period until adequate sampling
has occurred (Manly et al., 2007). Subsequently, the CCM will like-
wise not be applicable to cases where objective measurements of
resource abundance are necessary (as is the case with questions
pertaining to, e.g., resource preference).

Consequently, because the CCM reflects the outcome of both
selection and environmental conditions, it conflates the two, and
therefore its estimates cannot be detached from either input (Kent &
Sherry, 2020). Similar to the use of consumption rate proxies, this
format, therefore, is also limited in the types of questions such a
methodology can be applied to, specifically in cases where questions
of selection are important. However, the CCM differs from con-
sumption rate methodologies, in that like presence-only models, it is
location based and does not conflate encounter rate with metrics of
abundance. With an understanding of the constraints of the method,
there is precedent to extrapolating presence-based datasets to infer
global patterns of abundances and distribution. Therefore, we ask,
in cases where researchers do not need to understand patterns of
selection by a consumer but simply its outcome (e.g., fruit availability
indices), can the CCM replace plot-based data collection?

To answer this question, we evaluate the CCM relative to tra-
ditional plot-based ecological data collection using accumulated
feeding locations from two social groups of a tropical frugivore, the
bonobo (Pan paniscus), as a case study. Unlike existing metrics of food
abundance derived from behavioral observation (e.g., prey attack
rates), which can only serve as proxies of difficult-to-measure food
abundance, in the case of the CCM, we can evaluate the estimates
provided by the CCM against availability estimates provided by more
traditional plot sampling. Specifically, we investigated whether be-
havioral data on feeding locations (trees and lianas) provide a reliable
dataset allowing inference about food species' (1) densities, (2) dis-
tribution, and (3) dispersion. We additionally assess (4) the minimum
sampling effort required and (5) for what characteristics of a food
species this method can be considered most reliable.
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2 | METHODS

2.1 | Study species and behavioral observation

Data were collected at the Kokolopori Bonobo Reserve (Figure 1)
on two social groups of bonobos (Ekalakala: EKK, Kokoalongo:
KKL) between May 2016 and December 2019. Like much of the
bonobo range, the Kokolopori Bonobo Reserve is a mixture of
monodominant and heterogenous continuous forest, interspersed
with areas of permanent and seasonally inundated swamp (Surbeck
etal., 2017). It is floristically rich, however, relatively skewed toward
a handful of dominant arboreal species, most of which are consumed
by bonobos (Section 2.4 in Supporting Information). Bonobos are
predominantly frugivorous, focusing the majority of their diet on
ripe fruits from trees and lianas within their home range, although
they regularly consume a variety of other plant and animal food
items including flowers, leaves, insects, honey, small mammals,
underground truffles, and terrestrial herbaceous vegetation
(Hohmann & Fruth, 2007; Lucchesi, Cheng, Wessling, et al., 2021,
Sakamaki et al., 2016; Samuni et al., 2020). Bonobos live in a fission-
fusion social system in which group members divide and range
into subgroups of varying sizes and compositions independently
throughout the day (Kuroda, 1979; Samuni et al., 2022). Average
subgroup sizes accounted for approximately 63% and 28% of each

social group (Section 2.1 in Supporting Information). Subgroups
were followed daily for behavioral data collection over the course of
a full day of activity (Section 2.1 in Supporting Information), during
which we collected data on each tree or liana fed upon by a member
of the observed bonobo group, including location of the trunk of
the resource using a GPS (Garmin GPSMAP 62) and diameter
at breast height for all feeding trees 220cm and lianas 25 cm
diameter in size (Sections 2.1 and 2.2 in Supporting Information).
We ignored all feeding patches smaller than this minimum, as this
was also the minimum diameter used in vegetation plot surveying.
All independent individuals of both groups were present during a
significant proportion of the data collection for this study, therefore
the feeding behavior summarized in our dataset is also representative
of all members of both social groups.

Due to GPS measurement error (commonly 15-20m) and con-
sequently an inability to distinguish individual trees on a small scale,
we summarized feeding tree locations of each group into the pres-
ence or absence of each species in 50x50m “observational cells”
(Figure S1), in order to later relate these cells (in which species were
present) to cells that had been visited by the bonobo group within
the dataset but no individual of that species was visited. 50mx50m
cell size was chosen because it accommodates average GPS error
between two points (potentially 40m if GPS error is 20m) and is
comparable to the size of our vegetation plots. In practice, this
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FIGURE 1 (a)Location of the study site relative to global bonobo distribution. (b) 50 x 50 m habitat plots (black dots; not to scale) within
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resulted in a presence-absence database of observational cells for
each species in the bonobo home ranges. We used location data col-
lected with the GPS tracklog function to calculate the home range of
both bonobo groups using kernel density estimates (see Section 2.1
in Supporting Information). These groups share overlapping areas
of their home ranges, including 63% of the home ranges of both
groups. We evaluated whether feeding location datasets were suffi-
ciently sampled and stable by considering accumulation patterns of

data per species over time (Section 2.2 in Supporting Information).

