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Simple Summary: The rising areas of nutrigenomics and feedomics determine the fashion of research
in the field of veterinary medicine. In the present review, we summarize recent findings about how
nutrition influences metabolic disorders and diseases through modifications in the activity and
function of microRNAs. MicroRNAs perform essential functions in a variety of biological processes,
including differentiation, cell proliferation, metabolism, development, and inflammation. Circulating
microRNAs are being investigated as potential biomarkers of disease, susceptibility, and dietary
exposure. Finally, we highlight the role of microRNAs as biomarkers in ruminant health and diseases,
and discuss the difficulties of biomarker development in the transition from bench to clinical practice.

Abstract: The knowledge of how diet choices, dietary supplements, and feed intake influence
molecular mechanisms in ruminant nutrition and physiology to maintain ruminant health, is essential
to attain. In the present review, we focus on the role of microRNAs in ruminant health and disease;
additionally, we discuss the potential of circulating microRNAs as biomarkers of disease in ruminants
and the state of technology for their detection, also considering the major difficulties in the transition
of biomarker development from bench to clinical practice. MicroRNAs are an inexhaustible class
of endogenous non-protein coding small RNAs of 18 to 25 nucleotides that target either the 3′

untranslated (UTR) or coding region of genes, ensuring a tight post-transcriptionally controlled
regulation of gene expression. The development of new “omics” technologies facilitated a fresh
perspective on the nutrition–to–gene relationship, incorporating more extensive data from molecular
genetics, animal nutrition, and veterinary sciences. MicroRNAs might serve as important regulators
of metabolic processes and may present the inter-phase between nutrition and gene regulation,
controlled by the diet. The development of biomarkers holds the potential to revolutionize veterinary
practice through faster disease detection, more accurate ruminant health monitoring, enhanced
welfare, and increased productivity. Finally, we summarize the latest findings on how microRNAs
function as biomarkers, how technological paradigms are reshaping this field of research, and how
platforms are being used to identify novel biomarkers. Numerous studies have demonstrated a
connection between circulating microRNAs and ruminant diseases such as mastitis, tuberculosis, foot-
and-mouth disease, fasciolosis, and metabolic disorders. Therefore, the identification and analysis of
a small number of microRNAs can provide crucial information about the stage of a disease, etiology,
and prognosis.

Keywords: microRNAs; ruminant nutrition; ruminant physiology; nutrigenomics; ruminant diseases;
biomarkers; livestock diseases

1. Introduction

Feed regurgitation, chewing, salivation, and swallowing are described as rumination.
Rumination reduces particle size, increasing microbial activity and making it easier for
the digest to pass through the digestive tract. Ruminants digest their meals differently
from non-ruminants due to their distinct gastrointestinal systems. Ruminating animals
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have several physiological traits that assist them in surviving in harsh environmental
conditions. As a result, ruminants require different antibiotic-like compounds (mostly
ionophores, lipophilic compounds) and direct-fed microbials than non-ruminants. These
ruminant-specific products are thought to improve ruminal development, lactation, and
production by influencing the generation of short chain fatty acids (SCFA) and microbial
protein in the rumen to increase the provision of metabolizable energy and a balanced
mix of amino acids [1]. The idea of nutritional value combines knowledge of the nutrients
present and their availability, with considerations of the typical consumption rates, flavor,
and the impact of the meal on the health of animals and the standard of animal products.
Understanding ruminant responses to dietary components and other environmental factors
elucidates the significance of the environment–gene expression interaction, including post
transcriptional regulation through microRNAs (miRNAs). A better understanding of this
interaction presents the opportunity to modulate metabolism, health, and diseases based
on nutritional strategies.

Feeds are known to provide a conditioning environment that shapes the genome’s
activity and the body’s physiology [2]. Direct studies of feeding methods associated with
production characteristics have generally dominated the traditional approach in ruminant
nutrition. However, this approach was unable to offer sufficient information regarding
nutrient dynamics in the gastrointestinal tract (GIT), their impact on tissue, and molecular
mechanisms of metabolism. As a result of advances in ruminant nutrition and physiology,
molecular biology, high-throughput technologies, and bioinformatics databases, other
approaches, such as nutrigenomics, epigenetics, metagenomics, metabolomics, transcrip-
tomics, and proteomics have become more prominent. The environment modulates gene
expression through modifications. One type of that modification of gene expression is
epigenetics, and if epigenetics is thought of as a harmonizing process, many phenotypic
differences can be simply explained [3]. Another mode of regulation of gene expres-
sion, influenceable through environmental factors, is facilitated post-transcriptionally
through miRNAs.

Understanding gene regulation, including the effect of nutrition in altering noncoding
regulatory RNA such as miRNAs, is one of the foundations of the biological and molecular
underpinnings of how diet affects animal nutrition and phenotypic variation [4]. MiRNAs
are single-stranded noncoding RNA molecules, which are 18–25 nucleotides (nts) long,
that contribute to posttranscriptional gene regulation by binding (usually with imperfect
complementarity) to the 3-UTR of a target messenger RNA (mRNA), resulting in trans-
lation degradation or inhibition [5]. Each miRNA is considered to have several targets,
and multiple miRNAs can converge on a single mRNA, implying that these fascinating
molecules play a significant regulatory role in metabolism and development [6]. Lin-4 and
lethal-7 (let-7) were the first miRNAs discovered, and they were determined to be critical
for developmental timing in Caenorhabditis elegans [7]. Following that, a mammalian let-7
family with twelve members expressed from eight separate loci (let-7a-1, -2, -3; let-7b; let-7c;
let-7d; let-7e; let-7f-1, -2; let-7g; let-7i; miR-98) was discovered and characterized [8]. Even
though they are found all over the genome, many let-7 miRNA family members are coordi-
nated during development, and their regulation has been found to involve RNA-binding
proteins, such as Lin28, which inhibits let-7 biogenesis. Since the discovery of the first
miRNA (lin-4) in 1993 [9], advancements in next-generation sequencing (NGS, also referred
as second-generation sequencing) and third-generation sequencing (TGS) technology have
ushered in a new age and the ability to rapidly detect numerous classes of small RNA
molecules, including miRNA, in various biological samples [10]. Repeated free-thaw cycles
and long-term storage have been found to be stable for miRNAs in many biological samples,
which make miRNAs a robust biological marker [11]. Various pathways, such as direct
fusion, internalization, and receptor-mediated interactions, are hypothesized to be involved
in delivery to destination cells and tissues. These functional miRNAs are supposed to use
cellular machinery to regulate mRNA translation to protein once they have been delivered.
Multiple sequencing systems (e.g., Illumina, Ion Torrent, and SOLiD) and bioinformatics
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data management skills enable in-depth miRNA sequencing (miRNA-Seq), allowing for the
discovery of known and novel miRNAs [12,13], alterations [14], and possible functions [15].

