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Abstract
Characteristics of food availability and distribution are key components of a species' 
ecology. Objective ecological surveying used in animal behavior research does not 
consider aspects of selection by the consumer and therefore may produce imprecise 
measures of availability. We propose a method to integrate ecological sampling of an 
animal's environment into existing behavioral data collection systems by using the 
consumer as the surveyor. Here, we evaluate the consumer-centric method (CCM) 
of assessing resource availability for its ability to measure food resource abundance, 
distribution, and dispersion. This method catalogs feeding locations observed during 
behavioral observation and uses aggregated data to characterize these ecological 
metrics. We evaluated the CCM relative to traditional vegetation plot surveying 
using accumulated feeding locations across 3 years visited by a tropical frugivore, the 
bonobo (Pan paniscus), and compared it with data derived from over 200 vegetation 
plots across their 50 km2+ home ranges. We demonstrate that food species abundance 
estimates derived from the CCM are comparable to those derived from traditional 
vegetation plot sampling in less than 2 years of data collection, and agreement improved 
when accounting for aspects of consumer selectivity in objective vegetation plot 
sampling (e.g., tree size minima). Density correlated between CCM and plot-derived 
estimates and was relatively insensitive to home range inclusion and other species 
characteristics, however, it was sensitive to sampling frequency. Agreement between 
the methods in relative distribution of resources performed better across species than 
expected by chance, although measures of dispersion correlated poorly. Once tested 
in other systems, the CCM may provide a robust measure of food availability for use 
in relative food availability indices and can be incorporated into existing observational 
data collection. The CCM has an advantage over traditional sampling methods as it 
incorporates sampling biases relevant to the consumer, thereby serving as a promising 
method for animal behavioral research.
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1  |  INTRODUC TION

The abundance, dispersion, and distribution of food resources 
not only determine species distribution but also have a strong 
impact on many aspects of an animal's life history, physiology, 
and sociality (Anholt & Werner,  1995; Chapman et al.,  2015; 
Davies & Deviche, 2014; Hutto, 1990; Lambert & Rothman, 2015; 
Rogers, 1987; van Schaik et al., 1993; Vogel & Janson, 2007). Due 
to the core importance of food to an organism, the quantification of 
food availability and distribution are key considerations across stud-
ies and disciplines. Methods used to estimate food resource abun-
dance, distribution, and dispersion are just as varied as the questions 
which necessitate these quantifications (Szigeti et al., 2016).

Measurement of the amount of food resources present for 
a consumer, such as abundance or density (i.e., estimation of the 
amount of a resource available in a landscape), depends heavily on 
the type of resource and scale of interest (Bowering et al., 2018; 
Morrison, 2016). Large-scale analyses of abundance typically rely on 
remotely derived proxies via satellite imagery due to the practical 
impossibility to directly measure large areas of land. In such analy-
ses, the abundance of resources available in a landscape is proxied 
from the estimation of land cover of preferred habitats (e.g., habitat-
based abundance) or includes methods like species distributional 
modeling (SDM) where the characteristics of locations occupied by 
a particular species are then used to extrapolate occupancy, and less 
frequently, abundance, over much larger scales.

For questions related more immediately to the consumer (at the 
individual or social group scale), direct measurement of exploitable 
resources offers more accurate insights into the resources available 
to a consumer (Foerster et al.,  2016; Wessling et al.,  2020). The 
abundance of mobile food resources may be measured via consumer 
behavior using metrics such as dietary composition, attack rates, 
feeding frequencies, and other metrics, under the assumption that 
consumption correlates with rates of resource encounter. Such met-
rics frequently serve only as proxies of food abundances in cases 
where measurements of true availability cannot be objectively or 
reliably inferred (Hutto,  1990; Lovette & Holmes,  1995; Watts & 
Mitani, 2015). However, for static food resources like plants, abun-
dance is commonly estimated by cataloging the number of individual 
resources available to a consumer in subsets of an area of interest 
and extrapolating quantities to a global scale (e.g., plot, transect, 
or adaptive cluster sampling), or by sampling distances from pre-
determined or random points and extrapolating densities based on 
these distances (e.g., point-centered distance sampling). Plot sam-
pling is the most common sampling method in studies of frugivorous 
or folivorous animals, and involves the placement of randomly or 

systematically placed plots of fixed size across the area of interest, 
and all individuals contained within those plots are inventoried and 
frequently measured for size (e.g., trunk size; Baraloto et al., 2013; 
Ståhl et al., 2017; Vogel & Janson, 2007). A number of considerations 
feed into the selection of plot size, shape, placement, and number 
(Bonham, 2013), such as species form (e.g., tree, liana, and herb), 
dispersion (e.g., clumped or dispersed), and anticipated rarity, all of 
which necessitate different optimized designs.

Plot sampling also allows the calculation of other metrics com-
monly of interest to animal behaviorists, such as food distribution 
and dispersion. To estimate distribution, that is, a calculation of rela-
tive resource density across space within a landscape, plot sampling 
may be further stratified across a given area relevant to a consumer 
at various scales ranging from individuals to populations (e.g., home 
range, landscape, or region). Distribution provides information about 
where and how many individuals are located within a space rather 
than simply about the number of individuals available globally within 
that system. Measures of dispersion (i.e., patterns of clustering or 
patchiness), such as Morisita's index (Morisita, 1962), are used to 
quantify the clustering of resources over space within a landscape 
(Krebs, 1999; Stephens & Krebs, 1986). Resource clustering is often 
used in the contexts of understanding resource competition and 
socio-ecological behavior (Vogel & Janson, 2011). Quantifications of 
food species dispersion are perhaps even more varied in practice 
and sensitive to the scale relevant to the consumer (Myers, 1978; 
Vogel & Janson, 2011). Dispersion metrics may also require distinct 
sampling methods tailored to specific questions (e.g., focal tree ob-
servation: Vogel & Janson, 2007, 2011), thus potentially require sup-
plementary surveying efforts to plot sampling.

Despite its centrality to animal research, ecological sampling 
design to evaluate abundance, distribution, or dispersion fre-
quently does not conform to recommended standards or is ad-
equately validated by animal ecologists (Mortelliti et al.,  2010; 
Szigeti et al., 2016). For example, while sampling effort can sub-
stantially impact measures of resource abundance, it is rarely 
validated whether sampling efforts are sufficient to adequately 
measure the intended metrics. Furthermore, ecological data col-
lection often requires research effort in addition to ongoing be-
havioral observations and is time intensive and thus infrequently 
conducted. Snapshots of abundance (i.e., measurements of a 
landscape spanning short intervals of time) derived from these ef-
forts may therefore be used up to decades after they have been 
measured without any consideration of changes that may have oc-
curred since the last assessment. For example, primate research 
sites commonly approximate intra-annual changes in food avail-
ability using species densities calculated from surveys that have 
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not been updated since the establishment of ecological monitor-
ing, in some cases representing significant time lags of 6 or more 
years (Klein et al., 2021; Potts et al., 2016; Wessling et al., 2018).