2.2 | Vegetation plots

We conducted vegetation plot sampling by overlaying 1x 1 km grid
cells over the whole ranging area to identify relevant sampling scope
and aimed to conduct plot sampling in every grid cell utilized by
at least one of the groups (Figure 1 and Figure S1; Section 1.2 in
Supporting Information). We sampled from within the overlaid 1 km?
cells to distribute sampling plots evenly throughout the home ranges
of the groups, and to permit the compilation of different sampling
schemes between data collectors (see Supporting Information
for details). Like the observational cells, all vegetation plots were
50x50m in size, within which data were collected on all trees
meeting the minima defined for individuals in the observational
cells. In total, we sampled 236 plots within these 1km? grid cells, of
which 214 plots fell within the 95% home range of either group, with
162 and 170 within the 95% range of EKK and KKL, respectively
(Figure 1). Plot sampling averaged 4.1+ 1.6 (SD) plots per km? (range:
1-7) and was determined to be of sufficient sampling depth (Section
1.3 in Supporting Information).

2.3 | Comparison of datasets

2.3.1 | Density
To compare estimated species densities derived from each dataset
(CCM or vegetation plots), we derived three different indices
(Section 3.1 Equations 1-3 in Supporting Information). (1) We used
the bonobo observational data to create a “presence index” based
on bonobo feeding locations for each food species, estimated as the
number of 50x 50m cells in which each species was present, divided
by the total number of cells within the 95% kernel home range of
each group (see Figure S6 for an example; hereafter “CCM Index”). (2)
We calculated species density estimations using the vegetation plot
data as the total number of individuals observed per area surveyed
(num. individuals/km?, hereafter “Plot Density”). (3) We calculated
the number of 50 x 50 m vegetation plots in which each species was
present per total number of vegetation plots sampled for a more
direct comparison with the CCM (hereafter “Plot Presence”).

To evaluate method agreement, we created pair-wise sets of
comparisons of the three density indices by means of Pearson's cor-
relation tests and used the correlation coefficient (r) as a measure
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of the strength of agreement between methods. We conducted
the pair-wise comparisons while assessing the influence of sam-
pling effort on method agreement by varying levels of home range
usage (kernel % range from 20% to 95% in increments of 1%) and
dietary inclusion (top 10 most consumed species until full diet) for
each group. We only considered comparisons with at least 10 spe-
cies in at least 10 vegetation plots as a means of imposing minimum
thresholds necessary to avoid distortion of comparison metrics due
to small sample sizes. We chose 10 species as a minimum threshold
as this is a commonly recommended minimum sample size for basic
regression analyses (Gotelli & Ellison, 2004). To evaluate potential
biases in spatial coverage of sampling by the two methods, we addi-
tionally created a moving window over the kernel home range from
20% to 95% for which to compare methods more directly according
to home range location. This window accounts for variation in area
coverage by adjusting the window radius to impose similarly sized
datasets for comparison over the range of % kernel inclusion (i.e., for
agreement from home range core to the periphery; Section 3.1 in
Supporting Information).

Finally, to identify potential dataset minima required for reli-
able and stable density indices derived from the CCM (i.e., temporal
duration of dataset aggregation), we evaluated the pattern of cor-
relation strength between indices from each method as the dataset
grew over time (i.e., day of data collection), and set the minimum as
the point from which the correlation coefficient remains relatively
stable. We describe p-values for these correlations in our summa-
ries below; however, as these correlations require independent data
and because we evaluated thousands of correlation coefficients per
group (ng = 15,075 and ny, = 12,834), we do not draw inference
based on p-values but instead focus only on correlation coefficients.

2.3.2 | Dispersion

To evaluate agreement between methods in characterizing food
species dispersion, we used Morisita's index (Morisita, 1962).
Morisita's index is a statistical index that measures dispersion
(i.e., clustering) across a sample set, providing a measure of the
likelihood of samples within that sample set to be of similar com-
position. To allow for standardized and directly comparable sam-
ple units from which to calculate this index for both methods, we
aggregated the number of individuals per species visited by the
bonobos across three different grid cell sizes (500x500m cells,
1000x 1000 m cells, and 1500 1500m cells), and calculated the
average number of individuals for each species in each of these
grid cells using the vegetation plot dataset. We chose this range
of cell sizes because they provide a compromise between allow-
ing for at least one vegetation plot to be sampled within each cell
and considering the number of cells to be available for compari-
son between methodologies, while remaining reasonably biologi-
cally relevant to our study species (e.g., 8 km travel distance per
day [Lucchesi, Cheng, Deschner, et al., 2021] and 30km%+ home
range [this study, Samuni et al., 2020]). For both datasets, we then
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calculated Morisita's index using the dispindmorisita function of
the package ‘vegan’ (Oksanen et al., 2019) for each species. We
further accounted for an unusual distribution of Morisitia's indi-
ces deriving from the vegetation plot dataset that exaggerated
the scale of the range of data and therefore obscured meaningful
comparison between datasets, by ad hoc transforming the data
to allow for a more normal distribution (Section 3.2 in Supporting

Information).

2.3.3 | Distribution

To evaluate the efficacy of the CCM to reliably quantify the
distribution of food species in a landscape, we aggregated data by
grid cell as was similarly done in our dispersion comparison. We
compiled the data for both the observational cell and vegetation plot
datasets in two ways: by either (i) aggregating (CCM) or averaging
(plot dataset) the number of individuals per species per grid cell or
(ii) by marking the presence/absence of a given species per grid cell
size. We chose to average rather than aggregate plot data because
greater plot sampling in a grid cell will inherently increase estimates
of species densities, whereas sampling biases in CCM could be
accounted for by controlling for location within each group's home
range (i.e., % kernel homerange). We then fitted model sets separately
for each cell size and group (six sets of up to 70 species each), using
each food species as a dataset and each cell as a datapoint. We used
the estimated bonobo feeding data abundance per cell (a measure
of distribution) as the response and the plot abundance as the test
predictor using zero-inflated Poisson models (500 x 500 m grid size)
or simple linear models for 1000x 1000 and 1500x1500m grid
sizes. Within these models, to account for variation in home range
utilization by the bonobos, we controlled for the % kernel home
range of each cell by averaging the % kernel value assigned to each of
the vegetation plots used to estimate the species abundance within
that cell. We then calculated average Nagelkerke's R? (500 x 500 m)
or r? (1000x 1000m and 1500x 1500 m) for each model set across
levels of dietary inclusion (see Section 3.3 in Supporting Information
for detailed descriptions of the fitted models and model checks).