An overview of the most recent research on ruminant miRNAs, their role in diet,
and their potential as biomarkers for ruminant nutrition is given in this review. The
physiological processes of the rumen receive no less consideration.

2. The Role of miRNAs in Ruminants

One of the most prosperous subspecies of terrestrial mammals is the ruminant family.
They live in a wide range of diverse environments around the world and have a big impact
on various ecosystems, industries including agriculture, leisure activities, and cultures [16].
The ability of this group of animals to survive and procreate on low-quality, low-protein,
and high-fiber plant resources is a major factor in their success. Most of the various
stakeholders believe that animal health is crucial to the production of livestock; however,
there is a disagreement among consumers, farmers, and veterinarians over what constitutes
an acceptable health state.

The term “animal health” lacks a precise scientific definition (ranging from the absence
of disease to a broad definition of health as a state of unrestricted physical, physiological,
and psychological well-being), as well as clear standards from which the condition of
animals and the quality of their feed could be properly evaluated. One of the main goals of
farmers is to assure the health and performance of their livestock through the adequate
provision of suitable feed. By enhancing forage quality and creating rations with more
balanced ratios of forage and grain, organic farming should attempt to boost the energy
content of cattle diets to improve the efficiency of protein utilization and, as a result,
reduce nitrogen loss to the environment [16]. Farm animals’ cell differentiation, biological
development, and physiology are all significantly influenced by miRNAs. These processes
include controlling muscle growth and hypertrophy, adipose tissue expansion, oocyte
maturation, and early embryonic development [17]. Recent research has demonstrated the
critical roles of miRNAs in sheep [18], goats [19], and bovine [20,21] rumen development,
as well as the preservation of intestinal homeostasis. As a result, the miRNA expression
profiles in the rumen, small intestine (duodenum and jejunum [22]), and large intestine
(cecum and colon) of sheep and cattle have been identified. The study also revealed that
some miRNAs are exclusively expressed in specific intestine segments, indicating that
their roles may be constrained to the local microenvironment. In addition, taxonomic
differences in how miRNAs regulate gene expression typically occur during the expression
and processing stages [23]. In ruminants, the colon is a vital component of the hind gut’s
digestive system. Cell wall polysaccharides, cellulose, and hemicellulose are fermented and
used in large part by the colon in ruminants. According to Yan and colleagues’ study [23],
from a total of 1572 miRNAs discovered in the colon tissues during the analysis of colon
miRNA transcriptomes in preweaning and postweaning goats, 39 differentially expressed
miRNAs and 88 highly expressed miRNAs were screened, and various functions of dynamic
miRNAs in the regulatory system governing colon growth in goats were discovered [23].
In a study on cows from our group, the function of the rumen tissue miRNAome and
transcriptome in relation to diet changes or the addition of a phytogenic feed additive was
reported. We investigated how a phytogenic feed additive supplemented the diet transition
from forage (FD) to high-grain (HG) feeding, and how that affected the role of miRNAs in
the epithelial transcriptome. The study provided evidence that miRNAs have a direct role
in the host’s responses to nutrition by identifying potential miRNA control mechanisms of
gene expression during the switch from FD to HG feeding and phytogenic supplements [24].
In a parallel study from our research group, the presence of miRNAs in rumen fluid and
the potential for miRNA-mediated cross-talk within the ruminal ecosystem were examined.
The study hypothesized a potential role as a mechanism of interaction between the host
and the ruminal microbiota, and suggested that this communication is bidirectional, with
the microbiota influencing the host’s miRNA expression pattern and the host potentially
helping to shape the gut bacterial profile through the production of specific miRNAs [25].
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Potential Regulatory Functions of miRNAs in Ruminant’s Milk

The ruminant mammary gland (MG) is a crucial organ responsible for producing milk
for human infant and adult nutrition [26]. Not only nutrition, genetics, breed, disease
pathogens, and other environmental factors, but also post transcriptional regulation of
gene expression affects MG productivity. Lactation, one of the amazing outcomes of
evolution, is a very dynamic and complicated process [27]. The growth of the MG and
the production and release of milk are all parts of lactation. Cattle, buffaloes, goats, sheep,
and camels provide almost all the world’s milk. Yaks, horses, reindeer, and donkeys are
additional less frequent milk-producing animals. Each species’ prevalence and significance
vary greatly between different geographical areas and nations. Feed, water, and climate
are the three main factors that influence the dairy species retained. Market demand,
dietary customs, and the socioeconomic makeup of each household are other variables
that could impact the existence of a dairy species (e.g., poorer families tend to rely more
on small ruminants). Since milk from dairy ruminants such as cows, goats, and sheep has
been shown to have positive benefits on humans, extensive work has been carried out to
increase milk production and improve its nutritional value [28]. Most infant formulas are
based on cow milk proteins, and both cow and goat milk are commonly used as dairy
products. Results show that adults absorb significant levels of milk-derived miRNAs from
commercial pasteurized milk. Additionally, investigations have shown that milk exosomes
can be incorporated into kidney, intestinal, intestinal cancer, and peripheral cells, as well as
into macrophages and colon cancer cells [29]. According to Golan-Gerstl and colleagues,
95 percent of the miRNAs expressed in human milk are likewise expressed in goat and
bovine milk, and pasteurization of bovine milk does not appear to eliminate miRNAs [30].
Additionally, 24 validated sites that were engaged in immunomodulatory actions were
shared by conserved miRNAs [31]. Unsaturated fatty acid-rich feed added to the diet can
be a useful strategy to boost milk’s health-promoting qualities; albeit, the impacts on the
genes and pathways involved in these processes have not yet been fully and accurately
described [32]. There are a number of measures, including nutrition, seasonal feed changes,
and genomic variation, that can be utilized to improve the beneficial components in milk
in ruminants because the process for the synthesis of milk fat is complex and subject to
multifactorial regulation [33].