The problem of insufficient quantifications of resource avail-
ability also extends to sampling design. Traditional sampling 
methods in animal ecology, like plot sampling, are perceived as 
objective measures of the resources potentially accessible to a 
consumer. However, these methods are by design blind to aspects 
of resource selection by the consumer, and thus likely introduce an 
unknown measurement error. The distinction between resource 
accessibility and availability is important, as only the latter con-
siders that not all individual food items are equally attractive to 
a consumer. As such, if researchers are interested in an accurate 
representation of the resources relevant to a consumer, then as-
pects of resource selection must be incorporated into resource 
availability estimates.

Ecological sampling is time intensive and the need to incorpo-
rate resource selection into resource availability metrics adds an 
additional burden on sampling methods. Given the inadequacies of 
existing methods for the estimation of an animal's food availabil-
ity, is there a way to conduct ecological sampling that is time ef-
ficient within existing behavioral data collection systems and also 
integrates resource selection criteria of the consumer? Behavioral 
observation has been used extensively as a measure of food avail-
ability (Hutto,  1990; Lovette & Holmes,  1995), dispersion (Vogel 
& Janson,  2011), and preference (Forester et al.,  2009; Kent & 
Sherry, 2020), however, these methods are either limited in appli-
cation or still necessitate ecological data collection to be collected 
in parallel to behavioral observation. We therefore introduce a 
consumer-centric method (CCM) for animal behavioral ecology 
studies which uses the consumer as the survey vehicle to quantify 
food resources in a landscape. With this method, researchers cata-
log discrete food resource locations (e.g., feeding tree locations) as 
they are consumed during the process of behavioral observation. 
The CCM compiles the geographic location of food resources visited 
by a consumer over a given time period to allow the calculation of 
ecological indices (e.g., proxies of density) similar to those collected 
in traditional ecological sampling (see below). The method uses the 
consumer as a surveyor that, over time, aggregates the locations of 
all species in their diet within a given area of interest to that con-
sumer (e.g., home range).

Data reliant upon patterns of usage by a consumer, such as that 
proposed in the CCM, would result in a form of a presence-only 
dataset that mimics the logic employed in species distributional 
modeling (SDMs). In other words, aggregations of data on species' 
presence can be used to generate broader-scale predictions of rel-
ative abundance (i.e., distribution; Gomes et al., 2018). The prolif-
eration of presence-based datasets for uses like SDMs is indicative 
that there is significant utility in these types of data for estimating 
species distribution, and presence-only datasets have been fur-
ther employed to estimate species abundances with mixed success 
(Bradley, 2016; Gomes et al., 2018; Gutiérrez et al., 2013; Hwang 
& He, 2011; Jiménez-Valverde et al., 2021; Royle & Nichols, 2003; 

Yackulic et al., 2013). The CCM operates similarly to these applica-
tions, in that behavioral observation would contribute data on feed-
ing locations that subsequently translate into presence-based data 
on dietary species over a smaller spatial scale.

The CCM combines aspects of presence-based abundance mod-
eling outlined above with those of animal consumption rate proxies 
(e.g., prey attack rates), and consequently cannot be used univer-
sally in all animal consumer applications. First, as the CCM relies on 
the aggregation of data over time, data collected on resource loca-
tions must be representative of the species' same distribution over 
time, and therefore the method must only be applied to estimate 
resources that are immobile, discrete, and spatially explicit entities. 
Second, to allow for data accumulation, the CCM can only be ap-
plied to consumers who reuse the same space over time, such as 
a home range, and assumes that they have equal access to all the 
areas of this space (Alldredge et al., 1998). The data afforded by the 
CCM represent the outcome of both consumer-independent food 
abundance as well as consumer resource selection, therefore we 
must also assume that potential resource presence and consumer 
preference do not change within the period until adequate sampling 
has occurred (Manly et al., 2007). Subsequently, the CCM will like-
wise not be applicable to cases where objective measurements of 
resource abundance are necessary (as is the case with questions 
pertaining to, e.g., resource preference).

Consequently, because the CCM reflects the outcome of both 
selection and environmental conditions, it conflates the two, and 
therefore its estimates cannot be detached from either input (Kent & 
Sherry, 2020). Similar to the use of consumption rate proxies, this 
format, therefore, is also limited in the types of questions such a 
methodology can be applied to, specifically in cases where questions 
of selection are important. However, the CCM differs from con-
sumption rate methodologies, in that like presence-only models, it is 
location based and does not conflate encounter rate with metrics of 
abundance. With an understanding of the constraints of the method, 
there is precedent to extrapolating presence-based datasets to infer 
global patterns of abundances and distribution. Therefore, we ask, 
in cases where researchers do not need to understand patterns of 
selection by a consumer but simply its outcome (e.g., fruit availability 
indices), can the CCM replace plot-based data collection?

To answer this question, we evaluate the CCM relative to tra-
ditional plot-based ecological data collection using accumulated 
feeding locations from two social groups of a tropical frugivore, the 
bonobo (Pan paniscus), as a case study. Unlike existing metrics of food 
abundance derived from behavioral observation (e.g., prey attack 
rates), which can only serve as proxies of difficult-to-measure food 
abundance, in the case of the CCM, we can evaluate the estimates 
provided by the CCM against availability estimates provided by more 
traditional plot sampling. Specifically, we investigated whether be-
havioral data on feeding locations (trees and lianas) provide a reliable 
dataset allowing inference about food species' (1) densities, (2) dis-
tribution, and (3) dispersion. We additionally assess (4) the minimum 
sampling effort required and (5) for what characteristics of a food 
species this method can be considered most reliable.
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2  |  METHODS

2.1  |  Study species and behavioral observation

Data were collected at the Kokolopori Bonobo Reserve (Figure 1) 
on two social groups of bonobos (Ekalakala: EKK, Kokoalongo: 
KKL) between May 2016 and December 2019. Like much of the 
bonobo range, the Kokolopori Bonobo Reserve is a mixture of 
monodominant and heterogenous continuous forest, interspersed 
with areas of permanent and seasonally inundated swamp (Surbeck 
et al., 2017). It is floristically rich, however, relatively skewed toward 
a handful of dominant arboreal species, most of which are consumed 
by bonobos (Section 2.4 in Supporting Information). Bonobos are 
predominantly frugivorous, focusing the majority of their diet on 
ripe fruits from trees and lianas within their home range, although 
they regularly consume a variety of other plant and animal food 
items including flowers, leaves, insects, honey, small mammals, 
underground truffles, and terrestrial herbaceous vegetation 
(Hohmann & Fruth, 2007; Lucchesi, Cheng, Wessling, et al., 2021; 
Sakamaki et al., 2016; Samuni et al., 2020). Bonobos live in a fission–
fusion social system in which group members divide and range 
into subgroups of varying sizes and compositions independently 
throughout the day (Kuroda,  1979; Samuni et al.,  2022). Average 
subgroup sizes accounted for approximately 63% and 28% of each 

social group (Section 2.1 in Supporting Information). Subgroups 
were followed daily for behavioral data collection over the course of 
a full day of activity (Section 2.1 in Supporting Information), during 
which we collected data on each tree or liana fed upon by a member 
of the observed bonobo group, including location of the trunk of 
the resource using a GPS (Garmin GPSMAP 62) and diameter 
at breast height for all feeding trees ≥20 cm and lianas ≥5  cm 
diameter in size (Sections 2.1 and 2.2 in Supporting Information). 
We ignored all feeding patches smaller than this minimum, as this 
was also the minimum diameter used in vegetation plot surveying. 
All independent individuals of both groups were present during a 
significant proportion of the data collection for this study, therefore 
the feeding behavior summarized in our dataset is also representative 
of all members of both social groups.