To also evaluate agreement between methods on simple pres-
ence of a species in a cell, we fitted a generalized linear mixed model
with binomial error structure (Baayen, 2008) for each grid cell size
and each social group. The response in this model was the presence
or absence of a species in a given cell as predicted by the bonobo ob-
servational data (with one datapoint per species per cell), and pres-
ence as measured by vegetation plot and % kernel as test predictors.
In these (six total) binomial models, we included cell ID and species
as random effects and included random slopes for presence/ab-
sence in the plots and their correlation within the random effect of
species (Section 3.3 in Supporting Information for details and model
checks). As a last validation of distribution agreement, we identified
when bonobos missed the presence of a species in a cell that had
been identified in the vegetation plots and calculated a proportion
of missed species occurrences out of all cells per species, as well as

evaluated potential sources of biases in likelihood to miss a species

in a cell (see Section 2.4).

2.4 | Identifying sources of bias

If a consumer is selective in which resources it uses within a
landscape, then measurements from vegetation plots may not
accurately measure the relevant resources to that consumer. To
evaluate these potential discrepancies, we compared food tree
and liana sizes (strongly tied to variability in food crop production:
Chapman et al, 1992; Section 4 in Supporting Information)
between CCM and vegetation plot data as an example of a potential
selective characteristic. We then quantified seven characteristics
of each species to evaluate how they contribute to rates of data
accumulation and agreement between our sampling methods.
Specifically, we considered the lifeform (tree or liana), patterns of
dispersion, consumed food item (fruit or non-fruit), seasonality
of consumption, density in the landscape, DBH variability, and
frequency of consumption (Section 4.1 in Supporting Information) as
test predictors in models with the following responses (Section 4.2
in Supporting Information): (1) the speed at which data accumulate in
the CCM dataset, (2) a measure of the difference between estimates
of density between the methods, and (3) likelihood for bonobos to
miss the presence of a species in a cell (Section 4.2 in Supporting

Information).

2.5 | General analyses

All data analyses were conducted in R (version 4.0.2; R Core
Team, 2020), and models were fitted using functions of the ‘ime4’
package (1.1.23; Bates et al., 2015). We report p-values between .05
and .1 as a “trend” for all models to ease issues of dichotomization of
significance (Stoehr, 1999). To avoid issues of multiple testing when
identical models were run across responses that varied only in their
summary method (e.g., grid cell size) or dataset (e.g., social group),
we describe only patterns that are stable and significant or trending
across at least half of each model set; full results for all models as
well as further description of all methods and model checks can be
found in the Supporting Information. We log-transformed predictor
(e.g., species density and consumption frequency) and response (all
density indices) variables with significant skew to prevent issues with

model fit (e.g., overdispersion, residual distribution, and leverage).

3 | RESULTS

3.1 | Consumer-centric dataset

The bonobo groups visited (i.e., fed in) a total of 12,430 (EKK) and
13,827 (KKL) 50x50m cells, amounting to an area “surveyed” of
31.1 (EKK) and 34.6km? (KKL). This amounts to 58.6km? total area
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TABLE 1 Summary of correlation coefficients (r) between density estimates derived from the CCM and vegetation plot sampling for all significant comparisons above 50% kernel home range

and of at least 10 species

% kernel

Number of species with highestr,_ .

I'ean SD (all
combinations)

atr .

% kernel with highest rmeanb

Number of speciesatr,

a
(rmean)

Irange (all combinations)

(a) Kokoalongo

0.96+0.02 0.82-0.99

Plot Presence and Plot

Density
Plot Presence and CCM

Plot Density and CCM

(b) Ekalakala

58
51

94% (0.50)

10
71

36 species (0.53)
36 species (0.65)

0.31-0.55

0.48+0.04
0.58+0.04

69% (0.60)

0.46-0.69

0.88-0.99

0.97+0.06

Plot Presence and Plot

Density
Plot Presence and CCM

Plot Density and CCM

95
95

48 51% (0.56)

40 species (0.58)
19 species (0.66)

0.31-0.63
0.42-0.70

0.52+0.02

50% (0.58)

26

0.54+0.03

@Averaged across all combinations of % home range inclusion per number of species included.

bAveraged across all combinations of number of species included per % home range inclusion.
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surveyed, as 46.7% of this area occurred within the home range
overlap of both communities. Bonobos from EKK and KKL fed on a
total of 78 tree and liana species (88.6% occurring in the diets of both
groups) from trees and lianas, of which 96% of feeding occasions
could be identified to a local name. These observations amounted
to 8818 (EKK) and 9140 (KKL) unique feeding tree/liana locations
(50x 50m) consisting of 76 (EKK) and 72 (KKL) species, of which 58
(EKK) and 55 (KKL) species were consumed in at least 10 locations.
The diets of both groups were strongly skewed toward a few fre-
quently consumed species (Section 2.3 in Supporting Information).
The groups visited a similar number of locations each day, with a
mean of 10.0+5.5 (KKL) and 8.9 +5.0 (EKK) locations visited. On
average, 4.5+2.0 (KKL) and 4.3+ 1.8 (EKK) species were consumed
per day by the bonobos.