Bovine, caprine, and ovine species’ genetic variations of miRNAs expressed in the
mammary gland or found in milk and localized in dairy quantitative trait loci (QTLs) were
examined to find variations that might be the causes of dairy features. Using whole genome
data to find miRNA genetic variants expressed in the mammary gland and localized in
dairy QTLs, the study identifies miRNA genetic variations of interest in the context of dairy
production [34].

A. Cattle
Proteins, lipids, and amino acids, as well as other bioactive substances such as hor-

mones and cytokines, are all readily available in cow milk, which is also a good source
of many other vital nutrients. Cow milk has been commercialized and regularly used by
people for growth and health benefits due to its nutritional relevance. Li and colleagues
describe the miRNA expression spectra of three milk fractions (fat, whey, and cells), contrast
the milk fraction miRNome profiles with those of mammary gland tissue, and determine
which milk fraction miRNome profile might be a better indicator of the miRNome profile
of mammary gland tissue. Their findings demonstrated that the miRNAome of mammary
gland tissue was accurately represented by miRNAs from milk fat. Top expressed miRNAs
in milk were functionally annotated, and this revealed their crucial regulatory roles in
mammary gland functions and perhaps to milk recipients [35]. Udder diseases, particularly
mastitis brought on by bacterial infections, are significant issues for the dairy industry
globally. Mastitis continues to be a major issue for the dairy industry globally, resulting
in significant losses every year from reduced milk production (both quantity and quality),
expensive treatments, and early animal culling, as well as having a significant impact on
the development of antimicrobial resistance in cattle due to the widespread use of dry cow
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antibiotics [36]. Improved tools that can accurately detect early mammary inflammation in
cattle are urgently needed given the relevance of early disease detection for minimizing
the considerable financial and animal welfare implications of mastitis globally. Monitor-
ing mammary gland health and spotting early inflammation require different methods.
The most used method is somatic cell counting (SCC), which can be carried out in large
quantities of milk or as individual milk samples, directly or indirectly through colorimetric
quantification, frequently with the California Mastitis Test (CMT) [36]. Mammary epithelial
cells release milk fat globules through a budding mechanism that encloses a crescent of the
mammary epithelial cells cytoplasm in the plasma membrane [35]. Whether the miRNAs
found in milk are specific to the mammary gland or come from the blood is the key question
in determining the involvement of miRNAs in lactation. Tzelos and colleagues investigated
the relationship between CMT scores (0 to 3), which were derived from many individual
quarter milk samples (n = 236) taken from dairy cows at various lactations, and the levels
of four inflammation-associated miRNAs (bta-miR-26a, bta-miR-142-5p, bta-miR-146a, and
bta-miR-223). They confirmed that higher miRNA levels during lactation 1 than later lacta-
tions were responsible for the significant lactation number effect (P 0.01) for bta-miR-26a,
bta-miR-142-5p, and bta-miR-146a. They also showed that bta-miR-223 and bta-miR-142-5p
levels could accurately (100% sensitivity, >81% specificity) identify early inflammation.
They stated that their findings offer further evidence of the usefulness of miRNAs as
early diagnostic indicators of cow mastitis [36]. Using microarray and quantitative PCR
analysis, Izumi and colleagues identified variations between colostrum (100 miRNAs) and
mature milk (53 known miRNAs). They confirmed that some mRNA was present in cow’s
milk, but that naturally occurring miRNA and mRNA in raw milk were resistant to acidic
conditions and RNase treatment. Synthesized miRNA spiked in the raw milk whey were
degraded [37]. Wang’s research team used transcriptome studies of mammary gland tissues
from dairy cows during the high-protein/high-fat, low-protein/low-fat, or dry periods
to investigate the molecular mechanisms governing milk secretion and quality in dairy
cows. They discovered 25 core differentially expressed miRNAs (DE miRNAs) that were
important for mammary gland growth and epithelial cell terminal differentiation during
lactation, as compared to non-lactation. Their findings suggested that during mammary
gland development, DE miRNAs might function as regulators of milk quality and milk
secretion [38]. Xia and colleagues used miRNA and transcriptome data from the mam-
mary epithelial cells of dairy cattle with high (H, 4.85%) and low milk fat percentages
(L, 3.41%) during mid-lactation to screen and identify differentially expressed miRNAs,
candidate genes, and co-regulatory pathways related to the metabolism of milk fat. In the
co-expression networks of the dairy cattle mammary system, they discovered functional
miRNAs and regulatory candidate genes involved in lipid metabolism (Table 1). This
information advances our understanding of potential regulatory mechanisms of genetic
elements and gene signaling networks involved in milk fat metabolism [39]. Since small
non-coding RNAs have been linked to various phenotypes in bovine sperm, Werry and col-
leagues hypothesized that some differences in bull fertility may be reflected in the levels of
various miRNAs in sperm. However, efforts to identify sperm-borne molecular biomarkers
of male fertility have so far failed to identify a robust profile of expressed miRNAs related
to fertility. The most abundant miRNAs in both populations were identified (miRs -34b-3p,
-100-5p, -191-5p, -30d-4p, and -21-5p), and variations in both the total levels and particular
patterns of isomiR expression were assessed. The findings offer a thorough description of
the bovine sperm miRNAome and point to numerous potential roles in fertility [40]. To
support the use of milk fat globules as a source of small non-coding RNAs to diagnose mas-
titis, their abundance from five cows before and after lipopolysaccharide (LPS) challenge
was compared. Six miRNAs that are known to be regulated in the mammary gland during
inflammation were also examined. The results showed that milk fat globules might be an
easily accessible source of miRNAs that are possible biomarkers to detect early mastitis,
and enable the application of a quick and efficient treatment. Four miRNAs (miR-494-3p,
-148a-3p, -99a-5p, and -125b-5p) were variably abundant depending on the inflammatory
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status [41]. The Cui study team found 497 known miRNAs and 49 new ones using mRNA
sequencing in the mammary glands of milking dairy cows. One of them, miRNA-71, was
expressed differently in cows whose milk contained high and low levels of protein and
fat [42]. A total of 21 differentially expressed genes can be referred to as targets for some
of the 71 DE miRNAs based on their prior RNA sequencing data, suggesting that they
may be crucial regulators of the milk protein and fat characteristics in dairy calves [43].
The miRNAomes of five essential metabolic tissues (rumen, duodenum, jejunum, liver,
and mammary gland tissues) involved in protein synthesis and metabolism from 18 dairy
cows fed high- and low-quality diets were studied to better understand the molecular
regulatory mechanisms of milk protein production in dairy cows. There were 340, 338, 337,
330, and 328 miRNAs expressed in the rumen, duodenum, jejunum, liver, and mammary
gland tissues, respectively. The findings indicated that miRNAs expressed in these tissues
may play a part in controlling the transfer of amino acid for milk production downstream,
which is a critical mechanism that may be related to low milk protein under poor forage
feed [44]. When the mammary gland miRNomes of two dairy cow breeds, Holstein and
Montbéliarde, with different mammogenic potentials that are related to differences in dairy
performance, were compared, 754 distinct miRNAs were found in the mammary glands of
Holstein (n = 5) and Montbéliarde (n = 6) midlactating cows. The outcome demonstrates
variations in the mammary gland miRNomes of two dairy cattle breeds, and suggests that
miRNAs may have a role in the flexibility of the mammary gland and the synthesis of milk
components, both of which are connected to the quantity and composition of milk [45].