Due to GPS measurement error (commonly 15–20 m) and con-
sequently an inability to distinguish individual trees on a small scale, 
we summarized feeding tree locations of each group into the pres-
ence or absence of each species in 50 × 50 m “observational cells” 
(Figure S1), in order to later relate these cells (in which species were 
present) to cells that had been visited by the bonobo group within 
the dataset but no individual of that species was visited. 50 m × 50 m 
cell size was chosen because it accommodates average GPS error 
between two points (potentially 40 m if GPS error is 20 m) and is 
comparable to the size of our vegetation plots. In practice, this 

F I G U R E  1 (a) Location of the study site relative to global bonobo distribution. (b) 50 × 50 m habitat plots (black dots; not to scale) within 
1 km2 grid cells (black square) overlaid upon all visited 50 × 50 cells within the 95% home range kernels for Ekalakala (red squares; to scale) 
and Kokoalongo (blue squares; to scale) bonobo groups.
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resulted in a presence–absence database of observational cells for 
each species in the bonobo home ranges. We used location data col-
lected with the GPS tracklog function to calculate the home range of 
both bonobo groups using kernel density estimates (see Section 2.1 
in Supporting Information). These groups share overlapping areas 
of their home ranges, including 63% of the home ranges of both 
groups. We evaluated whether feeding location datasets were suffi-
ciently sampled and stable by considering accumulation patterns of 
data per species over time (Section 2.2 in Supporting Information).

2.2  |  Vegetation plots

We conducted vegetation plot sampling by overlaying 1 × 1 km grid 
cells over the whole ranging area to identify relevant sampling scope 
and aimed to conduct plot sampling in every grid cell utilized by 
at least one of the groups (Figure  1 and Figure S1; Section 1.2 in 
Supporting Information). We sampled from within the overlaid 1 km2 
cells to distribute sampling plots evenly throughout the home ranges 
of the groups, and to permit the compilation of different sampling 
schemes between data collectors (see Supporting Information 
for details). Like the observational cells, all vegetation plots were 
50 × 50 m in size, within which data were collected on all trees 
meeting the minima defined for individuals in the observational 
cells. In total, we sampled 236 plots within these 1 km2 grid cells, of 
which 214 plots fell within the 95% home range of either group, with 
162 and 170 within the 95% range of EKK and KKL, respectively 
(Figure 1). Plot sampling averaged 4.1 ± 1.6 (SD) plots per km2 (range: 
1–7) and was determined to be of sufficient sampling depth (Section 
1.3 in Supporting Information).

2.3  |  Comparison of datasets

2.3.1  |  Density

To compare estimated species densities derived from each dataset 
(CCM or vegetation plots), we derived three different indices 
(Section 3.1 Equations 1–3 in Supporting Information). (1) We used 
the bonobo observational data to create a “presence index” based 
on bonobo feeding locations for each food species, estimated as the 
number of 50 × 50 m cells in which each species was present, divided 
by the total number of cells within the 95% kernel home range of 
each group (see Figure S6 for an example; hereafter “CCM Index”). (2) 
We calculated species density estimations using the vegetation plot 
data as the total number of individuals observed per area surveyed 
(num. individuals/km2, hereafter “Plot Density”). (3) We calculated 
the number of 50 × 50 m vegetation plots in which each species was 
present per total number of vegetation plots sampled for a more 
direct comparison with the CCM (hereafter “Plot Presence”).

To evaluate method agreement, we created pair-wise sets of 
comparisons of the three density indices by means of Pearson's cor-
relation tests and used the correlation coefficient (r) as a measure 

of the strength of agreement between methods. We conducted 
the pair-wise comparisons while assessing the influence of sam-
pling effort on method agreement by varying levels of home range 
usage (kernel % range from 20% to 95% in increments of 1%) and 
dietary inclusion (top 10 most consumed species until full diet) for 
each group. We only considered comparisons with at least 10 spe-
cies in at least 10 vegetation plots as a means of imposing minimum 
thresholds necessary to avoid distortion of comparison metrics due 
to small sample sizes. We chose 10 species as a minimum threshold 
as this is a commonly recommended minimum sample size for basic 
regression analyses (Gotelli & Ellison, 2004). To evaluate potential 
biases in spatial coverage of sampling by the two methods, we addi-
tionally created a moving window over the kernel home range from 
20% to 95% for which to compare methods more directly according 
to home range location. This window accounts for variation in area 
coverage by adjusting the window radius to impose similarly sized 
datasets for comparison over the range of % kernel inclusion (i.e., for 
agreement from home range core to the periphery; Section 3.1 in 
Supporting Information).

Finally, to identify potential dataset minima required for reli-
able and stable density indices derived from the CCM (i.e., temporal 
duration of dataset aggregation), we evaluated the pattern of cor-
relation strength between indices from each method as the dataset 
grew over time (i.e., day of data collection), and set the minimum as 
the point from which the correlation coefficient remains relatively 
stable. We describe p-values for these correlations in our summa-
ries below; however, as these correlations require independent data 
and because we evaluated thousands of correlation coefficients per 
group (nEKK = 15,075 and nKKL = 12,834), we do not draw inference 
based on p-values but instead focus only on correlation coefficients.

2.3.2  |  Dispersion

To evaluate agreement between methods in characterizing food 
species dispersion, we used Morisita's index (Morisita,  1962). 
Morisita's index is a statistical index that measures dispersion 
(i.e., clustering) across a sample set, providing a measure of the 
likelihood of samples within that sample set to be of similar com-
position. To allow for standardized and directly comparable sam-
ple units from which to calculate this index for both methods, we 
aggregated the number of individuals per species visited by the 
bonobos across three different grid cell sizes (500 × 500 m cells, 
1000 × 1000 m cells, and 1500 × 1500 m cells), and calculated the 
average number of individuals for each species in each of these 
grid cells using the vegetation plot dataset. We chose this range 
of cell sizes because they provide a compromise between allow-
ing for at least one vegetation plot to be sampled within each cell 
and considering the number of cells to be available for compari-
son between methodologies, while remaining reasonably biologi-
cally relevant to our study species (e.g., 8 km travel distance per 
day [Lucchesi, Cheng, Deschner, et al., 2021] and 30 km2+ home 
range [this study, Samuni et al., 2020]). For both datasets, we then 
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calculated Morisita's index using the dispindmorisita function of 
the package ‘vegan’ (Oksanen et al., 2019) for each species. We 
further accounted for an unusual distribution of Morisitia's indi-
ces deriving from the vegetation plot dataset that exaggerated 
the scale of the range of data and therefore obscured meaningful 
comparison between datasets, by ad hoc transforming the data 
to allow for a more normal distribution (Section 3.2 in Supporting 
Information).