Bonobos visited 60% (EKK) and 56% (KKL) of all visited cells
within the first year of data collection, with gradual declines in the
accumulation of newly visited cells over the 3+ years study period
in both groups and a clear approach toward an asymptote for most
of the top 30 species (Figure S3). We found that the speed at which
new feeding locations were added to the dataset also decreased
across species (i.e., longer accumulation times) with each passing
year for both groups, and that much of the observed decrease in new
locations visited over time was likely driven by significant gains early
within the dataset (Figures S3 and S4; Section 2.2 in Supporting
Information). Data on species more variable in size (DBH) accumu-
lated slower in EKK than species more uniform in size (but no such
relationship was found in KKL), and accumulation was also slower in
species consumed for their fruits and in more abundant species in
the landscape in both groups (Section 4.3 in Supporting Information,
Tables S2 and S3).

3.2 | Vegetation plot dataset

In total, 14,855 trees and lianas were measured across 214 habitat
plots (Section 1.1 in Supporting Information), thus exceeding
plot surveying minima (124 plots for this dataset, Section 1.3 in
Supporting Information). Plot surveying required a cumulative total
of 146 team days, averaging 1.7+0.6 (SD) plots completed per
team day (range: 1-4). Trees comprised the majority (66.9%) of the
individuals measured. This dataset averaged 277.7 individual trees
and lianas/ha across the habitat of these two groups, with 196.1
indiv./ha for food species and 168.2 indiv./ha for potential food
trees that met bonobo size minima (see below) for the EKK and KKL
home ranges collectively.

Seventy-five of the 200 taxa identified in the plots were con-
sumed by at least one of the two groups, with 67 of 72 (EKK) and 70
(KKL) of 75 species in the Kokolopori bonobo diet occurring in the
plots. Like the bonobo diet, the forest was heavily biased toward a
few species, with one species accounting for over 10% of the dataset
(“Bofili”, local name for Scorodophloeus zenkeri), and the top 10 most
common tree species accounting for almost 40% of all trees and li-
anas (n = 6375, 39.2%). Correspondingly, only 16 species account
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for over 50% of the individuals in the plots, of which 11 occur in the
diet of both groups. Species in the bonobo diet accounted for 67%
of the total number of trees or lianas observed in the Kokolopori

landscape.

3.3 | Dataset comparison

3.3.1 | Consumer selectivity of tree sizes

Trees visited by bonobos were significantly larger in diameter on
average than trees measured in the plots (EKK: t = -17.71, p<.001;
KKL: t = -20.38, p<.001), but by only an average of <1 cm in
both groups (Table S1). For 23.1% of consumed species, we found
more individuals in the plots that did not reach the minimum size
consumed than those who did exceed this minimum threshold. We
subsequently restricted all analyses to trees/lianas that met bonobo
size thresholds, consequently reducing the number of individuals
included in the plot dataset by approximately 18% for the home
ranges of both groups (8891 individuals in EKK and 8685 in KKL;
Section 4 in Supporting Information). Reducing the dataset had a
measurable effect on the correlation strengths between estimates
of density (see below), with an average improvement of .04 for
comparison (r) of the CCM estimate with the Plot Presence estimates
and .07 improvement in correlation coefficient in the comparison of
the CCM estimate with Plot Density.

3.3.2 | Density
We found that the density estimates from the CCM and vegeta-
tion plots were comparable in both groups (Table 1 and Figure 2).
Patterns of correlational strength between the methods stabilized
and smoothed from approximately 50% kernel home range inclusion
and above, and when approximately a minimum of 15 species was
included in the dataset of both groups. Statistical significance of the
correlation was reached in both groups when including ca. 20 of the
top species or more. The inclusion of less frequently used areas of the
home range in the comparison did not appear to considerably affect
the strength of agreement between methods but correlation strength
decreased with greater number of species included in the comparison
(Figure 2; Table 1). While we did observe that peripheral areas of the
home range generally resulted in lower methodological agreement
(Figure Sé), bonobo data appeared largely insensitive to inclusion of
the outer reaches of the home range in both groups when included
alongside more intensively surveyed areas (i.e., the core range).
Broadly, the CCM more closely matched estimates of Plot
Density relative to Plot Presence. However, for both comparisons,
we observed a decrease in the correlation coefficient the greater the
number of species included in the EKK dataset (Figure 2, blue lines in
bottom left panel). For both groups, we found highest agreement be-
tween methods when restricting the comparison to the top 36-40
species (i.e., approximately half of the species in the diet), with one

exception that only slightly outcompeted the r of the same range
(KKL CCM vs. Plot Density). As expected, comparison between Plot
Density and Plot Presence remained consistently high regardless of
location within the home range of the bonobo groups, although cor-
relations were lower when fewer species were included.

Once our moving window reached the dataset minimum of 20
plots at ca. 30% kernel, the correlation coefficient of the CCM with
plot estimates increased until they reached a maximum of around
60% kernel home range in both groups (Figure Sé). Peripheral areas
of the home range were generally lower in agreement than more
central areas but did not show persistent decreases with increas-
ing peripheralization in a manner that would suggest consistently
poorer sampling in peripheral areas. Sampling agreement was stron-
gest within our moving windows for the most frequently consumed
species (e.g., 15 or 30 species) relative to more comprehensive sub-
sets of the two groups' diets (e.g., 55 and 70 species).