With Illumina RNA-sequencing, it was discovered that miRNAs have a regulatory role
in the early development of the gastrointestinal tract (GIT). As a result of the findings, which
included temporal and regional variations in miRNA expression as well as a connection
between miRNA expression and the microbial population in the GIT during early life,
there is now additional support for the theory that host–microbial interactions regulate gut
development through a different mechanism [20]. Based on the variations in meat quality
attributes and 90 differently expressed mRNAs, an integrated study of miRNA and mRNA
expression profiling was carried out between bulls and steers, and 18 DE miRNAs were
discovered. The findings offered compelling proof of the molecular genetic regulation and
gene interactions in cattle [46].

B. Goats
Goat milk is typically made into cheese in Mediterranean nations and Latin America;

in Africa and South Asia, it is typically drunk raw or acidified. One of the most significant
livestock animals is the goat (Caprahircus) [47]. Numerous studies on goats have looked at
the impact of various feeding methods on milk fat content; nevertheless, the physiological
underpinnings of this reaction are still not well understood.

A study that examined the relationship between differentially expressed miRNAs
in goat mammary tissue and the fatty acid composition of goat milk found that levels of
miR-183, targeting MST1 (Macrophage Stimulating 1), were positively associated with the
milk’s fatty acid content [48]. The MST1 gene is targeted by miR-183 in the cytoplasm of
goat mammary epithelial cells, which results in an inhibition of milk fat metabolism. One
of the most crucial aspects of the nutritional quality of goat milk is its lipid composition.
For instance, the findings of the study by Ollier and colleagues revealed that whole intact
rapeseeds or sunflower oil in high-forage or high-concentrate diets affected milk yield and
composition, but not the mammary mRNA expression of the important genes involved in
lactose (for example, α-lactalbumin), protein (for example, β-casein), and lipid metabolism
(e.g., lipoprotein, lipase) [49]. The response to dietary interventions did not appear to
be mediated by changes in the mRNA abundance of genes encoding essential lipogenic
enzymes and the associated transcription factors, according to [50] on lactating goats fed a
supplement of sunflower seed oil. Thirty highly expressed miRNAs, including miR-103,
whose expression correlates with lactation, were found by high-throughput sequencing
in the mammary gland of lactating goats. This study’s conclusions provided new insight
about the roles of miR-103 and the molecular processes that control milk fat synthesis [51].



Vet. Sci. 2023, 10, 57 7 of 20

Diets containing extruded linseed alone or in conjunction with fish oil in lactating goats
exhibited effects on mRNA connected to protein metabolism and transport pathways rather
than lipid metabolism, as well as a significant alteration in the FA composition of milk [52].
MiR-25 mimics in goat mammary epithelial cells lowered the expression of genes involved
in lipid metabolism, which was inversely correlated with milk production at various phases
of lactation. The study’s findings revealed the role of the miR-25/PGC-1beta regulatory
axis during lactation and suggested that miR-25 may be involved in lipid metabolism [53]
(Table 1). A total of 1487 unique miRNAs, including 45 novel miRNA candidates and
1442 known and conserved miRNAs with 378 differentially expressed and 758 co-expressed
miRNAs, were found between early and late lactation. The study’s findings suggested that
miRNAs may be crucial to early and late lactation throughout the development of the dairy
goat mammary gland, which will help researchers better understand how genes regulate
mammary gland development and lactation [54]. The goat genome was sequenced, and
487 miRNAs were identified. The greatest miRNA clusters were discovered on chromo-
some 21 [55]. Overall, 131 novel and 300 conserved miRNAs were identified after ana-
lyzing goat MG tissues during early lactation using the Illumina-Solexa high-throughput
sequencing method [56]. Additionally, 346 conserved and 95 novel miRNAs were discov-
ered in goat MG tissues from dry off, and peak lactation does use the same technique
(Illumina-Solexa sequencing).

C. Sheep
Most sheep in the world live in developing nations. In colder regions they are even

more common than goats. Sheep farming includes a variety of products that can be
produced, including milk, meat, skin, fiber, and dung, although most small-scale farmers
in developing nations grow sheep for meat or for sale as livestock in local markets. Milk
production and lactation duration have not significantly increased because of genetic
selection in dairy sheep. Awassi, East Friesian, and Lacaune are sheep breeds used for
dairy products [47].

In a study with different fat-tailed sheep breeds, 155 DE miRNAs, including 78 up-
regulated and 77 down-regulated miRNAs, were found between the tail fat tissue of Hu
sheep (short-fat-tailed) and Tibetan sheep (short-thin-tailed) using miRNA-Seq. The find-
ings might offer a useful theoretical framework for research into the molecular processes
behind sheep tail adipogenesis [57]. Using RNA sequencing and cell-level validation (an
error-based approach to design and optimization) is crucial when dealing with a compli-
cated process such as NGS. The degree of validation and quality control required for specific
process steps can be determined by carefully considering the likelihood of potential failure
spots. It also helps in troubleshooting any errors and validating changes made to various
test system components. The role of miRNA in the deposition of intramuscular fat (IMF)
was investigated, and 59 DE-miRNAs were discovered between 2-month-old (Mth-2) and
12 month-old (Mth-12) Aohan fine-wool sheep (AFWS). In an effort to enhance the quality
of sheep meat, the study identified lists of miRNAs linked to intramuscular lipid deposition
in sheep and their prospective targets [58]. A study compared the microstructures and the
miRNA expression profile of mammary gland (MG) tissues at peak lactation in small-tailed
Han and Gansu Alpine Merino sheep, with various milk production attributes. Eighteen of
the one hundred and twenty-four mature miRNAs produced were differentially expressed
between the two breeds. The findings indicated that the functions of miRNAs in the growth
and lactation of MG in sheep can be improved. The results also indicated that the targeted
genes of differentially expressed miRNAs were mainly involved in metabolic pathways
and signaling pathways related to MG development, milk protein, and fat synthesis [59]
(Table 1).
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Table 1. MiRNAs involved in the regulation processes of mammary lipid metabolism of ruminants.