2.3.3  |  Distribution

To evaluate the efficacy of the CCM to reliably quantify the 
distribution of food species in a landscape, we aggregated data by 
grid cell as was similarly done in our dispersion comparison. We 
compiled the data for both the observational cell and vegetation plot 
datasets in two ways: by either (i) aggregating (CCM) or averaging 
(plot dataset) the number of individuals per species per grid cell or 
(ii) by marking the presence/absence of a given species per grid cell 
size. We chose to average rather than aggregate plot data because 
greater plot sampling in a grid cell will inherently increase estimates 
of species densities, whereas sampling biases in CCM could be 
accounted for by controlling for location within each group's home 
range (i.e., % kernel home range). We then fitted model sets separately 
for each cell size and group (six sets of up to 70 species each), using 
each food species as a dataset and each cell as a datapoint. We used 
the estimated bonobo feeding data abundance per cell (a measure 
of distribution) as the response and the plot abundance as the test 
predictor using zero-inflated Poisson models (500 × 500 m grid size) 
or simple linear models for 1000 × 1000 and 1500 × 1500 m grid 
sizes. Within these models, to account for variation in home range 
utilization by the bonobos, we controlled for the % kernel home 
range of each cell by averaging the % kernel value assigned to each of 
the vegetation plots used to estimate the species abundance within 
that cell. We then calculated average Nagelkerke's R2 (500 × 500 m) 
or r2 (1000 × 1000 m and 1500 × 1500 m) for each model set across 
levels of dietary inclusion (see Section 3.3 in Supporting Information 
for detailed descriptions of the fitted models and model checks).

To also evaluate agreement between methods on simple pres-
ence of a species in a cell, we fitted a generalized linear mixed model 
with binomial error structure (Baayen, 2008) for each grid cell size 
and each social group. The response in this model was the presence 
or absence of a species in a given cell as predicted by the bonobo ob-
servational data (with one datapoint per species per cell), and pres-
ence as measured by vegetation plot and % kernel as test predictors. 
In these (six total) binomial models, we included cell ID and species 
as random effects and included random slopes for presence/ab-
sence in the plots and their correlation within the random effect of 
species (Section 3.3 in Supporting Information for details and model 
checks). As a last validation of distribution agreement, we identified 
when bonobos missed the presence of a species in a cell that had 
been identified in the vegetation plots and calculated a proportion 
of missed species occurrences out of all cells per species, as well as 

evaluated potential sources of biases in likelihood to miss a species 
in a cell (see Section 2.4).

2.4  |  Identifying sources of bias

If a consumer is selective in which resources it uses within a 
landscape, then measurements from vegetation plots may not 
accurately measure the relevant resources to that consumer. To 
evaluate these potential discrepancies, we compared food tree 
and liana sizes (strongly tied to variability in food crop production: 
Chapman et al.,  1992; Section 4 in Supporting Information) 
between CCM and vegetation plot data as an example of a potential 
selective characteristic. We then quantified seven characteristics 
of each species to evaluate how they contribute to rates of data 
accumulation and agreement between our sampling methods. 
Specifically, we considered the lifeform (tree or liana), patterns of 
dispersion, consumed food item (fruit or non-fruit), seasonality 
of consumption, density in the landscape, DBH variability, and 
frequency of consumption (Section 4.1 in Supporting Information) as 
test predictors in models with the following responses (Section 4.2 
in Supporting Information): (1) the speed at which data accumulate in 
the CCM dataset, (2) a measure of the difference between estimates 
of density between the methods, and (3) likelihood for bonobos to 
miss the presence of a species in a cell (Section 4.2 in Supporting 
Information).

2.5  |  General analyses

All data analyses were conducted in R (version 4.0.2; R Core 
Team, 2020), and models were fitted using functions of the ‘lme4’ 
package (1.1.23; Bates et al., 2015). We report p-values between .05 
and .1 as a “trend” for all models to ease issues of dichotomization of 
significance (Stoehr, 1999). To avoid issues of multiple testing when 
identical models were run across responses that varied only in their 
summary method (e.g., grid cell size) or dataset (e.g., social group), 
we describe only patterns that are stable and significant or trending 
across at least half of each model set; full results for all models as 
well as further description of all methods and model checks can be 
found in the Supporting Information. We log-transformed predictor 
(e.g., species density and consumption frequency) and response (all 
density indices) variables with significant skew to prevent issues with 
model fit (e.g., overdispersion, residual distribution, and leverage).

3  |  RESULTS

3.1  |  Consumer-centric dataset

The bonobo groups visited (i.e., fed in) a total of 12,430 (EKK) and 
13,827 (KKL) 50 × 50 m cells, amounting to an area “surveyed” of 
31.1 (EKK) and 34.6 km2 (KKL). This amounts to 58.6 km2 total area 
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surveyed, as 46.7% of this area occurred within the home range 
overlap of both communities. Bonobos from EKK and KKL fed on a 
total of 78 tree and liana species (88.6% occurring in the diets of both 
groups) from trees and lianas, of which 96% of feeding occasions 
could be identified to a local name. These observations amounted 
to 8818 (EKK) and 9140 (KKL) unique feeding tree/liana locations 
(50 × 50 m) consisting of 76 (EKK) and 72 (KKL) species, of which 58 
(EKK) and 55 (KKL) species were consumed in at least 10 locations. 
The diets of both groups were strongly skewed toward a few fre-
quently consumed species (Section 2.3 in Supporting Information). 
The groups visited a similar number of locations each day, with a 
mean of 10.0 ± 5.5 (KKL) and 8.9 ± 5.0 (EKK) locations visited. On 
average, 4.5 ± 2.0 (KKL) and 4.3 ± 1.8 (EKK) species were consumed 
per day by the bonobos.

Bonobos visited 60% (EKK) and 56% (KKL) of all visited cells 
within the first year of data collection, with gradual declines in the 
accumulation of newly visited cells over the 3+ years study period 
in both groups and a clear approach toward an asymptote for most 
of the top 30 species (Figure S3). We found that the speed at which 
new feeding locations were added to the dataset also decreased 
across species (i.e., longer accumulation times) with each passing 
year for both groups, and that much of the observed decrease in new 
locations visited over time was likely driven by significant gains early 
within the dataset (Figures  S3 and S4; Section 2.2 in Supporting 
Information). Data on species more variable in size (DBH) accumu-
lated slower in EKK than species more uniform in size (but no such 
relationship was found in KKL), and accumulation was also slower in 
species consumed for their fruits and in more abundant species in 
the landscape in both groups (Section 4.3 in Supporting Information, 
Tables S2 and S3).