The density of the species in the landscape and the variabil-
ity in size significantly impacted agreement between the methods
(Table S4); specifically, lower species density in the plots (estimate
average: 0.57 +0.11 [SE]) and lower size variability (-1.29 +0.62 [SE])
improved method agreement. Further, in KKL only, greater seasonal-
ity, non-fruit item consumption, and greater consumption frequency
decreased agreement between methods.

Correlation strength between the two methods reached signif-
icance and stabilized across methods and groups once exceeding
600days (i.e., ca. 5300 [KKL] to 6000 [EKK] total visited locations)
and continued to improve as data were collected until the end of our
data period (Figure 3; EKK . :1222days, KKL, . : 1151 days). Similar
correlational strengths were achieved briefly around the 200th day
of data collection, however, its instability as data continued to ag-
gregate suggests this brief peak in performance may have been an

artifact of sampling rather than a reliable sampling minimum.

3.3.3 | Dispersion
Overall, Morisita's indices from the CCM correlated weakly and non-
significantly to vegetation plot indices, regardless of grid cell size

used or bonobo group (Table 2a).

3.3.4 | Distribution

Across both bonobo groups and all three grid cell sizes, we found that
more species significantly correlated between the two methods for
individual abundances across cells than would be expected by chance,
with an average of 18% of species significantly correlated between
methods across the three cell sizes (Table 2b). The percentage of
species with significant correlations across methods declined as grid
cell sizes increased, as did the number of significant species which
remained consistent across both groups. Generally, proportion vari-
ance explained (r or Nagelkerke's R) by abundance per cell based on
plots averaged 0.25+0.32 [SD] across species in all grid cell sizes and
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FIGURE 2 Correlation coefficients of density estimates between sampling methods (i.e., CCM and vegetation plots) for EKK (left) and
KKL (right), according to home range percentage (top) and dietary inclusion (bottom). Color groups depict the three comparisons in this study
(see legend), with numbers in brackets indicating number of species included (top legend) or percent home range included (bottom legend).
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groups for predicting abundance per cell based on CCM. Average r
did not vary substantially with cell size or between groups (Figure 4).

The presence of a species in a cell as measured by plots signifi-
cantly predicted the presence of that species in the cell as identified
with CCM (estimate: 0.60+0.20 (SD), range: 0.32-0.81; Table S5).
The location of a cell within the home range appeared to play a

Number of days since start of data collection

consistent role, with food species less likely to be identified by CCM
in more peripheral cells (average estimate: -0.05+0.01 (SD), range:
-0.05 to -0.04; Table S5). Bonobos missed the presence of a spe-
cies on average in 17.5%+16.3% (SD; range: 0.0%-68.4%) of the
500x500m cells and in 18.4% + 16.5% (SD; range: 0%-61.2%) of the
1000x 1000 m cells. Increases in overall species densities correlated
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TABLE 2 Average (a) correlation coefficients (r) and (b) proportion of variance explained (r; 500 x 500 m) or Nagelkerke's R (1000 x 1000 m
and 1500x 1500 m) between the CCM and plot datasets across three different grid cell sizes for (a) dispersion and (b) distribution estimates

(a) Dispersion

Ekalakala Kokoalongo
Cell size Mean +SD (range) Mean +SD (range)
500 0.08+0.17 (-0.54, 0.55) 0.00+0.16 (-0.35, 0.61)
1000 0.00+0.19 (-0.8, 0.25) -0.03+0.14 (-0.65, 0.13)
1500 -0.17+0.14 (-0.86, 0.07) -0.20+0.14 (-0.83, -0.01)
(b) Distribution
Ekalakala Kokoalongo
Cell size Mean + SD (range) Num species p <.05 Mean + SD (range) Num species p <.05 Significant species
(% of total species) (% of total species) in both groups
500 0.25+0.05 (0.21, 0.38) 15 (29%) 0.23+0.04 (0.20, 0.36) 13 (28%) 11
1000 0.23+0.02 (0.20, 0.30) 13 (19%) 0.24+0.02 (0.20, 0.31) 8 (11%) 7
1500 0.23+0.03(0.14, 0.27) 8 (12%) 0.24+0.02(0.21,0.27) 6(9%) 3
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with an increase in the likelihood for bonobos to miss the presence of reached saturation. The method also shows promise for character-
species in a cell irrespective of cell size or group but species were less izing the distribution of food patches within a landscape, but current
likely to be missed in a cell if they were more frequently consumed. analytical power was likely insufficient to adequately evaluate this re-
We additionally found some support for species consumed for their lationship. Furthermore, we argue that the CCM has an advantage over
fruits to be more likely to be missed in smaller cell sizes (Table Sé). traditional sampling methods for some research questions as it incor-
porates sampling bias important to the consumer into the quantifica-
tion of the ecological landscape. We discuss the consequences of this
4 | DISCUSSION advantage regarding the utility of the CCM in studies of animal ecology.

Here, we demonstrate the applicability of the consumer-centric

method (CCM) for measuring resource density and distribution in an 4.1 | Robustness of the CCM

animal's landscape. We demonstrate that food species availability es-

timates derived from the CCM method are modestly comparable to The CCM estimates of density showed moderate similarity to es-
estimates derived from traditional vegetation plot sampling following timates from traditional ecological sampling. Behavioral ecologists
a relatively short data collection timeframe, including before data have have previously used consumption rates toinfer about the abundance
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of food resources (Hutto, 1990; Lovette & Holmes, 1995; Watts &
Mitani, 2015). These methods are particularly susceptible to han-
dling time, consumer motivation, and/or dependence on preference
from resource availability and are subsequently difficult to validate
against objective measures of abundance (Lovette & Holmes, 1995).
The key advantage of the CCM is that rather than quantifying avail-
ability from occurrences of consumption (frequency dependent), the
method depends on independent locations (spatially dependent),
thereby allowing validation with traditional vegetation plot sampling.