miRNAs Targeted Genes and
Pathways

Regulating
Functions References

miR-103 PKAN3, AMPKα

pathway

Accelerates de novo
synthesis of fatty

acids/Unsaturated or
saturated fatty acids

ratio

[51,60]

miR-224 ALOX15, PTGS1,
ACADM

Milk fat
metabolism/Increased

apoptosis rate
[61]

miR-221 FASN, NR1H3,
ACSL1

Droplet of lipid
formation [62]

miR-24-3p MEN1 Regulates synthesis of
milk proteins [63]

miR-24 ACACA, TIP47,
GPAM

Droplet of fat
formulation,

concentration of fatty
acid, synthesis fatty

acid

[64]

miR-486 PTEN
Regulates

phosphoacyl alcohol
signal transduction

[65]

miR-124a PECR Metabolizes fatty acid [66]

miR-135a PPLR Regulates prolactin
secretion [67]

miR-106b ABCA1

Accumulates
triglycerides and

cholesterol in
epithelial cells of the

mammary gland

[68]

miR-145 INSIG1 Stimulates the
production of milk fat [69]

3. MiRNAs Involved in Disease and Health in Ruminants

Ruminant diseases cause significant financial losses worldwide by increasing mortality
and decreasing productivity in dairy herds. External and internal parasites, mastitis, and
other production-related diseases usually do not kill the animal, but always make the
system less effective. Diseases can have an impact on dairy productivity by lowering milk
production, reducing fertility, delaying puberty, lowering milk quality, and reducing feed
conversion. Health risks associated with dairy animal diseases could potentially spread
to humans (e.g., tuberculosis, brucellosis). Small-scale dairy farming in poor nations is
vulnerable to numerous health concerns. Numerous factors contribute to this, including
poor understanding of disease prevention, treatment, and control; a high prevalence of
infections; and the price, accessibility, or suitability of animal health services. A small-
scale dairy producer with few resources may experience significant household economic
effects from the death of even one animal due to disease. Small-scale dairy farmers
typically do not invest much in animal health, particularly in terms of disease prevention.
Depending on their physical and physiological traits, various dairy species and breeds
have various health requirements. By choosing dairy animals that are compatible with
the local environment, animal health and welfare issues may be considerably decreased.
The ability of the dairy animal to adapt to the climate, graze on the available resources,
and fend off endemic diseases and local parasites are of relevance. While dairy animals
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kept in extensive systems are more vulnerable to parasite diseases, those kept in intensive
systems are more susceptible to agents that cause transmissible disease. Animals may be
more susceptible to endemic diseases when they are introduced to a new area because they
lack developed immunity [47].

A. Mastitis
The most expensive disease in dairy production is mastitis, an inflammation of the

mammary glands, which is mostly brought on by a wide variety of bacteria that can be
classified as infectious and environmental bacteria. Mastitis, particularly the sub-clinical
variety, is the most prevalent production-related disease in cattle, sheep, and goats that are
extensively managed for the purpose of producing meat or milk [70] (Figure 1).
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The negative impact of mastitis includes not only effects on the economy, but also
important effects on the animals’ health and welfare. Food safety (food-borne diseases)
and the quality of dairy products (such as cheese) are relevant perspectives as well, since
milk from affected animals may include pathogenic bacteria and have altered compositions
that are undesirable to the dairy sector [71,72]. Staphylococcus aureus, Streptococcus agalactiae,
Strep. spp., Corynebacterium bovis (summer mastitis of heifers, dry cows, and beef breeds),
coliform agents (E. coli and Klebsiella pneumonia), and Mycoplasma spp., especially M. bovis,
are the most prevalent bovine mastitis pathogens (California mastitis). Many of these
pathogens can lead to significant systemic dysfunction, including fever and anorexia, as
well as acute and chronic mastitis. Mastitis in cattle exhibits comparable signs and can be
treated in a manner like for small ruminants [73].

Some miRNAs may have important functions during mastitis. In the mammary
tissue of cows with mastitis, different levels of expression of several miRNA target genes,
including interleukin-8 (IL-8) and granulocyte-macrophage colony-stimulating factor (GM-
CSF), were discovered [74]. In addition, Li et al. discovered that miR-31 and miR-205 were
down-regulated in mammary epithelial tissue infected with S. aureus relative to healthy
controls, whereas miR-223 was increased (Table 2) [75]. The primary mastitis pathogen is S.
aureus; however, there have been a few investigations on the dynamic changes in miRNA
expression in peripheral blood during the onset and development of mastitis in dairy cows
infected with S. aureus. The expression level of miRNAs that are linked to mastitis in
dairy cows is very sensitive to changes in the pathogenic bacterium type, and dosage and
period of infections. For the molecular diagnosis and biological therapy of mastitis, it is
crucial to comprehend the changes in miRNA during the pathogenesis [76]. In a recent
study, dairy cows’ mammary gland tissues were infected with 5 mL of 105 CFU/mL of S.
aureus to prepare a mastitis cow model. Finding biomarkers for early identification of S.
aureus-infected mastitis in dairy cow peripheral blood is therefore crucial. The findings



Vet. Sci. 2023, 10, 57 10 of 20

provided a new basis for investigation into molecular diagnostics and biological therapy for
S. aureus-infected mastitis in dairy cows [76]. It is necessary to comprehend the control of
immunological mechanisms during mastitis, particularly the role of miRNAs, as the genetic
basis of mastitis is yet unknown. Using next-generation sequencing, the miRNA profile
of the parenchyma was found to change during mastitis, with its profile depending on
the type of pathogen. It was found to be changed depending on whether the glands were
infected with coagulase-positive staphylococci (CoPS) or coagulase-negative staphylococci
(CoNS). They came to the conclusion that their discoveries regarding the impact of the
discovered miRNAs on the etiology of mastitis represent a new step in understanding the
disease’s molecular mechanisms and may enable more effective prevention and treatment,
as well as functional studies on the function of miRNAs in the regulation of molecular
pathways related to bacterial infection [74].