3.2  |  Vegetation plot dataset

In total, 14,855 trees and lianas were measured across 214 habitat 
plots (Section 1.1 in Supporting Information), thus exceeding 
plot surveying minima (124 plots for this dataset, Section 1.3 in 
Supporting Information). Plot surveying required a cumulative total 
of 146 team days, averaging 1.7 ± 0.6 (SD) plots completed per 
team day (range: 1–4). Trees comprised the majority (66.9%) of the 
individuals measured. This dataset averaged 277.7 individual trees 
and lianas/ha across the habitat of these two groups, with 196.1 
indiv./ha for food species and 168.2 indiv./ha for potential food 
trees that met bonobo size minima (see below) for the EKK and KKL 
home ranges collectively.

Seventy-five of the 200 taxa identified in the plots were con-
sumed by at least one of the two groups, with 67 of 72 (EKK) and 70 
(KKL) of 75 species in the Kokolopori bonobo diet occurring in the 
plots. Like the bonobo diet, the forest was heavily biased toward a 
few species, with one species accounting for over 10% of the dataset 
(“Bofili”, local name for Scorodophloeus zenkeri), and the top 10 most 
common tree species accounting for almost 40% of all trees and li-
anas (n =  6375, 39.2%). Correspondingly, only 16 species account TA
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for over 50% of the individuals in the plots, of which 11 occur in the 
diet of both groups. Species in the bonobo diet accounted for 67% 
of the total number of trees or lianas observed in the Kokolopori 
landscape.

3.3  |  Dataset comparison

3.3.1  |  Consumer selectivity of tree sizes

Trees visited by bonobos were significantly larger in diameter on 
average than trees measured in the plots (EKK: t = −17.71, p < .001; 
KKL: t  =  −20.38, p < .001), but by only an average of <1  cm in 
both groups (Table S1). For 23.1% of consumed species, we found 
more individuals in the plots that did not reach the minimum size 
consumed than those who did exceed this minimum threshold. We 
subsequently restricted all analyses to trees/lianas that met bonobo 
size thresholds, consequently reducing the number of individuals 
included in the plot dataset by approximately 18% for the home 
ranges of both groups (8891 individuals in EKK and 8685 in KKL; 
Section 4 in Supporting Information). Reducing the dataset had a 
measurable effect on the correlation strengths between estimates 
of density (see below), with an average improvement of .04 for 
comparison (r) of the CCM estimate with the Plot Presence estimates 
and .07 improvement in correlation coefficient in the comparison of 
the CCM estimate with Plot Density.

3.3.2  |  Density

We found that the density estimates from the CCM and vegeta-
tion plots were comparable in both groups (Table  1 and Figure  2). 
Patterns of correlational strength between the methods stabilized 
and smoothed from approximately 50% kernel home range inclusion 
and above, and when approximately a minimum of 15 species was 
included in the dataset of both groups. Statistical significance of the 
correlation was reached in both groups when including ca. 20 of the 
top species or more. The inclusion of less frequently used areas of the 
home range in the comparison did not appear to considerably affect 
the strength of agreement between methods but correlation strength 
decreased with greater number of species included in the comparison 
(Figure 2; Table 1). While we did observe that peripheral areas of the 
home range generally resulted in lower methodological agreement 
(Figure S6), bonobo data appeared largely insensitive to inclusion of 
the outer reaches of the home range in both groups when included 
alongside more intensively surveyed areas (i.e., the core range).

Broadly, the CCM more closely matched estimates of Plot 
Density relative to Plot Presence. However, for both comparisons, 
we observed a decrease in the correlation coefficient the greater the 
number of species included in the EKK dataset (Figure 2, blue lines in 
bottom left panel). For both groups, we found highest agreement be-
tween methods when restricting the comparison to the top 36–40 
species (i.e., approximately half of the species in the diet), with one 

exception that only slightly outcompeted the r of the same range 
(KKL CCM vs. Plot Density). As expected, comparison between Plot 
Density and Plot Presence remained consistently high regardless of 
location within the home range of the bonobo groups, although cor-
relations were lower when fewer species were included.

Once our moving window reached the dataset minimum of 20 
plots at ca. 30% kernel, the correlation coefficient of the CCM with 
plot estimates increased until they reached a maximum of around 
60% kernel home range in both groups (Figure S6). Peripheral areas 
of the home range were generally lower in agreement than more 
central areas but did not show persistent decreases with increas-
ing peripheralization in a manner that would suggest consistently 
poorer sampling in peripheral areas. Sampling agreement was stron-
gest within our moving windows for the most frequently consumed 
species (e.g., 15 or 30 species) relative to more comprehensive sub-
sets of the two groups' diets (e.g., 55 and 70 species).

The density of the species in the landscape and the variabil-
ity in size significantly impacted agreement between the methods 
(Table S4); specifically, lower species density in the plots (estimate 
average: 0.57 ± 0.11 [SE]) and lower size variability (−1.29 ± 0.62 [SE]) 
improved method agreement. Further, in KKL only, greater seasonal-
ity, non-fruit item consumption, and greater consumption frequency 
decreased agreement between methods.

Correlation strength between the two methods reached signif-
icance and stabilized across methods and groups once exceeding 
600 days (i.e., ca. 5300 [KKL] to 6000 [EKK] total visited locations) 
and continued to improve as data were collected until the end of our 
data period (Figure 3; EKKmax: 1222 days, KKLmax: 1151 days). Similar 
correlational strengths were achieved briefly around the 200th day 
of data collection, however, its instability as data continued to ag-
gregate suggests this brief peak in performance may have been an 
artifact of sampling rather than a reliable sampling minimum.

3.3.3  |  Dispersion

Overall, Morisita's indices from the CCM correlated weakly and non-
significantly to vegetation plot indices, regardless of grid cell size 
used or bonobo group (Table 2a).

3.3.4  |  Distribution

Across both bonobo groups and all three grid cell sizes, we found that 
more species significantly correlated between the two methods for 
individual abundances across cells than would be expected by chance, 
with an average of 18% of species significantly correlated between 
methods across the three cell sizes (Table  2b). The percentage of 
species with significant correlations across methods declined as grid 
cell sizes increased, as did the number of significant species which 
remained consistent across both groups. Generally, proportion vari-
ance explained (r or Nagelkerke's R) by abundance per cell based on 
plots averaged 0.25 ± 0.32 [SD] across species in all grid cell sizes and 
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groups for predicting abundance per cell based on CCM. Average r 
did not vary substantially with cell size or between groups (Figure 4).