Although we found a significant but minor periphery effect on
agreement between methods in the presence/absence of species, the
correlation of density estimates between methods was unaltered by
the percentage of home range inclusion. The lack of a spatial effect on
agreement between the methods is in some part likely to be a result of
home range selection on the part of the consumer (e.g., second-order
selection sensu Johnson, 1980), that is, bonobos may have already se-
lected their home range based on resource availability; hence, they
show no sampling biases there within. In the absence of home range
use biases, the CCM therefore reliably estimates resource availabil-
ity across the entirety of a group's space use, although future studies
should verify an absence of sampling biases on agreement between
the CCM and traditional methods in their own study species.

Further, we found that consumption frequency of a species was
correlated with the likelihood to miss species presences, that is, that
infrequently consumed food species were also more likely to go
unsampled in the dataset. Consequently, restricting estimation to
only the top half of the consumed species (by frequency) appears to
offer a compromise between maintenance of dietary relevance while
maximizing fidelity with density estimates as assessed by objective
plot measurements. This minimum translated to species consumed in
approximately at least 60 locations over our 3-year dataset. A general
consequence of sampling frequency by a consumer is that estimates
improve in precision as data accumulate over time. While species in
our dataset were variable in “saturation level,” rates of new locations
sampled by the bonobos slowed over the course of data collection
and inter-method correlation of species densities stabilized after
fewer than 2years of data collection (approximately 600days).

Tree stands in the Kokolopori forest remained relatively stable,
with the loss of monitored individuals averaging about 2.0% per
year (range: 0.5%-3.7% between 2017 and 2021; E. Wessling & M.
Surbeck, unpublished data). For locations like Kokolopori where tree
stand is relatively stable from year to year, the CCM is likely to be
able to provide estimates of species abundances within a reason-
able margin of error. Intervals between vegetation plot surveys in
animal studies are frequently longer than the CCM's 600-day mini-
mum, therefore the CCM may be better suited to adapt to environ-
mental changes than plot sampling because users can restrict their
data aggregation to a specified time window (as long as this window
exceeds the minimum), thereby creating a dynamic measurement
of availability that is continuously updated as new data accumu-
late. Such an approach would allow users to evade the duplication
of surveying efforts required to capture tree stand changes using
traditional plot sampling. In contrast, the CCM may not be suitable
for research locations where tree stand is frequently disturbed (e.g.,
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bushfires and anthropogenic disturbance), as the minimum nec-
essary monitoring interval in CCM may be too long to account for
abrupt or short-term changes to the environment. In these environ-
ments, traditional plot sampling methods may be better suited as
long as they are performed at commensurate intervals relative to in-
dividual resource turnover. As our results indicate that sampling rate
affects the stability of estimates (e.g., frequency of consumption),
we anticipate that this general minimum will be longer for species
with slower sampling frequency, that is, for less frequently con-
sumed, masting, or aseasonally consumed species. A myriad of other
factors are likely to contribute to the speed at which data stabilize in
methods like the CCM. We therefore recommend that researchers
studying other systems evaluate the applicability of a method such
as the CCM against resource stability and the traits of the consumer,
relative to the suitability of more traditional methods (see Table 3).
Generally, species distribution (i.e., spatially explicit relative
abundance) correlated weakly between the methods across species
regardless of the scale of comparison (i.e., cell size). A greater pro-
portion of species reached significant agreement between methods
in smaller rather than larger cell sizes, potentially as a function of
proximity between bonobo foraging behavior and sampled plots
(i.e., the larger the cell size used, the greater the potential distance
between bonobo feeding locations and comparatively small plot
areas). Nevertheless, our finding that correlations of distribution
within species were significant across a greater proportion of food
species than expected by chance (i.e., 5%) and that the rates at which
bonobos missed the presence of a species in a cell are likewise better
than common rates of species misses between multiple observers
sampling the same plot (Milberg et al., 2008) provides hope that reli-
able estimates of sub-landscape abundances and presence distribu-
tion may improve with greater sampling depth.
While detectability is rarely 100% in

(Morrison, 2016), the miss-rates by a consumer in the CCM may

either method
rather carry additional information about the nature of resource
selection (and the individuals that are subsequently ignored). This
is especially likely to be the case in consumers who have the capac-
ity to keep track of spatiotemporal patterns of resource availability.
Bonobos likely have a concept of where and when resources become
available, and therefore are also capable of targeting resources that
are rare (Janmaat et al., 2013; Normand et al., 2009). Consequently,
the CCM mimics ad hoc sampling (Foster et al., 1998; Gordon &
Newton, 2006; Hopkins, 2007), and our results indicate that the
CCM more closely matches Plot Density estimates at capturing rare
species relative to more abundant species.