B. Tuberculosis
As a zoonotic disease, tuberculosis (TB) can spread from animals to humans. Cattle

and Sheep tuberculosis is typically caused by Mycobacterium bovis (M. bovis) or M. avium.
Mycobacteria are pleomorphic, aerobic, nonmotile, nonspore-forming bacilli. Goat cases
have been linked to M. tuberculosis, M. avium, or M. bovis. M. bovis has a diverse range of
hosts and infects cattle with tuberculosis. Animal TB, especially in cattle, has a devastating
influence on animal productivity and public health because of its importance. Trade in
live animals and their products is severely restricted because of TB in cattle, resulting in
significant economic losses [77]. The prevention of the spread of the virus and the reduction
of transmission would be greatly aided by the early detection of Mycobacterium avium
subspecies paratubercolosis (MAP) affected animals. Both in human and veterinary medicine,
circulating miRNA profiles and gene expression have been suggested as potential indicators
of disease. As a result, gene expression and associated miRNA levels were examined in
cows that had tested positive for MAP using ELISA and culture in attempts to find potential
biomarkers to help in MAP infection diagnosis (Table 2). The findings indicated that MAP
infection has an impact on miRNA expression and that miRNAs are crucial in controlling
how the host reacts to infection. The gene expression and miRNA profiles may serve
as biomarkers of infection, and an earlier method of diagnosing MAP infection than the
currently available ELISA-based diagnostic techniques [78]. A study describes a first
next-generation sequencing approach to temporally profile miRNA expression in primary
bovine alveolar macrophages (AMs) following Mycobacterium bovis (M. bovis) infection.
Mycobacterium bovis, the causative agent of bovine tuberculosis, spreads through the air
and is taken up by alveolar macrophages in the lung. According to the research, miRNAs
are crucial in regulating the intricate interaction between M. bovis survival tactics and the
host immune response [79].

C. Brucellosis
An economically significant zoonotic disease that can impact humans, domesticated

animals, and even wildlife, is brucellosis. Gram-negative bacteria of the genus Brucella are
responsible for the disease. Four of the six identified classical Brucella species are thought to
be harmful to humans. The most frequent cause of human brucellosis is Brucella melitensis,
which primarily infects goats and sheep, while B. abortus, which primarily infects cattle,
buffalo, elk, yaks, and camels, is the second most frequent source of infection in humans.
Animal brucellosis mostly affects females’ genitalia and causes abortions, though orchitis
or joint manifestations have occasionally been reported [80].

In a recent study, the serum miRNA signature linked to brucellosis in water buffaloes
was characterized, and the potential for using the miRNAs as biomarkers in vaginal
secretions was examined. Dysregulated miRNAs in blood serum and vaginal fluids were
confirmed using RT-qPCR, and miRNA expression profiles in Brucella-positive and Brucella-
negative blood sera were assessed using next-generation sequencing. The outcomes showed
possible indicators for Brucella infection in water buffaloes and gave an overview of miRNA
expression levels (Table 2). A better understanding of the molecular processes underlying
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Brucella infection and host immune response is possible if additional functional and
mechanistic studies of these miRNAs are considered [81].

D. Foot and Mouth
Globally, one of the most significant and urgent livestock diseases is foot and mouth

disease (FMD) (Figure 1). In endemic areas of the world, its yearly economic impact
on observable production losses and vaccine costs is estimated to range from US$6.5 to
US$21 billion. FMD is a highly contagious disease that affects animals with cloven hooves
and is brought on by the FMD virus (FMDV), a type of Aphthovirus found in the family
Picornaviridae [82]. Cattle, pigs, sheep, goats, and water buffalo (Bubalus bubalis) are among
the domesticated species that are susceptible to FMD. The presence of subclinical disease
types makes FMD control particularly challenging. In a proof-of-concept work utilizing
miRNA PCR array plates, the relative abundance of 169 miRNAs was determined in bovine
serum obtained at three different stages of FMDV infection. A different circulating miRNA
profile from animals that had recovered from infection was induced by subclinical FMDV
persistence. While bta-miR-31 was most abundant during FMDV persistence, bta-miR-17-
5p was most abundant during acute infection (Table 2). These results imply that non-coding
regulatory RNAs are involved in FMDV infection of cattle. Future research will outline the
unique contributions of the identified miRNAs to FMDV replication, as well as whether
this miRNA profile is shared by all FMDV serotypes and whether it may be used to build
innovative diagnostic applications [83]. Cattle, a natural host for FMDV, were used to study
the host miRNA response after FMDV infection. Early in the infection process, a significant
alteration in serum miRNA expression was found. The data show that changes in miRNA
expression take place during early pathogenesis, and the identification of potential miRNA
target genes may aid in unravelling the molecular processes involved in the interaction
between the virus and the host, which may be helpful in the development of therapeutic
approaches [84].

E. Fascioliasis
Some species of leaf-like digenetic trematodes in the genus Fasciola are responsible

for the old food-borne, but neglected, zoonotic disease known as fascioliasis (Figure 1).
Following ingestion of the parasite, fascioliasis has an asymptomatic incubation phase,
which is followed by an acute and a chronic clinical phase. The juvenile worms breach
the peritoneum and intestinal wall to initiate the acute phase of the Fasciola infection [85].
They subsequently move on to the liver surface and the bile ducts. A substantial number
of nations around the world are affected by fascioliasis, with Latin America and the
Middle East reporting the highest burdens. According to estimates, F. hepatica infects about
300 million cattle and 250 million sheep worldwide, and along with F. gigantica, it is
thought to be responsible for an annual economic loss of USD 3 billion [85]. To establish a
baseline for the prevalence of Fasciola gigantica infestation in cattle butchered at the Minna
metropolitan abattoir in the Chanchaga Local Government area of Niger State, Nigeria,
a 90-day study was conducted by Osinowo et al. This investigation proved that Fasciola
gigantica was present in animals butchered in Minna Metropolis. Cattle should only be
allowed to graze in regions with fewer snail infestations, especially those near rivers and
streams [86].