The presence of a species in a cell as measured by plots signifi-
cantly predicted the presence of that species in the cell as identified 
with CCM (estimate: 0.60 ± 0.20 (SD), range: 0.32–0.81; Table  S5). 
The location of a cell within the home range appeared to play a 

consistent role, with food species less likely to be identified by CCM 
in more peripheral cells (average estimate: −0.05 ± 0.01 (SD), range: 
−0.05 to −0.04; Table S5). Bonobos missed the presence of a spe-
cies on average in 17.5% ± 16.3% (SD; range: 0.0%–68.4%) of the 
500 × 500 m cells and in 18.4% ± 16.5% (SD; range: 0%–61.2%) of the 
1000 × 1000 m cells. Increases in overall species densities correlated 

F I G U R E  2 Correlation coefficients of density estimates between sampling methods (i.e., CCM and vegetation plots) for EKK (left) and 
KKL (right), according to home range percentage (top) and dietary inclusion (bottom). Color groups depict the three comparisons in this study 
(see legend), with numbers in brackets indicating number of species included (top legend) or percent home range included (bottom legend).

F I G U R E  3 Pearson's r (left) and p-value 
(right; dashed line indicates  .05 alpha 
level) of all three methods comparisons 
(see legend) for Ekalakala (full line) and 
Kokoalongo (dashed lines) over the 
duration of the dataset.
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with an increase in the likelihood for bonobos to miss the presence of 
species in a cell irrespective of cell size or group but species were less 
likely to be missed in a cell if they were more frequently consumed. 
We additionally found some support for species consumed for their 
fruits to be more likely to be missed in smaller cell sizes (Table S6).

4  |  DISCUSSION

Here, we demonstrate the applicability of the consumer-centric 
method (CCM) for measuring resource density and distribution in an 
animal's landscape. We demonstrate that food species availability es-
timates derived from the CCM method are modestly comparable to 
estimates derived from traditional vegetation plot sampling following 
a relatively short data collection timeframe, including before data have 

reached saturation. The method also shows promise for character-
izing the distribution of food patches within a landscape, but current 
analytical power was likely insufficient to adequately evaluate this re-
lationship. Furthermore, we argue that the CCM has an advantage over 
traditional sampling methods for some research questions as it incor-
porates sampling bias important to the consumer into the quantifica-
tion of the ecological landscape. We discuss the consequences of this 
advantage regarding the utility of the CCM in studies of animal ecology.

4.1  |  Robustness of the CCM

The CCM estimates of density showed moderate similarity to es-
timates from traditional ecological sampling. Behavioral ecologists 
have previously used consumption rates to infer about the abundance 

TA B L E  2 Average (a) correlation coefficients (r) and (b) proportion of variance explained (r; 500 × 500 m) or Nagelkerke's R (1000 × 1000 m 
and 1500 × 1500 m) between the CCM and plot datasets across three different grid cell sizes for (a) dispersion and (b) distribution estimates

(a) Dispersion

Ekalakala Kokoalongo

Cell size Mean + SD (range) Mean + SD (range)

500 0.08 + 0.17 (−0.54, 0.55) 0.00 + 0.16 (−0.35, 0.61)

1000 0.00 + 0.19 (−0.8, 0.25) −0.03 + 0.14 (−0.65, 0.13)

1500 −0.17 + 0.14 (−0.86, 0.07) −0.20 + 0.14 (−0.83, −0.01)

(b) Distribution

Ekalakala Kokoalongo

Cell size Mean ± SD (range) Num species p < .05 
(% of total species)

Mean ± SD (range) Num species p < .05 
(% of total species)

Significant species 
in both groups

500 0.25 ± 0.05 (0.21, 0.38) 15 (29%) 0.23 ± 0.04 (0.20, 0.36) 13 (28%) 11

1000 0.23 ± 0.02 (0.20, 0.30) 13 (19%) 0.24 ± 0.02 (0.20, 0.31) 8 (11%) 7

1500 0.23 ± 0.03 (0.14, 0.27) 8 (12%) 0.24 ± 0.02 (0.21, 0.27) 6 (9%) 3

F I G U R E  4 Averaged proportion 
variance explained r or Nagelkerne's 
R (top) and p-values for the estimate 
(bottom; dashed line indicates .05 alpha 
level) for correlations between estimated 
abundances per cell of species (i.e., 
distribution agreement) as derived from 
CCM and vegetation plots for EKK (left) 
and KKL (right) and for three grid cell sizes 
(red: 500 × 500 m, green: 1000 × 1000 m, 
and blue: 1500 × 1500 m).
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of food resources (Hutto, 1990; Lovette & Holmes, 1995; Watts & 
Mitani, 2015). These methods are particularly susceptible to han-
dling time, consumer motivation, and/or dependence on preference 
from resource availability and are subsequently difficult to validate 
against objective measures of abundance (Lovette & Holmes, 1995). 
The key advantage of the CCM is that rather than quantifying avail-
ability from occurrences of consumption (frequency dependent), the 
method depends on independent locations (spatially dependent), 
thereby allowing validation with traditional vegetation plot sampling.

Although we found a significant but minor periphery effect on 
agreement between methods in the presence/absence of species, the 
correlation of density estimates between methods was unaltered by 
the percentage of home range inclusion. The lack of a spatial effect on 
agreement between the methods is in some part likely to be a result of 
home range selection on the part of the consumer (e.g., second-order 
selection sensu Johnson, 1980), that is, bonobos may have already se-
lected their home range based on resource availability; hence, they 
show no sampling biases there within. In the absence of home range 
use biases, the CCM therefore reliably estimates resource availabil-
ity across the entirety of a group's space use, although future studies 
should verify an absence of sampling biases on agreement between 
the CCM and traditional methods in their own study species.

Further, we found that consumption frequency of a species was 
correlated with the likelihood to miss species presences, that is, that 
infrequently consumed food species were also more likely to go 
unsampled in the dataset. Consequently, restricting estimation to 
only the top half of the consumed species (by frequency) appears to 
offer a compromise between maintenance of dietary relevance while 
maximizing fidelity with density estimates as assessed by objective 
plot measurements. This minimum translated to species consumed in 
approximately at least 60 locations over our 3-year dataset. A general 
consequence of sampling frequency by a consumer is that estimates 
improve in precision as data accumulate over time. While species in 
our dataset were variable in “saturation level,” rates of new locations 
sampled by the bonobos slowed over the course of data collection 
and inter-method correlation of species densities stabilized after 
fewer than 2 years of data collection (approximately 600 days).

Tree stands in the Kokolopori forest remained relatively stable, 
with the loss of monitored individuals averaging about 2.0% per 
year (range: 0.5%–3.7% between 2017 and 2021; E. Wessling & M. 
Surbeck, unpublished data). For locations like Kokolopori where tree 
stand is relatively stable from year to year, the CCM is likely to be 
able to provide estimates of species abundances within a reason-
able margin of error. Intervals between vegetation plot surveys in 
animal studies are frequently longer than the CCM's 600-day mini-
mum, therefore the CCM may be better suited to adapt to environ-
mental changes than plot sampling because users can restrict their 
data aggregation to a specified time window (as long as this window 
exceeds the minimum), thereby creating a dynamic measurement 
of availability that is continuously updated as new data accumu-
late. Such an approach would allow users to evade the duplication 
of surveying efforts required to capture tree stand changes using 
traditional plot sampling. In contrast, the CCM may not be suitable 
for research locations where tree stand is frequently disturbed (e.g., 

bushfires and anthropogenic disturbance), as the minimum nec-
essary monitoring interval in CCM may be too long to account for 
abrupt or short-term changes to the environment. In these environ-
ments, traditional plot sampling methods may be better suited as 
long as they are performed at commensurate intervals relative to in-
dividual resource turnover. As our results indicate that sampling rate 
affects the stability of estimates (e.g., frequency of consumption), 
we anticipate that this general minimum will be longer for species 
with slower sampling frequency, that is, for less frequently con-
sumed, masting, or aseasonally consumed species. A myriad of other 
factors are likely to contribute to the speed at which data stabilize in 
methods like the CCM. We therefore recommend that researchers 
studying other systems evaluate the applicability of a method such 
as the CCM against resource stability and the traits of the consumer, 
relative to the suitability of more traditional methods (see Table 3).