Nonetheless, in the absence of full censusing, we cannot dif-
ferentiate which sampling method produced a more precise
representation of food species availability, dispersion, and distri-
bution patterns. Ideally, methodological sampling biases could be
identified by simulating both sampling schemes from a simulated
“forest”. However, as we rarely understand the complexity of
consumer movement and resource selection patterns (Buskirk &
Millspaugh, 2006), subsequent conclusions drawn from simulated
sampling behavior would be just as arbitrary as the decisions made
to simulate them (Johnson, 1980).
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TABLE 3 Advantages and disadvantages to the use of (a) traditional vegetation plot sampling and (b) the CCM for acquisition of

information on food abundance to a consumer

Advantage

(a) Vegetation plot sampling
Provides an objective estimate of abundance of all potential tree

species in a landscape

Allows for the quantification of landscape-level characteristics non-
specific to the consumer such as overall species richness, total
tree density, and total basal area

Methodology can be adjusted and tailored to different end goals and
to accommodate various characteristics in the environment or
survey targets (trees/lianas)

Generally comparable across landscapes and objective (i.e., non-
specific) to the landscape rather than particular consumers (e.g.,
study species) or social units

No “burn-in” time required: data are immediately useable once
minimum sampling is met

Does not necessitate direct observation of the consumers

Is independent of consumer movement, therefore sampling can
target areas of interest
Able to measure dispersion using finite and spatially explicit samples
(b) Consumer-Centric Method (CCM)
For frequently consumed species, could it theoretically be capable

of providing a census of all relevant individuals of a given species
once data are fully saturated

Provides temporally dynamic monitoring of distribution of visited
(i.e., relevant) feeding locations; can reflect changes within the
area of interest over time

Provides dynamic monitoring of availability of both abundance as
well as consumer behavior changes or changes in selection

Data are able to reflect the true availability of resources rather than
abundances (which are blind to patterns of use and temporally
varying variability)

Because they are targeted by the consumer, the CCM may allow for

better capture rates of species otherwise rare in the landscape

Tailored directly to social unit (e.g., individual and community) and
reflects selection biases inherent to each social unit

Data are collected directly at the scale most relevant to the
consumer and are therefore not aggregated to impose ad hoc
scales of summarization

Is easily integrated into existing behavioral observation data
collection and does not require supplementary data collection

With data collection teams sufficiently trained in botanical
identification of all food items, does not require additional
research effort from botanists

4.2 | Measuring different phenomena

We argue that the CCM, with adequate evaluation, may be a more
appropriate tool for some applications in behavioral ecology than
traditional inventory methods such as plot sampling. Traditional plot
sampling quantifies the total amount of potential resources includ-
ing inaccessible, unattractive, or otherwise unpalatable resources

Disadvantage

Effort may be wasted quantifying tree species that are irrelevant (i.e.,
ignored) to the consumer

Choice of method used may inhibit ability for cross-site comparison
when different methods are used may introduce biases or errors
toward certain characteristics of measured species

Survey effort may need to be intensive depending on desired outcomes
(e.g., if species of interest are rare, landscape is large, or detailed
sub-landscape comparison is needed)

Is a static measurement of a single snapshot in time —survey area must
be resurveyed if changes in the area occur

Can only approximate the distribution of individuals at a scale fixed to
the methodology—requires a priori assumptions of relevant scales
of distribution to a consumer

Can measure only abundance but cannot provide information on
distribution of potential feeding locations or actual availability of
resources to a consumer

Data are not generalizable beyond the sampled individuals or social
group

For now, only appears suitable for quantification of densities and some
species' distributions; traditional methods may still be required if
other metrics are desired

Information gained is limited only to consumed species

Quality of information may be biased toward frequently consumed
species

Requires a “burn in” period before reliable and stable estimates can be
provided and data are of sufficient depth

Requires direct behavioral observation of the consumer

Currently requires cross-validation with traditional plot sampling before
the method is demonstrated to be robust across contexts

Is not a valid method when an assessment of resource preference or
selection is relevant to the study question

Is the joint outcome of resource selection and true abundance,
therefore cannot disentangle changes in either input from the other

to a consumer. Only a subset of these resources comprises true re-
source availability, that is, resources with potential to be selected
(Alldredge et al., 1998; Buskirk & Millspaugh, 2006; Johnson, 1980),
and although correlated, each represents inherently separate phe-
nomena (Hutto, 1990). Because we rarely understand the processes
of food selection by which consumers filter objective resource abun-
dance into availability, the CCM offers the advantage of using the
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consumer as a means to avoid arbitrary decisions as to how to best
sample the landscape (Johnson, 1980). We detail examples of this
selectivity and the resulting advantages of the CCM below.

First, we observed significant differences between average sizes
of trees/lianas visited by bonobos relative to what was available in
the landscape of consumed species (as measured in vegetation plots).
Reducing our plot dataset to a single selection criterion (tree/liana
sizes selected by the consumer) increased the correlations between
CCM and vegetation plot measures by an average of 4%-7% as a
simple demonstration of the inadequacies of consumer-objective
plots in mirroring consumer behavior. Second, that bonobos missed
or ignored certain food resources in cells identified to contain them
underlines further how researchers are likely unaware of relevant se-
lection criteria that impact the measurement of true resource avail-
ability. Because apes possess mental maps of their environments and
are known to adjust travel to target preferred food sources (Janmaat
et al., 2013; Lucchesi, Cheng, Wessling, et al., 2021), they are un-
likely to consistently miss available food resources within their home
range over extended periods of time. In a future study, this may be
confirmed by evaluating if particular cells within the home ranges
consistently disagreed between methods across food species. Third,
we found that CCM estimates of density and distribution differed
between bonobo social groups, even with largely overlapping home
ranges. This conforms to previous findings of group-specific feeding
selection criteria in bonobos (Samuni et al., 2020), independent of
local abundance. If resource availability for a consumer in a given
landscape is dependent on group identity, then only methods like
the CCM incorporating these criteria allow comparable estimates for
comparative studies across social groups.