A total of 121 host circulating miRNAs were differentially expressed in this study’s two
groups of twenty-four (8–10-month-old) buffaloes, of which 44 miRNAs were up-regulated
and 77 miRNAs were significantly down-regulated. Four parasite-derived miRNAs were
found in the sera of F. gigantica-infected buffaloes, and the host circulating miRNAs were
dysregulated in the buffalo sera during infection (Table 2). The outcome will enhance circu-
lating parasite-derived miRNAs as diagnostic targets of parasite infection, and contribute to
the understanding of the molecular mechanisms underlying host–parasite interactions [87].

F. Peste des Petit
A virus from the family Paramyxoviridae, genus Morbillivirus, is the culprit behind

the peste des petits ruminants. Prior to 2016, this virus’s official name was Peste des
petits ruminants virus (PPRV); it was then changed to Small ruminant morbillivirus (SRM).
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However, professionals in the field still refer to it as PPRV. The virus is a pleomorphic
particle with a ribonucleoprotein core and RNA genome enclosed by a lipoprotein mem-
brane. The genome is a single stranded, negative polarity, negative sense RNA that is
roughly 16 kilobases (kb) long [88]. Africa, the Middle East, Central Asia, and East Asia
are all affected by the endemic small ruminant plague. PPRV lineage IV has lately become
widely distributed in Africa and Asia (such as China, Nepal, India, and Pakistan) (from
the north to Tanzania). In Turkey, epidemics occur often with the most recent being in
2011–2016. In Europe, Bulgaria was where an incident was first noted in June 2018 [88].
PPRV-specific antibodies have been employed by numerous researchers in a variety of
assays and tests for the detection of virus antigen in tissue, swabs, conjunctival smears,
and formalin-fixed tissues. For the time being, the “gold standard” for PPR diagnosis is
virus isolation. Primary sheep and cattle cells, as well as well-established cell lines such
as Marmoset B-lymphoblastoid-B95a cells and Vero (African green monkey kidney) cells,
can all be used to isolate and culture the PPRV in vitro [89]. To determine the function
of differentially expressed miRNA (DEmiRNA) in PPR virus (PPRV)-infected lung and
spleen tissues of sheep and goats, miRNAs were sequenced, and proteomics data were
obtained. According to the research, PPRV-induced miR-21-3p, miR-320a, and miR-363
may work together to down-regulate many immune response genes in the lung and spleen
of sheep, enhancing viral pathogenesis (Table 2). The fact that the PPRV–Izatnagar/94
isolate causes a stronger host response in goats than in sheep provides vital information
on the molecular pathogenesis of PPR [90]. To identify the cellular miRNA expression
profile in goat peripheral blood mononuclear cells (PBMC) infected with the commonly
used vaccine strain Nigeria 75/1 for mass immunization campaigns against Peste des petits
ruminants, the deep sequencing technique was applied. The findings of this work serve
as an important foundation for further research into the functions of miRNA in PPRV
replication and pathogenesis [91].

Table 2. MiRNAs involved in important diseases of ruminant animals.

Potential miRNA
Biomarkers Diseases Pathogens Sample Tissue References

miR-2339, miR-21-3p,
miR-423-5p, miR-499,

miR-92a, miR-193a-3p,
miR-23a, miR-99b,

miR-21-3p,
miR-193a-3p,

miR-365-3p, miR-30c,
and miR-30b-5

pmiR-31, miR-205,
miR223

Mastitis

Staphylococcus aureus BMEC [75,92]

miR-144, miR-451 and
miR-7863

Escherichia coli and
Staphylococcus aureus BMEC [93]

miR-21, miR-146a,
miR-155, miR-222, and

miR-383
Streptococcus agalactiae Milk [94]

let-7i, miR-21, miR-27,
miR-99b, miR-146,

miR-147, miR-155 and
miR-223

California mastitis test
(CMT) Milk [94]
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Table 2. Cont.

Potential miRNA
Biomarkers Diseases Pathogens Sample Tissue References

miR-17-5p, miR-31 and
miR-1281

Foot and Mouth
disease

Foot and Mouth
disease virus

Serum [83]

miR-21-5p, miR-101,
miR-126-3p, miR-145,
miR-197, bta-miR-223

Serum [84]

bta-miR-142-5p,
bta-miR-146a and

bta-miR-423-3p
Tuberculosis Mycobacterium bovis

Lung [79]

mir-19b, mir-19b-2,
mir-1271, mir-100,
mir-301a, mir-32,

mir-6517 and mir-7857

Blood [78]

miR-21-3p, miR-1246,
miR-27a-5p,

miR-760-3p, miR-320a
and miR-363 Peste des petits

ruminant’s virus
infection

Peste des petits
ruminant’s virus

Spleen and lung [90]

miR-204-3p,
miR-338-3p,
miR-30b-3p,
miR-199a-5p,

miR-199a-3p and miR-1

Peripheral blood
mononuclear cells [91]

miR-let-7f, miR-151,
miR-30e, miR-191,

miR-150 and miR-339b
Brucellosis Brucella abortus Serum [81]

miR-87, miR-71 Fascioliasis Fasciola gigantica Serum [87]

4. Development of miRNAs as Biomarkers of Diet, Nutritional Status, and Their
Potential for Therapeutic Use in Ruminants

Biomarkers are biological molecules used to comprehend a physiological process
or identify an abnormal process or a disease. For the management of livestock diseases,
miRNA can be employed as biomarkers that can be used for therapeutic, prognostic, or
diagnostic purposes. They are also known as molecular markers, biochemical markers,
or signature molecules [95]. A miRNA biomarker refers to miRNA that is generated or
enriched particularly in each tissue, and whose circulating levels may indicate pathological
or physiological changes in said tissue [96]. The choice of biomarkers in nutrigenomics
must consider alterations in homoeostasis that reflect the relationship between nutritional
diet and health or disease. However, recent studies cited in this review suggested that
miRNAs from plasma, leucocytes, serum, and feces might be relevant biomarkers to
quantify the physiological effects of dietary or intervention lifestyle studies (Table 2).
MiRNAs from plasma or serum, PBMC, and feces may be useful biomarkers to measure
the physiological effects of dietary or lifestyle intervention studies, according to current
studies described in this review [97]. Most small RNA biomarker discovery studies employ
a high-throughput profiling strategy, such as sequencing or PCR arrays, to find candidate
sequences linked to a certain physiological or pathological condition. Cell-free biofluid
samples can either be examined whole (such as plasma), or isolated fractions containing
short RNAs can be examined (e.g., exosomal or lipoprotein fractions). Unfractionated
biofluid samples may be more effective for achieving full screening of miRNA populations
because studies have demonstrated that different fractions in plasma contain different
miRNA sequences [98]. Most often, individual RT-qPCR assays are used for validation,
allowing some control over enzymatic inhibition and sample contamination. The validated
biomarkers can subsequently be tested in larger subject cohorts and/or have their function
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examined with in vitro or in vivo utilizing techniques, such as luciferase reporter assays
and gain-of-function or loss-of-function methodologies. In a recent study, it was discovered
that different diets could affect miRNA expression of bovine serum, and their potential
influence on immunity was discovered as well. The findings suggested that one could use
effective dietary strategies to interfere with the physiological state of animals [99].