Generally, species distribution (i.e., spatially explicit relative 
abundance) correlated weakly between the methods across species 
regardless of the scale of comparison (i.e., cell size). A greater pro-
portion of species reached significant agreement between methods 
in smaller rather than larger cell sizes, potentially as a function of 
proximity between bonobo foraging behavior and sampled plots 
(i.e., the larger the cell size used, the greater the potential distance 
between bonobo feeding locations and comparatively small plot 
areas). Nevertheless, our finding that correlations of distribution 
within species were significant across a greater proportion of food 
species than expected by chance (i.e., 5%) and that the rates at which 
bonobos missed the presence of a species in a cell are likewise better 
than common rates of species misses between multiple observers 
sampling the same plot (Milberg et al., 2008) provides hope that reli-
able estimates of sub-landscape abundances and presence distribu-
tion may improve with greater sampling depth.

While detectability is rarely 100% in either method 
(Morrison,  2016), the miss-rates by a consumer in the CCM may 
rather carry additional information about the nature of resource 
selection (and the individuals that are subsequently ignored). This 
is especially likely to be the case in consumers who have the capac-
ity to keep track of spatiotemporal patterns of resource availability. 
Bonobos likely have a concept of where and when resources become 
available, and therefore are also capable of targeting resources that 
are rare (Janmaat et al., 2013; Normand et al., 2009). Consequently, 
the CCM mimics ad hoc sampling (Foster et al.,  1998; Gordon & 
Newton,  2006; Hopkins,  2007), and our results indicate that the 
CCM more closely matches Plot Density estimates at capturing rare 
species relative to more abundant species.

Nonetheless, in the absence of full censusing, we cannot dif-
ferentiate which sampling method produced a more precise 
representation of food species availability, dispersion, and distri-
bution patterns. Ideally, methodological sampling biases could be 
identified by simulating both sampling schemes from a simulated 
“forest”. However, as we rarely understand the complexity of 
consumer movement and resource selection patterns (Buskirk & 
Millspaugh, 2006), subsequent conclusions drawn from simulated 
sampling behavior would be just as arbitrary as the decisions made 
to simulate them (Johnson, 1980).
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4.2  |  Measuring different phenomena

We argue that the CCM, with adequate evaluation, may be a more 
appropriate tool for some applications in behavioral ecology than 
traditional inventory methods such as plot sampling. Traditional plot 
sampling quantifies the total amount of potential resources includ-
ing inaccessible, unattractive, or otherwise unpalatable resources 

to a consumer. Only a subset of these resources comprises true re-
source availability, that is, resources with potential to be selected 
(Alldredge et al., 1998; Buskirk & Millspaugh, 2006; Johnson, 1980), 
and although correlated, each represents inherently separate phe-
nomena (Hutto, 1990). Because we rarely understand the processes 
of food selection by which consumers filter objective resource abun-
dance into availability, the CCM offers the advantage of using the 

TA B L E  3 Advantages and disadvantages to the use of (a) traditional vegetation plot sampling and (b) the CCM for acquisition of 
information on food abundance to a consumer

Advantage Disadvantage

(a) Vegetation plot sampling

Provides an objective estimate of abundance of all potential tree 
species in a landscape

Effort may be wasted quantifying tree species that are irrelevant (i.e., 
ignored) to the consumer

Allows for the quantification of landscape-level characteristics non-
specific to the consumer such as overall species richness, total 
tree density, and total basal area

Choice of method used may inhibit ability for cross-site comparison 
when different methods are used may introduce biases or errors 
toward certain characteristics of measured species

Methodology can be adjusted and tailored to different end goals and 
to accommodate various characteristics in the environment or 
survey targets (trees/lianas)

Survey effort may need to be intensive depending on desired outcomes 
(e.g., if species of interest are rare, landscape is large, or detailed 
sub-landscape comparison is needed)

Generally comparable across landscapes and objective (i.e., non-
specific) to the landscape rather than particular consumers (e.g., 
study species) or social units

Is a static measurement of a single snapshot in time —survey area must 
be resurveyed if changes in the area occur

No “burn-in” time required: data are immediately useable once 
minimum sampling is met

Can only approximate the distribution of individuals at a scale fixed to 
the methodology—requires a priori assumptions of relevant scales 
of distribution to a consumer

Does not necessitate direct observation of the consumers Can measure only abundance but cannot provide information on 
distribution of potential feeding locations or actual availability of 
resources to a consumer

Is independent of consumer movement, therefore sampling can 
target areas of interest

Able to measure dispersion using finite and spatially explicit samples

(b) Consumer-Centric Method (CCM)

For frequently consumed species, could it theoretically be capable 
of providing a census of all relevant individuals of a given species 
once data are fully saturated

Data are not generalizable beyond the sampled individuals or social 
group

Provides temporally dynamic monitoring of distribution of visited 
(i.e., relevant) feeding locations; can reflect changes within the 
area of interest over time

For now, only appears suitable for quantification of densities and some 
species' distributions; traditional methods may still be required if 
other metrics are desired

Provides dynamic monitoring of availability of both abundance as 
well as consumer behavior changes or changes in selection

Information gained is limited only to consumed species

Data are able to reflect the true availability of resources rather than 
abundances (which are blind to patterns of use and temporally 
varying variability)

Quality of information may be biased toward frequently consumed 
species

Because they are targeted by the consumer, the CCM may allow for 
better capture rates of species otherwise rare in the landscape

Requires a “burn in” period before reliable and stable estimates can be 
provided and data are of sufficient depth

Tailored directly to social unit (e.g., individual and community) and 
reflects selection biases inherent to each social unit

Requires direct behavioral observation of the consumer

Data are collected directly at the scale most relevant to the 
consumer and are therefore not aggregated to impose ad hoc 
scales of summarization

Currently requires cross-validation with traditional plot sampling before 
the method is demonstrated to be robust across contexts

Is easily integrated into existing behavioral observation data 
collection and does not require supplementary data collection

Is not a valid method when an assessment of resource preference or 
selection is relevant to the study question

With data collection teams sufficiently trained in botanical 
identification of all food items, does not require additional 
research effort from botanists

Is the joint outcome of resource selection and true abundance, 
therefore cannot disentangle changes in either input from the other
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consumer as a means to avoid arbitrary decisions as to how to best 
sample the landscape (Johnson, 1980). We detail examples of this 
selectivity and the resulting advantages of the CCM below.