Altogether, by accounting for consumer selection, the accumu-
lation of data on food patch location is inherently less subjective
than datasets dependent on arbitrary decisions by the investigator
(Johnson, 1980) because it does not involve decisions by the inves-
tigator about selection criteria. However, such a method precludes
its ability to be used for assessing the components involved in se-
lection by a consumer and preference if conducted in the absence
of objective abundance sampling (e.g., plots). Conversely, when
conducted in parallel to plot sampling, the CCM can provide in-
sight into which resources are regularly ignored, and consequently,
the components leading to biases in consumption (i.e., availability
relative to abundance). It should be noted, that biases in resource
measurement in consumer-objective sampling also occur via mul-
tiple channels including selection of sampling method, metric,
and effort, as well as through unavoidable systematic or random
measurement errors (Baraloto et al., 2013; Milberg et al., 2008;
Morrison, 2016; Stahl et al., 2017; Wessling et al., 2020). The CCM,
however, accounts for several of these issues because consumers
are knowledgeable and motivated surveyors who actively target
resources, with apparently negligible impact of scale variation (e.g.,
cell size) or abundance on fidelity of CCM estimates to plot-derived
estimates. Therefore, estimates derived from the CCM could the-
oretically provide accurate measures of availability once data have
reached a sufficient depth.
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Difficulties with GPS signal in Kokolopori forced us to coarsen
data precision to 50x50m quadrats, and consequently, a loss of
fine-tuned information on actual abundance of resources visited.
Subsequently, our results mimic the same difficulties identified
by Jiménez-Valverde et al. (2021) in the fidelity of presence-only-
derived abundance estimates to true abundance. Future studies that
are able to track visits to specific resource patches will likely allow
for more honest sampling of the abundance of resources visited and
may permit CCM datasets to avoid suffering the same shortcoming.
Nonetheless, the CCM was able to correlate with density estimates
provided by traditional plot sampling at a rate of up to 69%, suggest-
ing moderate but imperfect comparison between the two methods.
That the two methods correlate only moderately well may suggest
that they likely measure similar but different resource groupings
(potential vs. used). Although in this study we cannot confirm that
the CCM measures true availability with greater precision than plot
sampling, it anyways remains to be validated that plot sampling can
provide estimates reflective of measures of true availability either.

Our spatially explicit CCM further allows for data accumulation
and consequential improvement in the accuracy of estimates over
time until otherwise removed due to irrelevance (e.g., patch loss).
Nevertheless, if rapid density assessment is preferable for a project,
traditional ecological sampling may remain a preferred method due
to a 600 person-day burn-in time required (this study) by the CCM
before estimates become reliably stable per social group relative
to 150 person-days of plots for both groups. However, these 150
person-days are supplementary to observational data, insomuch as
person-days necessary to collect both sets of data must be consid-
ered additive to observational data collection. Yet, if databases of
feeding locations are already available, adapting these data to CCM
estimation of resource density or distribution saves researchers from
needing to collect additional data to quantify resource abundance.

While this method is best applied to estimate the availability of
discrete, immobile, and spatially explicit resources, these advan-
tages transcend application beyond bonobos and allow research-
ers to evaluate the strengths of the method for their investigations
across all potential consumers who meet these criteria (further dis-
cussed in Table 3). Functionally, assumptions of the CCM are simi-
lar to studies investigating resource preference, a method that also
combines objective habitat measures with subjective animal-centric
data (Manly et al., 2007), and requires space re-use for data to ag-
gregate. Researchers must verify whether their existing or poten-
tial datasets to be used for CCM sampling are of sufficient sampling
depth and absent of biases (e.g., sampling biases or characteristics of
food items) for their consumers before the CCM can be applied as a
means of replacing objective resource measurement with the CCM
for resource availability.

Here, we offer a context-specific evaluation in two social groups
of a tropical frugivore of the CCM, a data collection method allowing
researchers to quantify resource availability to a consumer. It serves
as a potential new tool for animal behavior studies, and our results
offer a roadmap for when and how such a methodology may be use-
ful in other contexts and models. Many factors are likely to affect the
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fidelity of the CCM to true resource availability in a landscape, and
the characteristics of both the consumer and the resource will im-
pact the relative advantages of applying the method over traditional
plot sampling (Table 3). For now, in the absence of robust validation
of the method across food type, landscapes, and study species, re-
searchers interested in applying the CCM to their research contexts
should still perform traditional vegetative sampling and validate their
results between these two datasets before fully committing to the
use of the CCM only. Once this initial hurdle is surpassed, the CCM
allows continuous and comprehensive sampling of relevant resources
within a consumer's environment that barring significant changes to
the landscape or consumer preference will provide a dynamic and
updateable estimate with little additional effort. When applied cor-
rectly, the CCM will enable many behavioral ecologists to quantify
aspects of food availability by using data already existing in their
research repertoires. Furthermore, resource metrics derived from
the CCM may be more suitable to its application as well as allow for
more precise comparison in ways that make these data comparable
across social groups, subsequently promising new insights into the
interplay between an animal and its environment. Further validation
will illuminate the applicability and appropriateness of new methods
like the CCM in replacing pervasive but imperfect methodologies
like plot sampling as wild animal research seeks more accurate and
efficient methodologies in capturing animal behavior and the forces
that affect it.
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