Circulating miRNAs have been utilized as biomarkers for a variety of diseases and
physiological conditions in mice and humans [100–104]; research on domestic animals,
particularly ruminants, is limited. The discovery of deregulated miRNAs and their targets
opens the possibility of developing therapeutic, prognostic, and diagnostic approaches
for veterinary diseases. MiRNAs are naturally produced into body fluids by cells, where
they remain in comparatively stable protein or lipid complexes, and are simple to measure
(Figure 2). This gives the option to employ miRNAs as non-invasive indicators of tissue
function linked to a variety of physiological states (such as pregnancy) and disorders.
This is complemented with the fact that some miRNAs are tissue or developmental stage
specific (e.g., neoplasia, cardiovascular disease, osteoarthritis, sepsis). Utilizing illumina
small-RNA sequencing, plasma samples were taken from eight non-pregnant heifers on
pregnancy days to determine the potential of circulating miRNAs as indicators of early
pregnancy in cattle. MiR-26a was discovered by genome-wide analysis to be a possible
circulating biomarker of early pregnancy, and plasma miRNA populations linked to early
pregnancy in cattle were successfully characterized [105]. When the effects of age and
genetic background on the expression patterns of 306 plasma miRNAs were examined in
18 animals, it was discovered that these factors were related to the attributes of health and
production in dairy cows. Circulating miRNAs may serve as helpful markers for dairy
cows to help with better health, welfare, and production outcomes, according to the study’s
findings [106]. Six non-pregnant Holstein–Friesian cross cows were used in the analysis of
the miRNA profiles in plasma and cell fractions of blood to find tissue-derived miRNAs
that may be useful as indicators of tissue function in this major food animal species. An
important factor in the context of post-partum negative energy balance in dairy cows, the
study discovered miR802, a circulating miRNA that had not previously been identified in
cattle and that may regulate insulin sensitivity and lipid metabolism. As a result, it may
provide a specific biomarker of liver function [96]. The fact that circulating miRNA profiles
alter in response to diseases, bacterial, or viral infections [81,83,107], and physiological
states [108,109] (such as pregnancy), demonstrates the suitability of circulating miRNAs as
biomarkers for tracking various physical situations in animals. It is becoming clearer that
dietary feed components play a crucial function in nutrition and health, as well as in the
regulation of miRNAs. Since a variety of bioactive feed ingredients affect how miRNAs
are made, it stands to reason that some of these elements may also affect how diseases are
susceptible to developing, intensifying, and progressing [2]. Cattle, a natural host for foot
and mouth disease virus (FMDV), were used to study the host miRNA response following
FMDV infection (Table 2). At the earliest stages of infection, a considerable change in serum
miRNA expression was found. The study found that early pathogenesis is accompanied by
changes in miRNA expression, and that finding potential miRNA target genes may aid in
unravelling the molecular processes underlying virus–host interaction and, consequently,
in the development of therapeutic approaches [84].
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5. Future Recommendations and Open Research Suggestions

Biomarker studies, as discussed in this review, have been carried out in many species
and concentrate on the diagnosis and monitoring of a wide range of diseases. The majority
of the found biomarkers have not yet been transformed into useful diagnostic tests or
commercially viable products, even though many are thought to be promising. For a
biomarker to reach clinical usage, the entire set of essential validation processes has to
be completed or published. The dairy cow still presents one of the most intensively
farmed animals worldwide. Dairy cows with high milk yields have been genetically
chosen for this trait, making them prone to diseases such mastitis, tuberculosis, foot
and mouth, brucellosis, fasciolosis, and rumen acidosis. Therefore, the development of
biomarkers for the early diagnosis of these diseases delineates an important mission of
contemporary dairy research. Emerging new technologies, such as systems biology and
omics approaches, have been widely used for the identification of ruminant biomarkers;
however, the development of faster methods enabling a higher analytical sensitivity is
inevitable. The future success of miRNAs as biomarkers in this area, and the realization of
the improvements in ruminant production efficiency and welfare that relate to it depend
on recognizing and then overcoming these limitations. Research funding continues to be a
significant barrier to the development of miRNA biomarkers because these markers must be
translated into clinical practice, which takes more time and money, and requires additional
extensive studies with a large sample size for validation to ensure that they are truly
able to predict the clinical outcome. An illustration of this is the use of urinary estrogens
to detect pregnancy in giant pandas, where researchers have been analyzing estrogenic
metabolites as markers of pregnancy, and viable cub development studies working towards
this biomarker began already ten years ago [110,111].

Biomarkers still need to be linked into automated systems, platforms, and technologies
before farmers and veterinarians can use them in the field. For example, even though
pregnancy-associated glycoproteins can be thought of as particular biomarkers for fetal
wellbeing and pregnancy diagnosis, such biomarkers have not yet been applied at farm
level. In our opinion, successful solutions for enhancing the health, performance, and
wellbeing of ruminants would necessitate interdisciplinary cooperation of basic scientists,
farmers, consultants, veterinarians, and bioinformaticians.
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6. Conclusions

MiRNAs have undeniable potential as biomarkers for the control of livestock dis-
eases, and play important regulatory functions in ruminant nutrition and physiology. The
use of miRNAs as biomarkers in ruminant nutrition and physiology, however, requires
more investigation to identify the biomarkers for ruminant welfare and create accessible,
affordable, and sensitive analytical or non-invasive approaches to assess them. Never-
theless, a substantial rise in miRNA research has been seen in recent years due to the
urgent need to control ruminant diseases and disorders, such as sub-acute ruminal acidosis.
MiRNA research benefits greatly from more potent computing resources, improved statisti-
cal techniques, and decreased sequencing and genotyping costs. Thus, we anticipate that
miRNA biomarkers will eventually be created and used as effective instruments to control
ruminant diseases.
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