First, we observed significant differences between average sizes 
of trees/lianas visited by bonobos relative to what was available in 
the landscape of consumed species (as measured in vegetation plots). 
Reducing our plot dataset to a single selection criterion (tree/liana 
sizes selected by the consumer) increased the correlations between 
CCM and vegetation plot measures by an average of 4%–7% as a 
simple demonstration of the inadequacies of consumer-objective 
plots in mirroring consumer behavior. Second, that bonobos missed 
or ignored certain food resources in cells identified to contain them 
underlines further how researchers are likely unaware of relevant se-
lection criteria that impact the measurement of true resource avail-
ability. Because apes possess mental maps of their environments and 
are known to adjust travel to target preferred food sources (Janmaat 
et al., 2013; Lucchesi, Cheng, Wessling, et al., 2021), they are un-
likely to consistently miss available food resources within their home 
range over extended periods of time. In a future study, this may be 
confirmed by evaluating if particular cells within the home ranges 
consistently disagreed between methods across food species. Third, 
we found that CCM estimates of density and distribution differed 
between bonobo social groups, even with largely overlapping home 
ranges. This conforms to previous findings of group-specific feeding 
selection criteria in bonobos (Samuni et al., 2020), independent of 
local abundance. If resource availability for a consumer in a given 
landscape is dependent on group identity, then only methods like 
the CCM incorporating these criteria allow comparable estimates for 
comparative studies across social groups.

Altogether, by accounting for consumer selection, the accumu-
lation of data on food patch location is inherently less subjective 
than datasets dependent on arbitrary decisions by the investigator 
(Johnson, 1980) because it does not involve decisions by the inves-
tigator about selection criteria. However, such a method precludes 
its ability to be used for assessing the components involved in se-
lection by a consumer and preference if conducted in the absence 
of objective abundance sampling (e.g., plots). Conversely, when 
conducted in parallel to plot sampling, the CCM can provide in-
sight into which resources are regularly ignored, and consequently, 
the components leading to biases in consumption (i.e., availability 
relative to abundance). It should be noted, that biases in resource 
measurement in consumer-objective sampling also occur via mul-
tiple channels including selection of sampling method, metric, 
and effort, as well as through unavoidable systematic or random 
measurement errors (Baraloto et al.,  2013; Milberg et al.,  2008; 
Morrison, 2016; Ståhl et al., 2017; Wessling et al., 2020). The CCM, 
however, accounts for several of these issues because consumers 
are knowledgeable and motivated surveyors who actively target 
resources, with apparently negligible impact of scale variation (e.g., 
cell size) or abundance on fidelity of CCM estimates to plot-derived 
estimates. Therefore, estimates derived from the CCM could the-
oretically provide accurate measures of availability once data have 
reached a sufficient depth.

Difficulties with GPS signal in Kokolopori forced us to coarsen 
data precision to 50 × 50 m quadrats, and consequently, a loss of 
fine-tuned information on actual abundance of resources visited. 
Subsequently, our results mimic the same difficulties identified 
by Jiménez-Valverde et al.  (2021) in the fidelity of presence-only-
derived abundance estimates to true abundance. Future studies that 
are able to track visits to specific resource patches will likely allow 
for more honest sampling of the abundance of resources visited and 
may permit CCM datasets to avoid suffering the same shortcoming. 
Nonetheless, the CCM was able to correlate with density estimates 
provided by traditional plot sampling at a rate of up to 69%, suggest-
ing moderate but imperfect comparison between the two methods. 
That the two methods correlate only moderately well may suggest 
that they likely measure similar but different resource groupings 
(potential vs. used). Although in this study we cannot confirm that 
the CCM measures true availability with greater precision than plot 
sampling, it anyways remains to be validated that plot sampling can 
provide estimates reflective of measures of true availability either.

Our spatially explicit CCM further allows for data accumulation 
and consequential improvement in the accuracy of estimates over 
time until otherwise removed due to irrelevance (e.g., patch loss). 
Nevertheless, if rapid density assessment is preferable for a project, 
traditional ecological sampling may remain a preferred method due 
to a 600 person-day burn-in time required (this study) by the CCM 
before estimates become reliably stable per social group relative 
to 150 person-days of plots for both groups. However, these 150 
person-days are supplementary to observational data, insomuch as 
person-days necessary to collect both sets of data must be consid-
ered additive to observational data collection. Yet, if databases of 
feeding locations are already available, adapting these data to CCM 
estimation of resource density or distribution saves researchers from 
needing to collect additional data to quantify resource abundance.

While this method is best applied to estimate the availability of 
discrete, immobile, and spatially explicit resources, these advan-
tages transcend application beyond bonobos and allow research-
ers to evaluate the strengths of the method for their investigations 
across all potential consumers who meet these criteria (further dis-
cussed in Table 3). Functionally, assumptions of the CCM are simi-
lar to studies investigating resource preference, a method that also 
combines objective habitat measures with subjective animal-centric 
data (Manly et al., 2007), and requires space re-use for data to ag-
gregate. Researchers must verify whether their existing or poten-
tial datasets to be used for CCM sampling are of sufficient sampling 
depth and absent of biases (e.g., sampling biases or characteristics of 
food items) for their consumers before the CCM can be applied as a 
means of replacing objective resource measurement with the CCM 
for resource availability.

Here, we offer a context-specific evaluation in two social groups 
of a tropical frugivore of the CCM, a data collection method allowing 
researchers to quantify resource availability to a consumer. It serves 
as a potential new tool for animal behavior studies, and our results 
offer a roadmap for when and how such a methodology may be use-
ful in other contexts and models. Many factors are likely to affect the 
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fidelity of the CCM to true resource availability in a landscape, and 
the characteristics of both the consumer and the resource will im-
pact the relative advantages of applying the method over traditional 
plot sampling (Table 3). For now, in the absence of robust validation 
of the method across food type, landscapes, and study species, re-
searchers interested in applying the CCM to their research contexts 
should still perform traditional vegetative sampling and validate their 
results between these two datasets before fully committing to the 
use of the CCM only. Once this initial hurdle is surpassed, the CCM 
allows continuous and comprehensive sampling of relevant resources 
within a consumer's environment that barring significant changes to 
the landscape or consumer preference will provide a dynamic and 
updateable estimate with little additional effort. When applied cor-
rectly, the CCM will enable many behavioral ecologists to quantify 
aspects of food availability by using data already existing in their 
research repertoires. Furthermore, resource metrics derived from 
the CCM may be more suitable to its application as well as allow for 
more precise comparison in ways that make these data comparable 
across social groups, subsequently promising new insights into the 
interplay between an animal and its environment. Further validation 
will illuminate the applicability and appropriateness of new methods 
like the CCM in replacing pervasive but imperfect methodologies 
like plot sampling as wild animal research seeks more accurate and 
efficient methodologies in capturing animal behavior and the forces 
that affect it.
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